Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,8 +4,9 @@ import numpy as np
|
|
| 4 |
import pickle
|
| 5 |
import json
|
| 6 |
import tensorflow as tf
|
| 7 |
-
from tensorflow.keras.models import
|
| 8 |
import plotly.graph_objects as go
|
|
|
|
| 9 |
import os
|
| 10 |
|
| 11 |
# Set environment variable to avoid oneDNN warnings
|
|
@@ -14,22 +15,17 @@ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
|
| 14 |
# Load model artifacts
|
| 15 |
def load_model_artifacts():
|
| 16 |
try:
|
| 17 |
-
# Load model architecture first
|
| 18 |
with open('model_architecture.json', 'r') as json_file:
|
| 19 |
model_json = json_file.read()
|
| 20 |
model = model_from_json(model_json)
|
| 21 |
-
|
| 22 |
-
# Then load weights
|
| 23 |
model.load_weights('final_model.h5')
|
| 24 |
-
|
| 25 |
-
# Load the scaler
|
| 26 |
with open('scaler.pkl', 'rb') as f:
|
| 27 |
scaler = pickle.load(f)
|
| 28 |
-
|
| 29 |
-
# Load metadata
|
| 30 |
with open('metadata.json', 'r') as f:
|
| 31 |
metadata = json.load(f)
|
| 32 |
-
|
| 33 |
return model, scaler, metadata
|
| 34 |
except Exception as e:
|
| 35 |
raise Exception(f"Error loading model artifacts: {str(e)}")
|
|
@@ -37,47 +33,35 @@ def load_model_artifacts():
|
|
| 37 |
# Initialize model components
|
| 38 |
try:
|
| 39 |
model, scaler, metadata = load_model_artifacts()
|
| 40 |
-
|
|
|
|
| 41 |
print(f"β
Model loaded successfully with features: {feature_names}")
|
| 42 |
except Exception as e:
|
| 43 |
print(f"β Error loading model: {e}")
|
| 44 |
-
# Fallback values for testing
|
| 45 |
model, scaler, metadata = None, None, {}
|
| 46 |
-
feature_names = ['Feature_1', 'Feature_2'
|
| 47 |
|
| 48 |
def predict_student_eligibility(*args):
|
| 49 |
-
"""Predict student eligibility based on input features"""
|
| 50 |
try:
|
| 51 |
if model is None or scaler is None:
|
| 52 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
| 53 |
-
|
| 54 |
-
# Create input dictionary from gradio inputs
|
| 55 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
| 56 |
-
|
| 57 |
-
# Convert to DataFrame
|
| 58 |
input_df = pd.DataFrame([input_data])
|
| 59 |
-
|
| 60 |
-
# Scale the input
|
| 61 |
input_scaled = scaler.transform(input_df)
|
| 62 |
-
|
| 63 |
-
# Reshape for CNN
|
| 64 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 65 |
-
|
| 66 |
-
# Make prediction
|
| 67 |
probability = float(model.predict(input_reshaped)[0][0])
|
| 68 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 69 |
-
confidence = abs(probability - 0.5) * 2
|
| 70 |
-
|
| 71 |
-
# Create prediction visualization
|
| 72 |
fig = create_prediction_viz(probability, prediction, input_data)
|
| 73 |
-
|
| 74 |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
| 75 |
-
|
| 76 |
except Exception as e:
|
| 77 |
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
|
| 78 |
|
| 79 |
def create_error_plot():
|
| 80 |
-
"""Create a simple error plot"""
|
| 81 |
fig = go.Figure()
|
| 82 |
fig.add_annotation(
|
| 83 |
text="Model not available or error occurred",
|
|
@@ -93,22 +77,18 @@ def create_error_plot():
|
|
| 93 |
return fig
|
| 94 |
|
| 95 |
def create_prediction_viz(probability, prediction, input_data):
|
| 96 |
-
"""Create visualization for prediction results"""
|
| 97 |
try:
|
| 98 |
-
# Create subplots
|
| 99 |
fig = make_subplots(
|
| 100 |
rows=2, cols=2,
|
| 101 |
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
|
| 102 |
specs=[[{"type": "indicator"}, {"type": "indicator"}],
|
| 103 |
[{"type": "bar"}, {"type": "scatter"}]]
|
| 104 |
)
|
| 105 |
-
|
| 106 |
-
# Prediction probability gauge
|
| 107 |
fig.add_trace(
|
| 108 |
go.Indicator(
|
| 109 |
mode="gauge+number",
|
| 110 |
value=probability,
|
| 111 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
| 112 |
title={'text': "Eligibility Probability"},
|
| 113 |
gauge={
|
| 114 |
'axis': {'range': [None, 1]},
|
|
@@ -123,17 +103,14 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
| 123 |
'value': 0.5
|
| 124 |
}
|
| 125 |
}
|
| 126 |
-
),
|
| 127 |
-
row=1, col=1
|
| 128 |
)
|
| 129 |
-
|
| 130 |
-
# Confidence meter
|
| 131 |
confidence = abs(probability - 0.5) * 2
|
| 132 |
fig.add_trace(
|
| 133 |
go.Indicator(
|
| 134 |
mode="gauge+number",
|
| 135 |
value=confidence,
|
| 136 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
| 137 |
title={'text': "Prediction Confidence"},
|
| 138 |
gauge={
|
| 139 |
'axis': {'range': [None, 1]},
|
|
@@ -144,143 +121,103 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
| 144 |
{'range': [0.7, 1], 'color': "lightgreen"}
|
| 145 |
]
|
| 146 |
}
|
| 147 |
-
),
|
| 148 |
-
row=1, col=2
|
| 149 |
)
|
| 150 |
-
|
| 151 |
-
# Input features bar chart
|
| 152 |
features = list(input_data.keys())
|
| 153 |
values = list(input_data.values())
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
|
| 157 |
-
row=2, col=1
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
# Simple probability visualization
|
| 161 |
fig.add_trace(
|
| 162 |
go.Scatter(
|
| 163 |
-
x=[0, 1],
|
| 164 |
-
y=[probability, probability],
|
| 165 |
mode='lines+markers',
|
| 166 |
-
name="Probability",
|
| 167 |
line=dict(color="red", width=3),
|
| 168 |
marker=dict(size=10)
|
| 169 |
-
),
|
| 170 |
-
row=2, col=2
|
| 171 |
)
|
| 172 |
-
|
| 173 |
fig.update_layout(
|
| 174 |
height=800,
|
| 175 |
showlegend=False,
|
| 176 |
title_text="Student Eligibility Prediction Dashboard",
|
| 177 |
title_x=0.5
|
| 178 |
)
|
| 179 |
-
|
| 180 |
return fig
|
| 181 |
except Exception as e:
|
| 182 |
return create_error_plot()
|
| 183 |
|
| 184 |
def batch_predict(file):
|
| 185 |
-
"""Batch prediction from uploaded CSV file"""
|
| 186 |
try:
|
| 187 |
if model is None or scaler is None:
|
| 188 |
return "Model not loaded. Please check if all model files are uploaded.", None
|
| 189 |
-
|
| 190 |
if file is None:
|
| 191 |
return "Please upload a CSV file.", None
|
| 192 |
-
|
| 193 |
-
# Read the uploaded file
|
| 194 |
df = pd.read_csv(file)
|
| 195 |
-
|
| 196 |
-
# Check if all required features are present
|
| 197 |
missing_features = set(feature_names) - set(df.columns)
|
| 198 |
if missing_features:
|
| 199 |
return f"Missing features: {missing_features}", None
|
| 200 |
-
|
| 201 |
-
# Select only the required features
|
| 202 |
df_features = df[feature_names]
|
| 203 |
-
|
| 204 |
-
# Scale the features
|
| 205 |
df_scaled = scaler.transform(df_features)
|
| 206 |
-
|
| 207 |
-
# Reshape for CNN
|
| 208 |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
| 209 |
-
|
| 210 |
-
# Make predictions
|
| 211 |
probabilities = model.predict(df_reshaped).flatten()
|
| 212 |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
| 213 |
-
|
| 214 |
-
# Create results dataframe
|
| 215 |
results_df = df_features.copy()
|
| 216 |
results_df['Probability'] = probabilities
|
| 217 |
results_df['Prediction'] = predictions
|
| 218 |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
| 219 |
-
|
| 220 |
-
# Save results
|
| 221 |
output_file = "batch_predictions.csv"
|
| 222 |
results_df.to_csv(output_file, index=False)
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
summary = f"""Batch Prediction Summary:
|
| 229 |
βββββββββββββββββββββββββββββββββββββββββ
|
| 230 |
π Total predictions: {len(results_df)}
|
| 231 |
-
β
Eligible: {eligible_count} ({eligible_count/len(predictions)*100:.1f}%)
|
| 232 |
-
β Not Eligible: {not_eligible_count} ({not_eligible_count/len(predictions)*100:.1f}%)
|
| 233 |
π Average Probability: {np.mean(probabilities):.4f}
|
| 234 |
π― Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
|
| 235 |
βββββββββββββββββββββββββββββββββββββββββ
|
| 236 |
-
|
| 237 |
Results saved to: {output_file}
|
| 238 |
"""
|
| 239 |
-
|
| 240 |
return summary, output_file
|
| 241 |
-
|
| 242 |
except Exception as e:
|
| 243 |
return f"Error processing file: {str(e)}", None
|
| 244 |
|
| 245 |
-
#
|
| 246 |
-
|
|
|
|
|
|
|
| 247 |
gr.Markdown("# π Student Eligibility Prediction")
|
| 248 |
-
|
| 249 |
with gr.Tabs():
|
| 250 |
with gr.Tab("Single Prediction"):
|
| 251 |
-
inputs = []
|
| 252 |
-
for feature in feature_names:
|
| 253 |
-
inputs.append(gr.Number(label=feature, value=75))
|
| 254 |
-
|
| 255 |
predict_btn = gr.Button("Predict")
|
| 256 |
-
|
| 257 |
with gr.Row():
|
| 258 |
prediction = gr.Textbox(label="Prediction")
|
| 259 |
probability = gr.Textbox(label="Probability")
|
| 260 |
confidence = gr.Textbox(label="Confidence")
|
| 261 |
-
|
| 262 |
plot = gr.Plot()
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
predict_student_eligibility,
|
| 266 |
-
inputs=inputs,
|
| 267 |
-
outputs=[prediction, probability, confidence, plot]
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
with gr.Tab("Batch Prediction"):
|
| 271 |
-
file_input = gr.File(
|
| 272 |
-
label="Upload CSV",
|
| 273 |
-
file_types=[".csv"],
|
| 274 |
-
type="filepath" # Fixed: Changed from 'file' to 'filepath'
|
| 275 |
-
)
|
| 276 |
batch_btn = gr.Button("Process Batch")
|
| 277 |
batch_output = gr.Textbox(label="Results")
|
| 278 |
download = gr.File(label="Download")
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
outputs=[batch_output, download]
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
demo.launch()
|
|
|
|
| 4 |
import pickle
|
| 5 |
import json
|
| 6 |
import tensorflow as tf
|
| 7 |
+
from tensorflow.keras.models import model_from_json
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
+
from plotly.subplots import make_subplots
|
| 10 |
import os
|
| 11 |
|
| 12 |
# Set environment variable to avoid oneDNN warnings
|
|
|
|
| 15 |
# Load model artifacts
|
| 16 |
def load_model_artifacts():
|
| 17 |
try:
|
|
|
|
| 18 |
with open('model_architecture.json', 'r') as json_file:
|
| 19 |
model_json = json_file.read()
|
| 20 |
model = model_from_json(model_json)
|
|
|
|
|
|
|
| 21 |
model.load_weights('final_model.h5')
|
| 22 |
+
|
|
|
|
| 23 |
with open('scaler.pkl', 'rb') as f:
|
| 24 |
scaler = pickle.load(f)
|
| 25 |
+
|
|
|
|
| 26 |
with open('metadata.json', 'r') as f:
|
| 27 |
metadata = json.load(f)
|
| 28 |
+
|
| 29 |
return model, scaler, metadata
|
| 30 |
except Exception as e:
|
| 31 |
raise Exception(f"Error loading model artifacts: {str(e)}")
|
|
|
|
| 33 |
# Initialize model components
|
| 34 |
try:
|
| 35 |
model, scaler, metadata = load_model_artifacts()
|
| 36 |
+
# Use only two features for prediction
|
| 37 |
+
feature_names = ['Feature_1', 'Feature_2']
|
| 38 |
print(f"β
Model loaded successfully with features: {feature_names}")
|
| 39 |
except Exception as e:
|
| 40 |
print(f"β Error loading model: {e}")
|
|
|
|
| 41 |
model, scaler, metadata = None, None, {}
|
| 42 |
+
feature_names = ['Feature_1', 'Feature_2']
|
| 43 |
|
| 44 |
def predict_student_eligibility(*args):
|
|
|
|
| 45 |
try:
|
| 46 |
if model is None or scaler is None:
|
| 47 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
| 48 |
+
|
|
|
|
| 49 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
|
|
|
|
|
|
| 50 |
input_df = pd.DataFrame([input_data])
|
|
|
|
|
|
|
| 51 |
input_scaled = scaler.transform(input_df)
|
|
|
|
|
|
|
| 52 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 53 |
+
|
|
|
|
| 54 |
probability = float(model.predict(input_reshaped)[0][0])
|
| 55 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 56 |
+
confidence = abs(probability - 0.5) * 2
|
|
|
|
|
|
|
| 57 |
fig = create_prediction_viz(probability, prediction, input_data)
|
| 58 |
+
|
| 59 |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
| 60 |
+
|
| 61 |
except Exception as e:
|
| 62 |
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
|
| 63 |
|
| 64 |
def create_error_plot():
|
|
|
|
| 65 |
fig = go.Figure()
|
| 66 |
fig.add_annotation(
|
| 67 |
text="Model not available or error occurred",
|
|
|
|
| 77 |
return fig
|
| 78 |
|
| 79 |
def create_prediction_viz(probability, prediction, input_data):
|
|
|
|
| 80 |
try:
|
|
|
|
| 81 |
fig = make_subplots(
|
| 82 |
rows=2, cols=2,
|
| 83 |
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
|
| 84 |
specs=[[{"type": "indicator"}, {"type": "indicator"}],
|
| 85 |
[{"type": "bar"}, {"type": "scatter"}]]
|
| 86 |
)
|
| 87 |
+
|
|
|
|
| 88 |
fig.add_trace(
|
| 89 |
go.Indicator(
|
| 90 |
mode="gauge+number",
|
| 91 |
value=probability,
|
|
|
|
| 92 |
title={'text': "Eligibility Probability"},
|
| 93 |
gauge={
|
| 94 |
'axis': {'range': [None, 1]},
|
|
|
|
| 103 |
'value': 0.5
|
| 104 |
}
|
| 105 |
}
|
| 106 |
+
), row=1, col=1
|
|
|
|
| 107 |
)
|
| 108 |
+
|
|
|
|
| 109 |
confidence = abs(probability - 0.5) * 2
|
| 110 |
fig.add_trace(
|
| 111 |
go.Indicator(
|
| 112 |
mode="gauge+number",
|
| 113 |
value=confidence,
|
|
|
|
| 114 |
title={'text': "Prediction Confidence"},
|
| 115 |
gauge={
|
| 116 |
'axis': {'range': [None, 1]},
|
|
|
|
| 121 |
{'range': [0.7, 1], 'color': "lightgreen"}
|
| 122 |
]
|
| 123 |
}
|
| 124 |
+
), row=1, col=2
|
|
|
|
| 125 |
)
|
| 126 |
+
|
|
|
|
| 127 |
features = list(input_data.keys())
|
| 128 |
values = list(input_data.values())
|
| 129 |
+
fig.add_trace(go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"), row=2, col=1)
|
| 130 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
fig.add_trace(
|
| 132 |
go.Scatter(
|
| 133 |
+
x=[0, 1], y=[probability, probability],
|
|
|
|
| 134 |
mode='lines+markers',
|
| 135 |
+
name="Probability",
|
| 136 |
line=dict(color="red", width=3),
|
| 137 |
marker=dict(size=10)
|
| 138 |
+
), row=2, col=2
|
|
|
|
| 139 |
)
|
| 140 |
+
|
| 141 |
fig.update_layout(
|
| 142 |
height=800,
|
| 143 |
showlegend=False,
|
| 144 |
title_text="Student Eligibility Prediction Dashboard",
|
| 145 |
title_x=0.5
|
| 146 |
)
|
| 147 |
+
|
| 148 |
return fig
|
| 149 |
except Exception as e:
|
| 150 |
return create_error_plot()
|
| 151 |
|
| 152 |
def batch_predict(file):
|
|
|
|
| 153 |
try:
|
| 154 |
if model is None or scaler is None:
|
| 155 |
return "Model not loaded. Please check if all model files are uploaded.", None
|
| 156 |
+
|
| 157 |
if file is None:
|
| 158 |
return "Please upload a CSV file.", None
|
| 159 |
+
|
|
|
|
| 160 |
df = pd.read_csv(file)
|
|
|
|
|
|
|
| 161 |
missing_features = set(feature_names) - set(df.columns)
|
| 162 |
if missing_features:
|
| 163 |
return f"Missing features: {missing_features}", None
|
| 164 |
+
|
|
|
|
| 165 |
df_features = df[feature_names]
|
|
|
|
|
|
|
| 166 |
df_scaled = scaler.transform(df_features)
|
|
|
|
|
|
|
| 167 |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
| 168 |
+
|
|
|
|
| 169 |
probabilities = model.predict(df_reshaped).flatten()
|
| 170 |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
| 171 |
+
|
|
|
|
| 172 |
results_df = df_features.copy()
|
| 173 |
results_df['Probability'] = probabilities
|
| 174 |
results_df['Prediction'] = predictions
|
| 175 |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
| 176 |
+
|
|
|
|
| 177 |
output_file = "batch_predictions.csv"
|
| 178 |
results_df.to_csv(output_file, index=False)
|
| 179 |
+
|
| 180 |
+
eligible_count = predictions.count('Eligible')
|
| 181 |
+
not_eligible_count = predictions.count('Not Eligible')
|
| 182 |
+
|
|
|
|
| 183 |
summary = f"""Batch Prediction Summary:
|
| 184 |
βββββββββββββββββββββββββββββββββββββββββ
|
| 185 |
π Total predictions: {len(results_df)}
|
| 186 |
+
β
Eligible: {eligible_count} ({eligible_count / len(predictions) * 100:.1f}%)
|
| 187 |
+
β Not Eligible: {not_eligible_count} ({not_eligible_count / len(predictions) * 100:.1f}%)
|
| 188 |
π Average Probability: {np.mean(probabilities):.4f}
|
| 189 |
π― Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
|
| 190 |
βββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 191 |
Results saved to: {output_file}
|
| 192 |
"""
|
| 193 |
+
|
| 194 |
return summary, output_file
|
| 195 |
+
|
| 196 |
except Exception as e:
|
| 197 |
return f"Error processing file: {str(e)}", None
|
| 198 |
|
| 199 |
+
# Gradio UI
|
| 200 |
+
demo = gr.Blocks(theme=gr.themes.Soft())
|
| 201 |
+
|
| 202 |
+
with demo:
|
| 203 |
gr.Markdown("# π Student Eligibility Prediction")
|
|
|
|
| 204 |
with gr.Tabs():
|
| 205 |
with gr.Tab("Single Prediction"):
|
| 206 |
+
inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
|
|
|
|
|
|
|
|
|
|
| 207 |
predict_btn = gr.Button("Predict")
|
|
|
|
| 208 |
with gr.Row():
|
| 209 |
prediction = gr.Textbox(label="Prediction")
|
| 210 |
probability = gr.Textbox(label="Probability")
|
| 211 |
confidence = gr.Textbox(label="Confidence")
|
|
|
|
| 212 |
plot = gr.Plot()
|
| 213 |
+
predict_btn.click(predict_student_eligibility, inputs=inputs, outputs=[prediction, probability, confidence, plot])
|
| 214 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
with gr.Tab("Batch Prediction"):
|
| 216 |
+
file_input = gr.File(label="Upload CSV", file_types=[".csv"], type="filepath")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
batch_btn = gr.Button("Process Batch")
|
| 218 |
batch_output = gr.Textbox(label="Results")
|
| 219 |
download = gr.File(label="Download")
|
| 220 |
+
batch_btn.click(batch_predict, inputs=file_input, outputs=[batch_output, download])
|
| 221 |
+
|
| 222 |
+
# Launch app
|
| 223 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|