Spaces:
Sleeping
Sleeping
Create wrapper.py
Browse files
src/models/backbones/wrapper.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from functools import reduce
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from .mobilenetv2 import MobileNetV2
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class BaseBackbone(nn.Module):
|
| 11 |
+
""" Superclass of Replaceable Backbone Model for Semantic Estimation
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def __init__(self, in_channels):
|
| 15 |
+
super(BaseBackbone, self).__init__()
|
| 16 |
+
self.in_channels = in_channels
|
| 17 |
+
|
| 18 |
+
self.model = None
|
| 19 |
+
self.enc_channels = []
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
raise NotImplementedError
|
| 23 |
+
|
| 24 |
+
def load_pretrained_ckpt(self):
|
| 25 |
+
raise NotImplementedError
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class MobileNetV2Backbone(BaseBackbone):
|
| 29 |
+
""" MobileNetV2 Backbone
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, in_channels):
|
| 33 |
+
super(MobileNetV2Backbone, self).__init__(in_channels)
|
| 34 |
+
|
| 35 |
+
self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
|
| 36 |
+
self.enc_channels = [16, 24, 32, 96, 1280]
|
| 37 |
+
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
|
| 40 |
+
x = self.model.features[0](x)
|
| 41 |
+
x = self.model.features[1](x)
|
| 42 |
+
enc2x = x
|
| 43 |
+
|
| 44 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
|
| 45 |
+
x = self.model.features[2](x)
|
| 46 |
+
x = self.model.features[3](x)
|
| 47 |
+
enc4x = x
|
| 48 |
+
|
| 49 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
|
| 50 |
+
x = self.model.features[4](x)
|
| 51 |
+
x = self.model.features[5](x)
|
| 52 |
+
x = self.model.features[6](x)
|
| 53 |
+
enc8x = x
|
| 54 |
+
|
| 55 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
|
| 56 |
+
x = self.model.features[7](x)
|
| 57 |
+
x = self.model.features[8](x)
|
| 58 |
+
x = self.model.features[9](x)
|
| 59 |
+
x = self.model.features[10](x)
|
| 60 |
+
x = self.model.features[11](x)
|
| 61 |
+
x = self.model.features[12](x)
|
| 62 |
+
x = self.model.features[13](x)
|
| 63 |
+
enc16x = x
|
| 64 |
+
|
| 65 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
|
| 66 |
+
x = self.model.features[14](x)
|
| 67 |
+
x = self.model.features[15](x)
|
| 68 |
+
x = self.model.features[16](x)
|
| 69 |
+
x = self.model.features[17](x)
|
| 70 |
+
x = self.model.features[18](x)
|
| 71 |
+
enc32x = x
|
| 72 |
+
return [enc2x, enc4x, enc8x, enc16x, enc32x]
|
| 73 |
+
|
| 74 |
+
def load_pretrained_ckpt(self):
|
| 75 |
+
# the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
|
| 76 |
+
ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
|
| 77 |
+
if not os.path.exists(ckpt_path):
|
| 78 |
+
print('cannot find the pretrained mobilenetv2 backbone')
|
| 79 |
+
exit()
|
| 80 |
+
|
| 81 |
+
ckpt = torch.load(ckpt_path)
|
| 82 |
+
self.model.load_state_dict(ckpt)
|