Spaces:
Running
Running
feat: add diagnostic tools and configuration for timeout and memory issues in HF Spaces
Browse files- DIAGNOSTIC_README.md +197 -0
- README_DIAGNOSTICS.md +257 -0
- config_optimized.py +173 -0
- diagnostic_tool.py +270 -0
DIAGNOSTIC_README.md
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# π Diagnostic Guide: Timeout vs Memory
|
| 2 |
+
|
| 3 |
+
## How to identify the problem?
|
| 4 |
+
|
| 5 |
+
### 1οΈβ£ Run the diagnostic tool
|
| 6 |
+
|
| 7 |
+
In your HF Space, execute:
|
| 8 |
+
|
| 9 |
+
```bash
|
| 10 |
+
python hf-spaces/diagnostic_tool.py
|
| 11 |
+
```
|
| 12 |
+
|
| 13 |
+
This tool will tell you **exactly** if the problem is:
|
| 14 |
+
- β **MEMORY_ERROR**: The system ran out of RAM
|
| 15 |
+
- β° **TIMEOUT_ERROR**: The operation took too long
|
| 16 |
+
- β **OTHER_ERROR**: Another type of problem
|
| 17 |
+
|
| 18 |
+
### 2οΈβ£ Interpret the results
|
| 19 |
+
|
| 20 |
+
#### If you see "MEMORY_ERROR":
|
| 21 |
+
```
|
| 22 |
+
β PROBLEM DETECTED: OUT OF MEMORY
|
| 23 |
+
Memory used at failure: 15.8 GB (98.5%)
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
**Cause**: The model is too large for the available memory in HF Spaces.
|
| 27 |
+
|
| 28 |
+
**Solutions**:
|
| 29 |
+
1. **Use smaller models** (1B-1.7B parameters)
|
| 30 |
+
2. **Upgrade to HF Spaces PRO** (more RAM available)
|
| 31 |
+
3. **Use int8 quantization** (reduces memory usage ~50%)
|
| 32 |
+
4. **Load models with `low_cpu_mem_usage=True`**
|
| 33 |
+
|
| 34 |
+
#### If you see "TIMEOUT_ERROR":
|
| 35 |
+
```
|
| 36 |
+
β° TIMEOUT ERROR after 298.5s
|
| 37 |
+
Memory used: 8.2 GB (51.2%)
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
**Cause**: The model takes too long to load, but there is available memory.
|
| 41 |
+
|
| 42 |
+
**Solutions**:
|
| 43 |
+
1. **Increase timeout** from 300s to 600s or 900s
|
| 44 |
+
2. **Cache pre-loaded models** at startup
|
| 45 |
+
3. **Use faster models**
|
| 46 |
+
|
| 47 |
+
## π οΈ Implemented Solutions
|
| 48 |
+
|
| 49 |
+
### Solution 1: Increase Timeout (Easy)
|
| 50 |
+
|
| 51 |
+
Edit `hf-spaces/optipfair_frontend.py`:
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
# Change from:
|
| 55 |
+
response = requests.post(url, json=payload, timeout=300)
|
| 56 |
+
|
| 57 |
+
# To:
|
| 58 |
+
response = requests.post(url, json=payload, timeout=600) # 10 minutes
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
### Solution 2: Use Quantization (For memory issues)
|
| 62 |
+
|
| 63 |
+
Edit model loading code in the backend:
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
from transformers import AutoModel, BitsAndBytesConfig
|
| 67 |
+
|
| 68 |
+
# Configure int8 quantization (reduces memory usage ~50%)
|
| 69 |
+
quantization_config = BitsAndBytesConfig(
|
| 70 |
+
load_in_8bit=True,
|
| 71 |
+
llm_int8_threshold=6.0,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
model = AutoModel.from_pretrained(
|
| 75 |
+
model_name,
|
| 76 |
+
quantization_config=quantization_config,
|
| 77 |
+
device_map="auto",
|
| 78 |
+
low_cpu_mem_usage=True,
|
| 79 |
+
)
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
### Solution 3: Model Cache (For timeout)
|
| 83 |
+
|
| 84 |
+
Pre-load models at startup in `hf-spaces/app.py`:
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
from transformers import AutoModel, AutoTokenizer
|
| 88 |
+
import logging
|
| 89 |
+
|
| 90 |
+
logger = logging.getLogger(__name__)
|
| 91 |
+
|
| 92 |
+
# Global model cache
|
| 93 |
+
MODEL_CACHE = {}
|
| 94 |
+
|
| 95 |
+
def preload_models():
|
| 96 |
+
"""Pre-load common models at startup"""
|
| 97 |
+
common_models = [
|
| 98 |
+
"meta-llama/Llama-3.2-1B",
|
| 99 |
+
"oopere/pruned40-llama-3.2-1B",
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
logger.info("π Pre-loading common models...")
|
| 103 |
+
for model_name in common_models:
|
| 104 |
+
try:
|
| 105 |
+
logger.info(f" Loading {model_name}...")
|
| 106 |
+
MODEL_CACHE[model_name] = {
|
| 107 |
+
"model": AutoModel.from_pretrained(model_name, low_cpu_mem_usage=True),
|
| 108 |
+
"tokenizer": AutoTokenizer.from_pretrained(model_name)
|
| 109 |
+
}
|
| 110 |
+
logger.info(f" β {model_name} loaded")
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.warning(f" β Could not pre-load {model_name}: {e}")
|
| 113 |
+
|
| 114 |
+
logger.info("β
Pre-loading complete")
|
| 115 |
+
|
| 116 |
+
def main():
|
| 117 |
+
# Pre-load models before starting services
|
| 118 |
+
preload_models()
|
| 119 |
+
|
| 120 |
+
# Rest of the code...
|
| 121 |
+
fastapi_thread = threading.Thread(target=run_fastapi, daemon=True)
|
| 122 |
+
fastapi_thread.start()
|
| 123 |
+
# ...
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
### Solution 4: Improved Error Messages
|
| 127 |
+
|
| 128 |
+
Better error messages are already included to help you identify the problem:
|
| 129 |
+
|
| 130 |
+
```python
|
| 131 |
+
except requests.exceptions.Timeout:
|
| 132 |
+
return (
|
| 133 |
+
None,
|
| 134 |
+
"β **Timeout Error:**\nThe model took too long to load (>5min). "
|
| 135 |
+
"This is normal with large models. Options:\n"
|
| 136 |
+
"1. Try with a smaller model\n"
|
| 137 |
+
"2. Wait and try again (model may be caching)\n"
|
| 138 |
+
"3. Contact admin to increase timeout",
|
| 139 |
+
""
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
except MemoryError:
|
| 143 |
+
return (
|
| 144 |
+
None,
|
| 145 |
+
"β **Memory Error:**\nNot enough RAM for this model. Options:\n"
|
| 146 |
+
"1. Use a smaller model (1B parameters)\n"
|
| 147 |
+
"2. Model requires more memory than available in HF Spaces",
|
| 148 |
+
""
|
| 149 |
+
)
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
## π Model Size Comparison
|
| 153 |
+
|
| 154 |
+
| Model | Parameters | RAM Needed* | Load Time** |
|
| 155 |
+
|--------|-----------|----------------|----------------|
|
| 156 |
+
| Llama-3.2-1B | 1B | ~4 GB | ~30s |
|
| 157 |
+
| Llama-3.2-3B | 3B | ~12 GB | ~90s |
|
| 158 |
+
| Llama-3-8B | 8B | ~32 GB | ~240s |
|
| 159 |
+
| Llama-3-70B | 70B | ~280 GB | ~600s+ |
|
| 160 |
+
|
| 161 |
+
*Without quantization, FP32
|
| 162 |
+
**On typical HF Spaces hardware
|
| 163 |
+
|
| 164 |
+
## π― Recommended Action Plan
|
| 165 |
+
|
| 166 |
+
1. **Run the diagnostic**:
|
| 167 |
+
```bash
|
| 168 |
+
python hf-spaces/diagnostic_tool.py
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
2. **Read the results** and follow the specific recommendations
|
| 172 |
+
|
| 173 |
+
3. **Apply the appropriate solution**:
|
| 174 |
+
- If timeout β Increase timeout or use cache
|
| 175 |
+
- If memory β Use small models or quantization
|
| 176 |
+
|
| 177 |
+
4. **Test again** with the adjusted configuration
|
| 178 |
+
|
| 179 |
+
## π Useful Logs in HF Spaces
|
| 180 |
+
|
| 181 |
+
Check the logs in HF Spaces for messages like:
|
| 182 |
+
|
| 183 |
+
```
|
| 184 |
+
π MODEL LOADING DIAGNOSTIC: meta-llama/Llama-3.2-1B
|
| 185 |
+
π INITIAL SYSTEM STATE:
|
| 186 |
+
- Available memory: 12.50 GB
|
| 187 |
+
- Used memory: 3.45 GB (21.6%)
|
| 188 |
+
β³ Starting model loading (timeout: 300s)...
|
| 189 |
+
[1/2] Loading tokenizer...
|
| 190 |
+
β Tokenizer loaded in 2.31s
|
| 191 |
+
- Memory used: 3.48 GB (21.8%)
|
| 192 |
+
[2/2] Loading model...
|
| 193 |
+
β Model loaded in 45.67s
|
| 194 |
+
β
LOADING SUCCESSFUL in 47.98s
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
This tells you exactly how much memory and time each step uses.
|
README_DIAGNOSTICS.md
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# π Timeout vs Memory Diagnostic Tools
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
When working with heavy models in HF Spaces, you may encounter issues that could be caused by:
|
| 6 |
+
1. **Timeout**: The model takes too long to load (>5 minutes)
|
| 7 |
+
2. **Memory**: The system runs out of RAM
|
| 8 |
+
3. **Both**: A combination of both issues
|
| 9 |
+
|
| 10 |
+
This toolkit helps you identify and fix the exact problem.
|
| 11 |
+
|
| 12 |
+
## π Files Added
|
| 13 |
+
|
| 14 |
+
### 1. `diagnostic_tool.py`
|
| 15 |
+
**Purpose**: Identify if the problem is timeout or memory
|
| 16 |
+
|
| 17 |
+
**Usage**:
|
| 18 |
+
```bash
|
| 19 |
+
python hf-spaces/diagnostic_tool.py
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
**What it does**:
|
| 23 |
+
- Monitors system memory in real-time
|
| 24 |
+
- Tracks model loading time
|
| 25 |
+
- Detects the exact failure point
|
| 26 |
+
- Provides specific recommendations
|
| 27 |
+
|
| 28 |
+
**Output**:
|
| 29 |
+
```
|
| 30 |
+
π MODEL LOADING DIAGNOSTIC: meta-llama/Llama-3.2-1B
|
| 31 |
+
π INITIAL SYSTEM STATE:
|
| 32 |
+
- Available memory: 12.50 GB
|
| 33 |
+
- Used memory: 3.45 GB (21.6%)
|
| 34 |
+
β³ Starting model loading (timeout: 300s)...
|
| 35 |
+
[1/2] Loading tokenizer...
|
| 36 |
+
β Tokenizer loaded in 2.31s
|
| 37 |
+
[2/2] Loading model...
|
| 38 |
+
β Model loaded in 45.67s
|
| 39 |
+
β
LOADING SUCCESSFUL in 47.98s
|
| 40 |
+
|
| 41 |
+
π‘ RECOMMENDATIONS
|
| 42 |
+
β
Model loaded successfully.
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
### 2. `config_optimized.py`
|
| 46 |
+
**Purpose**: Smart configuration based on model size
|
| 47 |
+
|
| 48 |
+
**Features**:
|
| 49 |
+
- Auto-detects model size category (small/medium/large)
|
| 50 |
+
- Provides optimized timeout settings
|
| 51 |
+
- Recommends appropriate HF Spaces tier
|
| 52 |
+
- Warns about memory issues before loading
|
| 53 |
+
|
| 54 |
+
**Usage**:
|
| 55 |
+
```python
|
| 56 |
+
from config_optimized import HFSpacesConfig, get_optimized_request_config
|
| 57 |
+
|
| 58 |
+
# Get optimal timeout for a model
|
| 59 |
+
timeout = HFSpacesConfig.get_timeout_for_model("meta-llama/Llama-3.2-1B")
|
| 60 |
+
|
| 61 |
+
# Get full request config
|
| 62 |
+
config = get_optimized_request_config("meta-llama/Llama-3.2-1B")
|
| 63 |
+
response = requests.post(url, json=payload, **config)
|
| 64 |
+
|
| 65 |
+
# Check if model is recommended for your tier
|
| 66 |
+
is_ok = HFSpacesConfig.is_model_recommended("meta-llama/Llama-3.2-1B", tier="free")
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
### 3. `DIAGNOSTIC_README.md`
|
| 70 |
+
**Purpose**: Complete guide with solutions
|
| 71 |
+
|
| 72 |
+
**Contents**:
|
| 73 |
+
- How to identify timeout vs memory issues
|
| 74 |
+
- Step-by-step solutions for each problem
|
| 75 |
+
- Model size comparison table
|
| 76 |
+
- Code examples for fixes
|
| 77 |
+
- Best practices
|
| 78 |
+
|
| 79 |
+
### 4. Improved Error Messages in `optipfair_frontend.py`
|
| 80 |
+
**What changed**:
|
| 81 |
+
- More informative timeout error messages
|
| 82 |
+
- Explicit memory error detection
|
| 83 |
+
- Actionable recommendations in errors
|
| 84 |
+
- All messages in English
|
| 85 |
+
|
| 86 |
+
**Example**:
|
| 87 |
+
```
|
| 88 |
+
β **Timeout Error:**
|
| 89 |
+
The request exceeded 5 minutes (300s).
|
| 90 |
+
|
| 91 |
+
**Possible causes:**
|
| 92 |
+
1. The model is very large and takes long to load
|
| 93 |
+
2. The server is processing many requests
|
| 94 |
+
|
| 95 |
+
**Solutions:**
|
| 96 |
+
β’ Use a smaller model (1B parameters)
|
| 97 |
+
β’ Wait and try again (model may be caching)
|
| 98 |
+
β’ If it persists, run `diagnostic_tool.py` for more information
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## π Quick Start Guide
|
| 102 |
+
|
| 103 |
+
### Step 1: Diagnose the Problem
|
| 104 |
+
```bash
|
| 105 |
+
cd hf-spaces
|
| 106 |
+
python diagnostic_tool.py
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
### Step 2: Read the Output
|
| 110 |
+
The tool will tell you:
|
| 111 |
+
- β
**Success**: Model loads fine
|
| 112 |
+
- β **MEMORY_ERROR**: Need more RAM or smaller model
|
| 113 |
+
- β° **TIMEOUT_ERROR**: Need more time or faster model
|
| 114 |
+
|
| 115 |
+
### Step 3: Apply the Solution
|
| 116 |
+
|
| 117 |
+
#### For TIMEOUT problems:
|
| 118 |
+
```python
|
| 119 |
+
# Option 1: Increase timeout in optipfair_frontend.py
|
| 120 |
+
response = requests.post(
|
| 121 |
+
url,
|
| 122 |
+
json=payload,
|
| 123 |
+
timeout=600 # Change from 300 to 600 seconds
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Option 2: Use config_optimized.py
|
| 127 |
+
from config_optimized import get_optimized_request_config
|
| 128 |
+
config = get_optimized_request_config(model_name)
|
| 129 |
+
response = requests.post(url, json=payload, **config)
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
#### For MEMORY problems:
|
| 133 |
+
```python
|
| 134 |
+
# Option 1: Use smaller model
|
| 135 |
+
AVAILABLE_MODELS = [
|
| 136 |
+
"meta-llama/Llama-3.2-1B", # β
Works on free tier
|
| 137 |
+
"oopere/pruned40-llama-3.2-1B", # β
Works on free tier
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
# Option 2: Use quantization (in backend)
|
| 141 |
+
from transformers import AutoModel, BitsAndBytesConfig
|
| 142 |
+
|
| 143 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 144 |
+
model = AutoModel.from_pretrained(
|
| 145 |
+
model_name,
|
| 146 |
+
quantization_config=quantization_config,
|
| 147 |
+
low_cpu_mem_usage=True,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Option 3: Upgrade HF Spaces tier
|
| 151 |
+
# Free: 16GB RAM β PRO: 32GB RAM β Enterprise: 64GB RAM
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## π Model Recommendations by Tier
|
| 155 |
+
|
| 156 |
+
### Free Tier (16GB RAM)
|
| 157 |
+
β
**Recommended**:
|
| 158 |
+
- meta-llama/Llama-3.2-1B (~4 GB, ~30s load)
|
| 159 |
+
- oopere/pruned40-llama-3.2-1B (~4 GB, ~30s load)
|
| 160 |
+
- google/gemma-3-1b-pt (~4 GB, ~30s load)
|
| 161 |
+
- Qwen/Qwen3-1.7B (~6 GB, ~45s load)
|
| 162 |
+
|
| 163 |
+
β οΈ **May work with optimization**:
|
| 164 |
+
- meta-llama/Llama-3.2-3B (~12 GB, ~90s load)
|
| 165 |
+
|
| 166 |
+
β **Won't work**:
|
| 167 |
+
- meta-llama/Llama-3-8B (~32 GB)
|
| 168 |
+
- meta-llama/Llama-3-70B (~280 GB)
|
| 169 |
+
|
| 170 |
+
### PRO Tier (32GB RAM)
|
| 171 |
+
β
**Additional models**:
|
| 172 |
+
- meta-llama/Llama-3.2-3B
|
| 173 |
+
- meta-llama/Llama-3-8B (with quantization)
|
| 174 |
+
|
| 175 |
+
### Enterprise Tier (64GB RAM)
|
| 176 |
+
β
**Additional models**:
|
| 177 |
+
- meta-llama/Llama-3-8B (full precision)
|
| 178 |
+
- Larger models with quantization
|
| 179 |
+
|
| 180 |
+
## π― Common Scenarios
|
| 181 |
+
|
| 182 |
+
### Scenario 1: "My model times out after 5 minutes"
|
| 183 |
+
**Diagnosis**: TIMEOUT_ERROR
|
| 184 |
+
|
| 185 |
+
**Solution**:
|
| 186 |
+
1. Check if model is too large for your tier
|
| 187 |
+
2. Increase timeout to 600s (10 minutes)
|
| 188 |
+
3. Consider pre-loading models at startup
|
| 189 |
+
|
| 190 |
+
### Scenario 2: "Process crashes without clear error"
|
| 191 |
+
**Diagnosis**: Likely MEMORY_ERROR (Out-Of-Memory kills the process)
|
| 192 |
+
|
| 193 |
+
**Solution**:
|
| 194 |
+
1. Run `diagnostic_tool.py` to confirm
|
| 195 |
+
2. Use smaller model (1B parameters)
|
| 196 |
+
3. Use int8 quantization
|
| 197 |
+
4. Upgrade to PRO tier
|
| 198 |
+
|
| 199 |
+
### Scenario 3: "Sometimes works, sometimes doesn't"
|
| 200 |
+
**Diagnosis**: Memory pressure or concurrent requests
|
| 201 |
+
|
| 202 |
+
**Solution**:
|
| 203 |
+
1. Implement model caching
|
| 204 |
+
2. Add memory monitoring
|
| 205 |
+
3. Use smaller default model
|
| 206 |
+
|
| 207 |
+
## π οΈ Advanced: Pre-loading Models
|
| 208 |
+
|
| 209 |
+
To avoid timeout on first request, pre-load models at startup:
|
| 210 |
+
|
| 211 |
+
```python
|
| 212 |
+
# In hf-spaces/app.py
|
| 213 |
+
from transformers import AutoModel, AutoTokenizer
|
| 214 |
+
|
| 215 |
+
MODEL_CACHE = {}
|
| 216 |
+
|
| 217 |
+
def preload_models():
|
| 218 |
+
"""Pre-load common models at startup"""
|
| 219 |
+
models = ["meta-llama/Llama-3.2-1B"]
|
| 220 |
+
|
| 221 |
+
for model_name in models:
|
| 222 |
+
try:
|
| 223 |
+
print(f"Pre-loading {model_name}...")
|
| 224 |
+
MODEL_CACHE[model_name] = {
|
| 225 |
+
"model": AutoModel.from_pretrained(
|
| 226 |
+
model_name,
|
| 227 |
+
low_cpu_mem_usage=True
|
| 228 |
+
),
|
| 229 |
+
"tokenizer": AutoTokenizer.from_pretrained(model_name)
|
| 230 |
+
}
|
| 231 |
+
print(f"β {model_name} ready")
|
| 232 |
+
except Exception as e:
|
| 233 |
+
print(f"β Could not pre-load {model_name}: {e}")
|
| 234 |
+
|
| 235 |
+
def main():
|
| 236 |
+
preload_models() # Load models before starting services
|
| 237 |
+
# ... rest of startup code
|
| 238 |
+
```
|
| 239 |
+
|
| 240 |
+
## π Support
|
| 241 |
+
|
| 242 |
+
If you still have issues after trying these solutions:
|
| 243 |
+
|
| 244 |
+
1. Check the full diagnostic output
|
| 245 |
+
2. Review HF Spaces logs
|
| 246 |
+
3. Verify your HF Spaces tier and limits
|
| 247 |
+
4. Consider using a different model architecture
|
| 248 |
+
|
| 249 |
+
## π Summary
|
| 250 |
+
|
| 251 |
+
| Issue | Symptom | Solution |
|
| 252 |
+
|-------|---------|----------|
|
| 253 |
+
| **Timeout** | Request > 5 min | Increase timeout, use cache |
|
| 254 |
+
| **Memory** | Process crashes/kills | Smaller model, quantization, upgrade tier |
|
| 255 |
+
| **Both** | Slow + crashes | Smaller model + longer timeout |
|
| 256 |
+
|
| 257 |
+
All tools are designed to help you quickly identify and fix the exact problem without guessing.
|
config_optimized.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Optimized configuration for HF Spaces with intelligent handling of large models.
|
| 3 |
+
This file contains recommended settings based on available hardware.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from typing import Dict, Any
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class HFSpacesConfig:
|
| 11 |
+
"""Optimized configuration for different HF Spaces tiers"""
|
| 12 |
+
|
| 13 |
+
# Timeouts (in seconds)
|
| 14 |
+
TIMEOUT_SMALL_MODEL = 120 # Models <2B parameters
|
| 15 |
+
TIMEOUT_MEDIUM_MODEL = 300 # Models 2-5B parameters
|
| 16 |
+
TIMEOUT_LARGE_MODEL = 600 # Models >5B parameters
|
| 17 |
+
TIMEOUT_PING = 5 # Health checks
|
| 18 |
+
|
| 19 |
+
# Recommended memory limits (GB) per HF Spaces tier
|
| 20 |
+
MEMORY_LIMITS = {
|
| 21 |
+
"free": 16, # Free HF Spaces
|
| 22 |
+
"pro": 32, # HF Spaces PRO
|
| 23 |
+
"enterprise": 64 # HF Spaces Enterprise
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
# Recommended models per tier
|
| 27 |
+
RECOMMENDED_MODELS = {
|
| 28 |
+
"free": [
|
| 29 |
+
"meta-llama/Llama-3.2-1B",
|
| 30 |
+
"oopere/pruned40-llama-3.2-1B",
|
| 31 |
+
"oopere/Fair-Llama-3.2-1B",
|
| 32 |
+
"google/gemma-3-1b-pt",
|
| 33 |
+
"Qwen/Qwen3-1.7B",
|
| 34 |
+
],
|
| 35 |
+
"pro": [
|
| 36 |
+
"meta-llama/Llama-3.2-3B",
|
| 37 |
+
"meta-llama/Llama-3-8B",
|
| 38 |
+
],
|
| 39 |
+
"enterprise": [
|
| 40 |
+
"meta-llama/Llama-3-70B",
|
| 41 |
+
]
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Model loading configuration
|
| 45 |
+
MODEL_LOAD_CONFIG = {
|
| 46 |
+
"small": { # <2B params
|
| 47 |
+
"low_cpu_mem_usage": True,
|
| 48 |
+
"torch_dtype": "auto",
|
| 49 |
+
"device_map": "auto",
|
| 50 |
+
"timeout": TIMEOUT_SMALL_MODEL,
|
| 51 |
+
},
|
| 52 |
+
"medium": { # 2-8B params
|
| 53 |
+
"low_cpu_mem_usage": True,
|
| 54 |
+
"torch_dtype": "float16", # Reduces memory
|
| 55 |
+
"device_map": "auto",
|
| 56 |
+
"timeout": TIMEOUT_MEDIUM_MODEL,
|
| 57 |
+
},
|
| 58 |
+
"large": { # >8B params
|
| 59 |
+
"low_cpu_mem_usage": True,
|
| 60 |
+
"torch_dtype": "float16",
|
| 61 |
+
"device_map": "auto",
|
| 62 |
+
"load_in_8bit": True, # int8 quantization
|
| 63 |
+
"timeout": TIMEOUT_LARGE_MODEL,
|
| 64 |
+
}
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
@classmethod
|
| 68 |
+
def get_model_size_category(cls, model_name: str) -> str:
|
| 69 |
+
"""
|
| 70 |
+
Determines the model size category based on the name.
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
"small", "medium", or "large"
|
| 74 |
+
"""
|
| 75 |
+
model_lower = model_name.lower()
|
| 76 |
+
|
| 77 |
+
# Detect by parameters in the name
|
| 78 |
+
if any(size in model_lower for size in ["1b", "1.7b", "1.5b"]):
|
| 79 |
+
return "small"
|
| 80 |
+
elif any(size in model_lower for size in ["3b", "7b", "8b"]):
|
| 81 |
+
return "medium"
|
| 82 |
+
elif any(size in model_lower for size in ["13b", "30b", "70b"]):
|
| 83 |
+
return "large"
|
| 84 |
+
|
| 85 |
+
# Default: small (assume the safest case)
|
| 86 |
+
return "small"
|
| 87 |
+
|
| 88 |
+
@classmethod
|
| 89 |
+
def get_timeout_for_model(cls, model_name: str) -> int:
|
| 90 |
+
"""Gets the recommended timeout for a model."""
|
| 91 |
+
size = cls.get_model_size_category(model_name)
|
| 92 |
+
return cls.MODEL_LOAD_CONFIG[size]["timeout"]
|
| 93 |
+
|
| 94 |
+
@classmethod
|
| 95 |
+
def get_load_config(cls, model_name: str) -> Dict[str, Any]:
|
| 96 |
+
"""Gets the optimized loading configuration for a model."""
|
| 97 |
+
size = cls.get_model_size_category(model_name)
|
| 98 |
+
return cls.MODEL_LOAD_CONFIG[size].copy()
|
| 99 |
+
|
| 100 |
+
@classmethod
|
| 101 |
+
def is_model_recommended(cls, model_name: str, tier: str = "free") -> bool:
|
| 102 |
+
"""Verifies if a model is recommended for the current tier."""
|
| 103 |
+
return model_name in cls.RECOMMENDED_MODELS.get(tier, [])
|
| 104 |
+
|
| 105 |
+
@classmethod
|
| 106 |
+
def get_memory_warning(cls, model_name: str, tier: str = "free") -> str:
|
| 107 |
+
"""
|
| 108 |
+
Generates a warning if the model may exceed memory limits.
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
String with warning, or empty string if no problem
|
| 112 |
+
"""
|
| 113 |
+
if cls.is_model_recommended(model_name, tier):
|
| 114 |
+
return ""
|
| 115 |
+
|
| 116 |
+
size = cls.get_model_size_category(model_name)
|
| 117 |
+
|
| 118 |
+
if size == "medium" and tier == "free":
|
| 119 |
+
return (
|
| 120 |
+
"β οΈ **Warning**: This model may be too large for free HF Spaces. "
|
| 121 |
+
"Consider upgrading to HF Spaces PRO or using a smaller model."
|
| 122 |
+
)
|
| 123 |
+
elif size == "large" and tier in ["free", "pro"]:
|
| 124 |
+
return (
|
| 125 |
+
"β **Error**: This model is too large for your HF Spaces tier. "
|
| 126 |
+
"Use a smaller model or upgrade to Enterprise."
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
return ""
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# Usage example:
|
| 133 |
+
def get_optimized_request_config(model_name: str) -> dict:
|
| 134 |
+
"""
|
| 135 |
+
Gets optimized configuration for HTTP requests based on the model.
|
| 136 |
+
|
| 137 |
+
Usage:
|
| 138 |
+
config = get_optimized_request_config("meta-llama/Llama-3.2-1B")
|
| 139 |
+
response = requests.post(url, json=payload, **config)
|
| 140 |
+
"""
|
| 141 |
+
return {
|
| 142 |
+
"timeout": HFSpacesConfig.get_timeout_for_model(model_name),
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# Default configuration for general use
|
| 147 |
+
DEFAULT_CONFIG = {
|
| 148 |
+
"timeout": HFSpacesConfig.TIMEOUT_MEDIUM_MODEL,
|
| 149 |
+
"max_retries": 2,
|
| 150 |
+
"retry_delay": 5, # seconds between retries
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
# Usage examples
|
| 156 |
+
print("π§ Optimized configuration for HF Spaces\n")
|
| 157 |
+
|
| 158 |
+
test_models = [
|
| 159 |
+
"meta-llama/Llama-3.2-1B",
|
| 160 |
+
"meta-llama/Llama-3.2-3B",
|
| 161 |
+
"meta-llama/Llama-3-8B",
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
for model in test_models:
|
| 165 |
+
print(f"π¦ Model: {model}")
|
| 166 |
+
print(f" Category: {HFSpacesConfig.get_model_size_category(model)}")
|
| 167 |
+
print(f" Timeout: {HFSpacesConfig.get_timeout_for_model(model)}s")
|
| 168 |
+
print(f" Recommended (free): {HFSpacesConfig.is_model_recommended(model, 'free')}")
|
| 169 |
+
|
| 170 |
+
warning = HFSpacesConfig.get_memory_warning(model, "free")
|
| 171 |
+
if warning:
|
| 172 |
+
print(f" {warning}")
|
| 173 |
+
print()
|
diagnostic_tool.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Diagnostic tool to identify timeout vs memory issues in HF Spaces.
|
| 3 |
+
Run this script in HF Spaces to get detailed performance information.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import psutil
|
| 7 |
+
import time
|
| 8 |
+
import sys
|
| 9 |
+
import traceback
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_memory_info():
|
| 14 |
+
"""Gets detailed information about system memory usage."""
|
| 15 |
+
memory = psutil.virtual_memory()
|
| 16 |
+
return {
|
| 17 |
+
"total_gb": memory.total / (1024**3),
|
| 18 |
+
"available_gb": memory.available / (1024**3),
|
| 19 |
+
"used_gb": memory.used / (1024**3),
|
| 20 |
+
"percent_used": memory.percent,
|
| 21 |
+
"free_gb": memory.free / (1024**3),
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_cpu_info():
|
| 26 |
+
"""Gets information about CPU usage."""
|
| 27 |
+
return {
|
| 28 |
+
"cpu_percent": psutil.cpu_percent(interval=1),
|
| 29 |
+
"cpu_count": psutil.cpu_count(),
|
| 30 |
+
"load_avg": psutil.getloadavg() if hasattr(psutil, "getloadavg") else None,
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def monitor_model_loading(model_name: str, timeout_seconds: int = 300):
|
| 35 |
+
"""
|
| 36 |
+
Monitors model loading and detects if it fails due to timeout or memory.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
model_name: HuggingFace model name to load
|
| 40 |
+
timeout_seconds: Maximum wait time in seconds
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
dict with diagnostic information
|
| 44 |
+
"""
|
| 45 |
+
print(f"\n{'='*60}")
|
| 46 |
+
print(f"π MODEL LOADING DIAGNOSTIC: {model_name}")
|
| 47 |
+
print(f"{'='*60}\n")
|
| 48 |
+
|
| 49 |
+
# Initial system state
|
| 50 |
+
print("π INITIAL SYSTEM STATE:")
|
| 51 |
+
mem_before = get_memory_info()
|
| 52 |
+
cpu_before = get_cpu_info()
|
| 53 |
+
print(f" - Available memory: {mem_before['available_gb']:.2f} GB")
|
| 54 |
+
print(f" - Used memory: {mem_before['used_gb']:.2f} GB ({mem_before['percent_used']:.1f}%)")
|
| 55 |
+
print(f" - Available CPUs: {cpu_before['cpu_count']} cores")
|
| 56 |
+
print(f" - CPU usage: {cpu_before['cpu_percent']:.1f}%")
|
| 57 |
+
|
| 58 |
+
start_time = time.time()
|
| 59 |
+
result = {
|
| 60 |
+
"model_name": model_name,
|
| 61 |
+
"success": False,
|
| 62 |
+
"error_type": None,
|
| 63 |
+
"error_message": None,
|
| 64 |
+
"elapsed_time": 0,
|
| 65 |
+
"memory_before": mem_before,
|
| 66 |
+
"memory_after": None,
|
| 67 |
+
"memory_peak": mem_before["used_gb"],
|
| 68 |
+
"timeout_seconds": timeout_seconds,
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
print(f"\nβ³ Starting model loading (timeout: {timeout_seconds}s)...")
|
| 73 |
+
print(f" Start time: {datetime.now().strftime('%H:%M:%S')}")
|
| 74 |
+
|
| 75 |
+
# Import transformers here to measure its impact
|
| 76 |
+
from transformers import AutoModel, AutoTokenizer
|
| 77 |
+
|
| 78 |
+
# Real-time monitoring
|
| 79 |
+
model = None
|
| 80 |
+
tokenizer = None
|
| 81 |
+
last_memory_check = time.time()
|
| 82 |
+
|
| 83 |
+
print("\nπ REAL-TIME MONITORING:")
|
| 84 |
+
|
| 85 |
+
# Load tokenizer first (faster)
|
| 86 |
+
print(" [1/2] Loading tokenizer...")
|
| 87 |
+
tokenizer_start = time.time()
|
| 88 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 89 |
+
tokenizer_time = time.time() - tokenizer_start
|
| 90 |
+
print(f" β Tokenizer loaded in {tokenizer_time:.2f}s")
|
| 91 |
+
|
| 92 |
+
# Check memory after tokenizer
|
| 93 |
+
mem_after_tokenizer = get_memory_info()
|
| 94 |
+
print(f" - Memory used: {mem_after_tokenizer['used_gb']:.2f} GB ({mem_after_tokenizer['percent_used']:.1f}%)")
|
| 95 |
+
|
| 96 |
+
# Load model (can be slow)
|
| 97 |
+
print("\n [2/2] Loading model...")
|
| 98 |
+
model_start = time.time()
|
| 99 |
+
|
| 100 |
+
# Load with low memory usage if possible
|
| 101 |
+
model = AutoModel.from_pretrained(
|
| 102 |
+
model_name,
|
| 103 |
+
low_cpu_mem_usage=True, # Reduces memory usage during loading
|
| 104 |
+
torch_dtype="auto",
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
model_time = time.time() - model_start
|
| 108 |
+
total_time = time.time() - start_time
|
| 109 |
+
|
| 110 |
+
print(f" β Model loaded in {model_time:.2f}s")
|
| 111 |
+
print(f"\nβ
LOADING SUCCESSFUL in {total_time:.2f}s")
|
| 112 |
+
|
| 113 |
+
# Final system state
|
| 114 |
+
mem_after = get_memory_info()
|
| 115 |
+
cpu_after = get_cpu_info()
|
| 116 |
+
|
| 117 |
+
print(f"\nπ FINAL SYSTEM STATE:")
|
| 118 |
+
print(f" - Available memory: {mem_after['available_gb']:.2f} GB")
|
| 119 |
+
print(f" - Used memory: {mem_after['used_gb']:.2f} GB ({mem_after['percent_used']:.1f}%)")
|
| 120 |
+
print(f" - Memory increase: {mem_after['used_gb'] - mem_before['used_gb']:.2f} GB")
|
| 121 |
+
print(f" - CPU usage: {cpu_after['cpu_percent']:.1f}%")
|
| 122 |
+
|
| 123 |
+
result["success"] = True
|
| 124 |
+
result["elapsed_time"] = total_time
|
| 125 |
+
result["memory_after"] = mem_after
|
| 126 |
+
result["tokenizer_time"] = tokenizer_time
|
| 127 |
+
result["model_time"] = model_time
|
| 128 |
+
|
| 129 |
+
except MemoryError as e:
|
| 130 |
+
elapsed = time.time() - start_time
|
| 131 |
+
mem_current = get_memory_info()
|
| 132 |
+
|
| 133 |
+
print(f"\nβ MEMORY ERROR after {elapsed:.2f}s")
|
| 134 |
+
print(f" Memory used at failure: {mem_current['used_gb']:.2f} GB ({mem_current['percent_used']:.1f}%)")
|
| 135 |
+
|
| 136 |
+
result["error_type"] = "MEMORY_ERROR"
|
| 137 |
+
result["error_message"] = str(e)
|
| 138 |
+
result["elapsed_time"] = elapsed
|
| 139 |
+
result["memory_after"] = mem_current
|
| 140 |
+
|
| 141 |
+
except TimeoutError as e:
|
| 142 |
+
elapsed = time.time() - start_time
|
| 143 |
+
mem_current = get_memory_info()
|
| 144 |
+
|
| 145 |
+
print(f"\nβ° TIMEOUT ERROR after {elapsed:.2f}s")
|
| 146 |
+
print(f" Memory used: {mem_current['used_gb']:.2f} GB ({mem_current['percent_used']:.1f}%)")
|
| 147 |
+
|
| 148 |
+
result["error_type"] = "TIMEOUT_ERROR"
|
| 149 |
+
result["error_message"] = str(e)
|
| 150 |
+
result["elapsed_time"] = elapsed
|
| 151 |
+
result["memory_after"] = mem_current
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
elapsed = time.time() - start_time
|
| 155 |
+
mem_current = get_memory_info()
|
| 156 |
+
|
| 157 |
+
print(f"\nβ UNEXPECTED ERROR after {elapsed:.2f}s")
|
| 158 |
+
print(f" Type: {type(e).__name__}")
|
| 159 |
+
print(f" Message: {str(e)}")
|
| 160 |
+
print(f" Memory used: {mem_current['used_gb']:.2f} GB ({mem_current['percent_used']:.1f}%)")
|
| 161 |
+
|
| 162 |
+
# Analyze error message to detect memory issues
|
| 163 |
+
error_msg = str(e).lower()
|
| 164 |
+
if any(keyword in error_msg for keyword in ["memory", "ram", "oom", "out of memory"]):
|
| 165 |
+
result["error_type"] = "MEMORY_ERROR"
|
| 166 |
+
print("\nπ DIAGNOSIS: Error appears to be MEMORY related")
|
| 167 |
+
elif "timeout" in error_msg or elapsed >= timeout_seconds * 0.95:
|
| 168 |
+
result["error_type"] = "TIMEOUT_ERROR"
|
| 169 |
+
print("\nπ DIAGNOSIS: Error appears to be TIMEOUT related")
|
| 170 |
+
else:
|
| 171 |
+
result["error_type"] = "OTHER_ERROR"
|
| 172 |
+
|
| 173 |
+
result["error_message"] = str(e)
|
| 174 |
+
result["elapsed_time"] = elapsed
|
| 175 |
+
result["memory_after"] = mem_current
|
| 176 |
+
result["traceback"] = traceback.format_exc()
|
| 177 |
+
|
| 178 |
+
return result
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def print_recommendations(result: dict):
|
| 182 |
+
"""Prints recommendations based on diagnostic results."""
|
| 183 |
+
print(f"\n{'='*60}")
|
| 184 |
+
print("π‘ RECOMMENDATIONS")
|
| 185 |
+
print(f"{'='*60}\n")
|
| 186 |
+
|
| 187 |
+
if result["success"]:
|
| 188 |
+
print("β
Model loaded successfully.")
|
| 189 |
+
print(f" Total time: {result['elapsed_time']:.2f}s")
|
| 190 |
+
|
| 191 |
+
if result["elapsed_time"] > 240: # > 4 minutes
|
| 192 |
+
print("\nβ οΈ Warning: Load time is very high (>4min)")
|
| 193 |
+
print(" - Consider increasing timeout to 600s (10 minutes)")
|
| 194 |
+
print(" - Or use a smaller model")
|
| 195 |
+
|
| 196 |
+
elif result["error_type"] == "MEMORY_ERROR":
|
| 197 |
+
print("β PROBLEM DETECTED: OUT OF MEMORY\n")
|
| 198 |
+
print("Solutions:")
|
| 199 |
+
print(" 1. Use a smaller model (1B or 1.7B parameters)")
|
| 200 |
+
print(" 2. Request more memory in HF Spaces (PRO plan)")
|
| 201 |
+
print(" 3. Use quantization (int8 or int4) to reduce memory usage:")
|
| 202 |
+
print(" ```python")
|
| 203 |
+
print(" from transformers import BitsAndBytesConfig")
|
| 204 |
+
print(" quantization_config = BitsAndBytesConfig(load_in_8bit=True)")
|
| 205 |
+
print(" model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config)")
|
| 206 |
+
print(" ```")
|
| 207 |
+
|
| 208 |
+
if result["memory_after"]:
|
| 209 |
+
print(f"\n Available memory: {result['memory_after']['available_gb']:.2f} GB")
|
| 210 |
+
print(f" More memory needed for this model")
|
| 211 |
+
|
| 212 |
+
elif result["error_type"] == "TIMEOUT_ERROR":
|
| 213 |
+
print("β PROBLEM DETECTED: TIMEOUT\n")
|
| 214 |
+
print("Solutions:")
|
| 215 |
+
print(f" 1. Increase timeout from {result['timeout_seconds']}s to 600s (10 minutes):")
|
| 216 |
+
print(" ```python")
|
| 217 |
+
print(" response = requests.post(url, json=payload, timeout=600)")
|
| 218 |
+
print(" ```")
|
| 219 |
+
print(" 2. Implement async loading with progress updates")
|
| 220 |
+
print(" 3. Cache pre-loaded models in HF Spaces")
|
| 221 |
+
print(" 4. Use smaller models that load faster")
|
| 222 |
+
|
| 223 |
+
else:
|
| 224 |
+
print("β PROBLEM DETECTED: UNEXPECTED ERROR\n")
|
| 225 |
+
print("Review the full traceback for more details")
|
| 226 |
+
if "traceback" in result:
|
| 227 |
+
print("\n" + result["traceback"])
|
| 228 |
+
|
| 229 |
+
print(f"\n{'='*60}\n")
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
if __name__ == "__main__":
|
| 233 |
+
# Models to test (from smallest to largest)
|
| 234 |
+
test_models = [
|
| 235 |
+
"meta-llama/Llama-3.2-1B", # Small model
|
| 236 |
+
# "meta-llama/Llama-3.2-3B", # Medium model (uncomment to test)
|
| 237 |
+
# "meta-llama/Llama-3-8B", # Large model (uncomment to test)
|
| 238 |
+
]
|
| 239 |
+
|
| 240 |
+
# You can change the timeout here
|
| 241 |
+
TIMEOUT = 300 # 5 minutes
|
| 242 |
+
|
| 243 |
+
results = []
|
| 244 |
+
|
| 245 |
+
for model_name in test_models:
|
| 246 |
+
result = monitor_model_loading(model_name, timeout_seconds=TIMEOUT)
|
| 247 |
+
results.append(result)
|
| 248 |
+
print_recommendations(result)
|
| 249 |
+
|
| 250 |
+
# If failed, don't test larger models
|
| 251 |
+
if not result["success"]:
|
| 252 |
+
print("\nβ οΈ Stopping tests due to error.")
|
| 253 |
+
print(" Larger models will likely fail as well.")
|
| 254 |
+
break
|
| 255 |
+
|
| 256 |
+
# Wait a bit between tests
|
| 257 |
+
time.sleep(2)
|
| 258 |
+
|
| 259 |
+
# Final summary
|
| 260 |
+
print(f"\n{'='*60}")
|
| 261 |
+
print("π TEST SUMMARY")
|
| 262 |
+
print(f"{'='*60}\n")
|
| 263 |
+
|
| 264 |
+
for i, result in enumerate(results, 1):
|
| 265 |
+
status = "β
" if result["success"] else "β"
|
| 266 |
+
time_str = f"{result['elapsed_time']:.1f}s"
|
| 267 |
+
print(f"{status} Test {i}: {result['model_name']}")
|
| 268 |
+
print(f" Time: {time_str} | Error: {result['error_type'] or 'None'}")
|
| 269 |
+
|
| 270 |
+
print()
|