Update main.py
Browse files
main.py
CHANGED
|
@@ -10,28 +10,32 @@ import matplotlib.pyplot as plt
|
|
| 10 |
import base64
|
| 11 |
from io import BytesIO
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
os.environ["
|
| 15 |
-
os.environ["
|
|
|
|
| 16 |
|
| 17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN", None)
|
| 19 |
|
| 20 |
app = Flask(__name__)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
MODEL_HF_REPO = "philipobiorah/bert-imdb-model" #
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
print("🚀 Loading model from Hugging Face Hub with authentication...")
|
| 30 |
-
|
| 31 |
-
model = BertForSequenceClassification.from_pretrained(
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
)
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
model.eval()
|
| 37 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
@@ -73,19 +77,19 @@ def upload_file_post():
|
|
| 73 |
# Predict sentiment for each review
|
| 74 |
data['sentiment'] = data['review'].apply(predict_sentiment)
|
| 75 |
|
| 76 |
-
#
|
| 77 |
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
| 78 |
summary = f"Total Reviews: {len(data)}<br>" \
|
| 79 |
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \
|
| 80 |
f"Negative: {sentiment_counts.get('Negative', 0)}<br>"
|
| 81 |
|
| 82 |
-
#
|
| 83 |
fig, ax = plt.subplots()
|
| 84 |
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue'])
|
| 85 |
ax.set_ylabel('Counts')
|
| 86 |
ax.set_title('Sentiment Analysis Summary')
|
| 87 |
|
| 88 |
-
#
|
| 89 |
img = BytesIO()
|
| 90 |
plt.savefig(img, format='png', bbox_inches='tight')
|
| 91 |
img.seek(0)
|
|
|
|
| 10 |
import base64
|
| 11 |
from io import BytesIO
|
| 12 |
|
| 13 |
+
# Set writable cache directories for Hugging Face and Matplotlib
|
| 14 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
|
| 15 |
+
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
|
| 16 |
+
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
| 17 |
|
| 18 |
+
# Ensure the directories exist
|
| 19 |
+
os.makedirs("/tmp/huggingface_cache", exist_ok=True)
|
| 20 |
+
os.makedirs("/tmp/matplotlib", exist_ok=True)
|
| 21 |
+
|
| 22 |
+
# Retrieve Hugging Face Token securely from environment variables
|
| 23 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN", None)
|
| 24 |
|
| 25 |
app = Flask(__name__)
|
| 26 |
|
| 27 |
+
# Fix the Hugging Face Model Repository Name
|
| 28 |
+
MODEL_HF_REPO = "philipobiorah/bert-imdb-model" # Ensure this exists on Hugging Face
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
print("🚀 Loading model from Hugging Face Hub with authentication...")
|
| 31 |
+
try:
|
| 32 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 33 |
+
MODEL_HF_REPO,
|
| 34 |
+
token=HF_TOKEN, # Ensure correct authentication
|
| 35 |
+
)
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"❌ Error loading model: {e}")
|
| 38 |
+
exit(1)
|
| 39 |
|
| 40 |
model.eval()
|
| 41 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
|
| 77 |
# Predict sentiment for each review
|
| 78 |
data['sentiment'] = data['review'].apply(predict_sentiment)
|
| 79 |
|
| 80 |
+
# Sentiment Analysis Summary
|
| 81 |
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
| 82 |
summary = f"Total Reviews: {len(data)}<br>" \
|
| 83 |
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \
|
| 84 |
f"Negative: {sentiment_counts.get('Negative', 0)}<br>"
|
| 85 |
|
| 86 |
+
# Generate bar chart
|
| 87 |
fig, ax = plt.subplots()
|
| 88 |
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue'])
|
| 89 |
ax.set_ylabel('Counts')
|
| 90 |
ax.set_title('Sentiment Analysis Summary')
|
| 91 |
|
| 92 |
+
# Convert plot to base64 for embedding
|
| 93 |
img = BytesIO()
|
| 94 |
plt.savefig(img, format='png', bbox_inches='tight')
|
| 95 |
img.seek(0)
|