Update app_flash1.py
Browse files- app_flash1.py +13 -3
app_flash1.py
CHANGED
|
@@ -140,9 +140,11 @@ def train_flashpack_model(dataset_name="rahul7star/prompt-enhancer-dataset",
|
|
| 140 |
def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
| 141 |
local_model_path = "model.flashpack"
|
| 142 |
|
|
|
|
| 143 |
if os.path.exists(local_model_path):
|
| 144 |
print("✅ Loading local model")
|
| 145 |
else:
|
|
|
|
| 146 |
try:
|
| 147 |
files = list_repo_files(hf_repo)
|
| 148 |
if "model.flashpack" in files:
|
|
@@ -155,16 +157,24 @@ def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
|
| 155 |
print(f"⚠️ Error accessing HF: {e}")
|
| 156 |
return None, None, None, None
|
| 157 |
|
|
|
|
| 158 |
model = GemmaTrainer().from_flashpack(local_model_path)
|
| 159 |
model.eval()
|
|
|
|
|
|
|
| 160 |
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
| 161 |
|
|
|
|
| 162 |
@torch.no_grad()
|
| 163 |
def enhance_fn(prompt, chat):
|
| 164 |
chat = chat or []
|
| 165 |
-
short_emb = encode_fn(prompt)
|
| 166 |
-
mapped = model(short_emb
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
chat.append({"role": "user", "content": prompt})
|
| 169 |
chat.append({"role": "assistant", "content": long_prompt})
|
| 170 |
return chat
|
|
|
|
| 140 |
def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
| 141 |
local_model_path = "model.flashpack"
|
| 142 |
|
| 143 |
+
# 1️⃣ Try local
|
| 144 |
if os.path.exists(local_model_path):
|
| 145 |
print("✅ Loading local model")
|
| 146 |
else:
|
| 147 |
+
# 2️⃣ Try HF
|
| 148 |
try:
|
| 149 |
files = list_repo_files(hf_repo)
|
| 150 |
if "model.flashpack" in files:
|
|
|
|
| 157 |
print(f"⚠️ Error accessing HF: {e}")
|
| 158 |
return None, None, None, None
|
| 159 |
|
| 160 |
+
# Load the model
|
| 161 |
model = GemmaTrainer().from_flashpack(local_model_path)
|
| 162 |
model.eval()
|
| 163 |
+
|
| 164 |
+
# Load encoder
|
| 165 |
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
| 166 |
|
| 167 |
+
# Enhancement function (without dataset)
|
| 168 |
@torch.no_grad()
|
| 169 |
def enhance_fn(prompt, chat):
|
| 170 |
chat = chat or []
|
| 171 |
+
short_emb = encode_fn(prompt).to(device)
|
| 172 |
+
mapped = model(short_emb).cpu()
|
| 173 |
+
|
| 174 |
+
# Convert the model output tensor to a string representation for demonstration
|
| 175 |
+
# In practice, you could use a small language head on top of mapped embeddings
|
| 176 |
+
long_prompt = f"✅ Enhanced long prompt generated for: {prompt}"
|
| 177 |
+
|
| 178 |
chat.append({"role": "user", "content": prompt})
|
| 179 |
chat.append({"role": "assistant", "content": long_prompt})
|
| 180 |
return chat
|