Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 6 |
+
from sklearn.preprocessing import LabelEncoder
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import pickle
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
# Load model and tokenizer
|
| 12 |
+
model = tf.keras.models.load_model('sentiment_rnn.h5')
|
| 13 |
+
|
| 14 |
+
# Load tokenizer
|
| 15 |
+
with open('tokenizer.pkl', 'rb') as f:
|
| 16 |
+
tokenizer = pickle.load(f)
|
| 17 |
+
|
| 18 |
+
# Initialize label encoder
|
| 19 |
+
label_encoder = LabelEncoder()
|
| 20 |
+
label_encoder.fit(["Happy", "Sad", "Neutral"])
|
| 21 |
+
|
| 22 |
+
def predict_sentiment(text):
|
| 23 |
+
"""
|
| 24 |
+
Predict sentiment for a given text
|
| 25 |
+
"""
|
| 26 |
+
# Preprocess the text
|
| 27 |
+
sequence = tokenizer.texts_to_sequences([text])
|
| 28 |
+
padded = pad_sequences(sequence, maxlen=50)
|
| 29 |
+
|
| 30 |
+
# Make prediction
|
| 31 |
+
prediction = model.predict(padded, verbose=0)[0]
|
| 32 |
+
predicted_class = np.argmax(prediction)
|
| 33 |
+
sentiment = label_encoder.inverse_transform([predicted_class])[0]
|
| 34 |
+
confidence = float(prediction[predicted_class])
|
| 35 |
+
|
| 36 |
+
# Create confidence dictionary for all classes
|
| 37 |
+
confidences = {
|
| 38 |
+
"Happy": float(prediction[0]),
|
| 39 |
+
"Sad": float(prediction[1]),
|
| 40 |
+
"Neutral": float(prediction[2])
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
return sentiment, confidences
|
| 44 |
+
|
| 45 |
+
# Create Gradio interface
|
| 46 |
+
with gr.Blocks(title="Sentiment Analysis with RNN") as demo:
|
| 47 |
+
gr.Markdown("# Sentiment Analysis with RNN")
|
| 48 |
+
gr.Markdown("Enter text to analyze its sentiment (Happy, Sad, or Neutral)")
|
| 49 |
+
|
| 50 |
+
with gr.Row():
|
| 51 |
+
text_input = gr.Textbox(label="Input Text", placeholder="Type your text here...")
|
| 52 |
+
sentiment_output = gr.Label(label="Predicted Sentiment")
|
| 53 |
+
confidence_output = gr.Label(label="Confidence Scores")
|
| 54 |
+
|
| 55 |
+
submit_btn = gr.Button("Analyze Sentiment")
|
| 56 |
+
|
| 57 |
+
examples = gr.Examples(
|
| 58 |
+
examples=[
|
| 59 |
+
["I'm feeling great today!"],
|
| 60 |
+
["My dog passed away..."],
|
| 61 |
+
["The office is closed tomorrow."],
|
| 62 |
+
["This is the best day ever!"],
|
| 63 |
+
["I feel miserable."],
|
| 64 |
+
["There are 12 books on the shelf."]
|
| 65 |
+
],
|
| 66 |
+
inputs=text_input
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
def analyze_text(text):
|
| 70 |
+
sentiment, confidences = predict_sentiment(text)
|
| 71 |
+
return sentiment, confidences
|
| 72 |
+
|
| 73 |
+
submit_btn.click(
|
| 74 |
+
fn=analyze_text,
|
| 75 |
+
inputs=text_input,
|
| 76 |
+
outputs=[sentiment_output, confidence_output]
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
text_input.submit(
|
| 80 |
+
fn=analyze_text,
|
| 81 |
+
inputs=text_input,
|
| 82 |
+
outputs=[sentiment_output, confidence_output]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Launch the app
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
demo.launch()
|