add confidence level of prediction to display
Browse files
main.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import os
|
| 2 |
-
from flask import Flask, jsonify, request, render_template
|
| 3 |
import pandas as pd
|
| 4 |
import torch
|
| 5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
|
@@ -9,7 +9,6 @@ matplotlib.use('Agg') # Prevents GUI issues for Matplotlib
|
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
import base64
|
| 11 |
from io import BytesIO
|
| 12 |
-
from flask import send_file
|
| 13 |
|
| 14 |
|
| 15 |
# Ensure the file exists in the current directory
|
|
@@ -36,18 +35,23 @@ model = BertForSequenceClassification.from_pretrained(MODEL_NAME)
|
|
| 36 |
|
| 37 |
model.eval()
|
| 38 |
|
| 39 |
-
# Function to Predict Sentiment
|
| 40 |
def predict_sentiment(text):
|
| 41 |
if not text.strip():
|
| 42 |
-
return "Neutral" # Avoid processing empty text
|
| 43 |
|
| 44 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 45 |
|
| 46 |
with torch.no_grad():
|
| 47 |
outputs = model(**inputs)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
@app.route('/')
|
| 53 |
def upload_file():
|
|
@@ -67,8 +71,8 @@ def analyze_text():
|
|
| 67 |
if not text:
|
| 68 |
return jsonify({"error": "No text provided!"}), 400 # Return JSON error message
|
| 69 |
|
| 70 |
-
|
| 71 |
-
return jsonify(
|
| 72 |
|
| 73 |
@app.route('/uploader', methods=['POST'])
|
| 74 |
def upload_file_post():
|
|
@@ -86,8 +90,10 @@ def upload_file_post():
|
|
| 86 |
if 'review' not in data.columns:
|
| 87 |
return "Error: CSV file must contain a 'review' column!", 400
|
| 88 |
|
| 89 |
-
# Predict sentiment for each review
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Generate summary
|
| 93 |
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
|
@@ -114,4 +120,4 @@ def upload_file_post():
|
|
| 114 |
return f"Error processing file: {str(e)}", 500
|
| 115 |
|
| 116 |
if __name__ == '__main__':
|
| 117 |
-
app.run(host='0.0.0.0', port=7860, debug=True)
|
|
|
|
| 1 |
import os
|
| 2 |
+
from flask import Flask, jsonify, request, render_template, send_file
|
| 3 |
import pandas as pd
|
| 4 |
import torch
|
| 5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
|
|
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
import base64
|
| 11 |
from io import BytesIO
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
# Ensure the file exists in the current directory
|
|
|
|
| 35 |
|
| 36 |
model.eval()
|
| 37 |
|
| 38 |
+
# Function to Predict Sentiment + Confidence Score
|
| 39 |
def predict_sentiment(text):
|
| 40 |
if not text.strip():
|
| 41 |
+
return {"sentiment": "Neutral", "confidence": 0.0} # Avoid processing empty text
|
| 42 |
|
| 43 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 44 |
|
| 45 |
with torch.no_grad():
|
| 46 |
outputs = model(**inputs)
|
| 47 |
|
| 48 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)[0] # Convert logits to probabilities
|
| 49 |
+
sentiment_idx = probabilities.argmax().item() # Get predicted class (0 = Negative, 1 = Positive)
|
| 50 |
+
confidence = probabilities[sentiment_idx].item() * 100 # Convert to percentage
|
| 51 |
+
|
| 52 |
+
sentiment_label = "Positive" if sentiment_idx == 1 else "Negative"
|
| 53 |
+
|
| 54 |
+
return {"sentiment": sentiment_label, "confidence": round(confidence, 2)}
|
| 55 |
|
| 56 |
@app.route('/')
|
| 57 |
def upload_file():
|
|
|
|
| 71 |
if not text:
|
| 72 |
return jsonify({"error": "No text provided!"}), 400 # Return JSON error message
|
| 73 |
|
| 74 |
+
result = predict_sentiment(text)
|
| 75 |
+
return jsonify(result) # Return JSON response including confidence score
|
| 76 |
|
| 77 |
@app.route('/uploader', methods=['POST'])
|
| 78 |
def upload_file_post():
|
|
|
|
| 90 |
if 'review' not in data.columns:
|
| 91 |
return "Error: CSV file must contain a 'review' column!", 400
|
| 92 |
|
| 93 |
+
# Predict sentiment & confidence for each review
|
| 94 |
+
results = data['review'].astype(str).apply(predict_sentiment)
|
| 95 |
+
data['sentiment'] = results.apply(lambda x: x['sentiment'])
|
| 96 |
+
data['confidence'] = results.apply(lambda x: f"{x['confidence']}%")
|
| 97 |
|
| 98 |
# Generate summary
|
| 99 |
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
|
|
|
| 120 |
return f"Error processing file: {str(e)}", 500
|
| 121 |
|
| 122 |
if __name__ == '__main__':
|
| 123 |
+
app.run(host='0.0.0.0', port=7860, debug=True)
|