Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,6 @@ from plotly.subplots import make_subplots
|
|
| 11 |
import os
|
| 12 |
|
| 13 |
# Load model artifacts
|
| 14 |
-
@st.cache_resource
|
| 15 |
def load_model_artifacts():
|
| 16 |
try:
|
| 17 |
# Load the trained model
|
|
@@ -30,14 +29,24 @@ def load_model_artifacts():
|
|
| 30 |
raise Exception(f"Error loading model artifacts: {str(e)}")
|
| 31 |
|
| 32 |
# Initialize model components
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def predict_student_eligibility(*args):
|
| 37 |
"""
|
| 38 |
Predict student eligibility based on input features
|
| 39 |
"""
|
| 40 |
try:
|
|
|
|
|
|
|
|
|
|
| 41 |
# Create input dictionary from gradio inputs
|
| 42 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
| 43 |
|
|
@@ -51,7 +60,7 @@ def predict_student_eligibility(*args):
|
|
| 51 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 52 |
|
| 53 |
# Make prediction
|
| 54 |
-
probability = model.predict(input_reshaped)[0][0]
|
| 55 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 56 |
confidence = abs(probability - 0.5) * 2 # Convert to confidence score
|
| 57 |
|
|
@@ -61,105 +70,139 @@ def predict_student_eligibility(*args):
|
|
| 61 |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
| 62 |
|
| 63 |
except Exception as e:
|
| 64 |
-
return f"Error: {str(e)}", "N/A", "N/A",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
def create_prediction_viz(probability, prediction, input_data):
|
| 67 |
"""
|
| 68 |
Create visualization for prediction results
|
| 69 |
"""
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
'
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
}
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
def create_model_info():
|
| 148 |
"""
|
| 149 |
Create model information display
|
| 150 |
"""
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
<
|
| 154 |
-
|
| 155 |
-
<
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
return info_html
|
| 164 |
|
| 165 |
def batch_predict(file):
|
|
@@ -167,6 +210,12 @@ def batch_predict(file):
|
|
| 167 |
Batch prediction from uploaded CSV file
|
| 168 |
"""
|
| 169 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
# Read the uploaded file
|
| 171 |
df = pd.read_csv(file.name)
|
| 172 |
|
|
@@ -199,13 +248,19 @@ def batch_predict(file):
|
|
| 199 |
results_df.to_csv(output_file, index=False)
|
| 200 |
|
| 201 |
# Create summary statistics
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
"""
|
| 210 |
|
| 211 |
return summary, output_file
|
|
@@ -229,6 +284,9 @@ with gr.Blocks(
|
|
| 229 |
border-radius: 10px;
|
| 230 |
margin-bottom: 20px;
|
| 231 |
}
|
|
|
|
|
|
|
|
|
|
| 232 |
"""
|
| 233 |
) as demo:
|
| 234 |
|
|
@@ -242,66 +300,120 @@ with gr.Blocks(
|
|
| 242 |
|
| 243 |
with gr.Tabs():
|
| 244 |
# Single Prediction Tab
|
| 245 |
-
with gr.TabItem("Single Prediction"):
|
| 246 |
gr.Markdown("### Enter student information to predict eligibility")
|
| 247 |
|
| 248 |
with gr.Row():
|
| 249 |
with gr.Column(scale=1):
|
|
|
|
| 250 |
# Create input components dynamically based on features
|
| 251 |
inputs = []
|
| 252 |
-
for feature in feature_names:
|
| 253 |
inputs.append(
|
| 254 |
gr.Number(
|
| 255 |
-
label=f"{feature}",
|
| 256 |
-
value=
|
| 257 |
minimum=0,
|
| 258 |
maximum=100,
|
| 259 |
-
step=1
|
|
|
|
| 260 |
)
|
| 261 |
)
|
| 262 |
|
| 263 |
-
predict_btn = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
with gr.Column(scale=2):
|
|
|
|
| 266 |
with gr.Row():
|
| 267 |
-
prediction_output = gr.Textbox(label="Prediction", scale=1)
|
| 268 |
-
probability_output = gr.Textbox(label="Probability", scale=1)
|
| 269 |
-
confidence_output = gr.Textbox(label="Confidence", scale=1)
|
| 270 |
|
| 271 |
-
prediction_plot = gr.Plot(label="Prediction Visualization")
|
| 272 |
|
| 273 |
# Model information
|
| 274 |
gr.HTML(create_model_info())
|
| 275 |
|
| 276 |
# Batch Prediction Tab
|
| 277 |
-
with gr.TabItem("Batch Prediction"):
|
| 278 |
gr.Markdown("### Upload a CSV file for batch predictions")
|
| 279 |
-
gr.Markdown(f"**Required columns:** {', '.join(feature_names)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
with gr.Row():
|
| 282 |
with gr.Column():
|
| 283 |
file_input = gr.File(
|
| 284 |
-
label="Upload CSV File",
|
| 285 |
file_types=[".csv"],
|
| 286 |
type="file"
|
| 287 |
)
|
| 288 |
-
batch_predict_btn = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
with gr.Column():
|
| 291 |
-
batch_output = gr.Textbox(
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
# Model Analytics Tab
|
| 295 |
-
with gr.TabItem("Model Analytics"):
|
| 296 |
gr.Markdown("### Model Performance Metrics")
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
-
#
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
# Event handlers
|
| 307 |
predict_btn.click(
|
|
@@ -318,4 +430,8 @@ with gr.Blocks(
|
|
| 318 |
|
| 319 |
# Launch the app
|
| 320 |
if __name__ == "__main__":
|
| 321 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import os
|
| 12 |
|
| 13 |
# Load model artifacts
|
|
|
|
| 14 |
def load_model_artifacts():
|
| 15 |
try:
|
| 16 |
# Load the trained model
|
|
|
|
| 29 |
raise Exception(f"Error loading model artifacts: {str(e)}")
|
| 30 |
|
| 31 |
# Initialize model components
|
| 32 |
+
try:
|
| 33 |
+
model, scaler, metadata = load_model_artifacts()
|
| 34 |
+
feature_names = metadata['feature_names']
|
| 35 |
+
print(f"โ
Model loaded successfully with features: {feature_names}")
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"โ Error loading model: {e}")
|
| 38 |
+
# Fallback values for testing
|
| 39 |
+
model, scaler, metadata = None, None, {}
|
| 40 |
+
feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4']
|
| 41 |
|
| 42 |
def predict_student_eligibility(*args):
|
| 43 |
"""
|
| 44 |
Predict student eligibility based on input features
|
| 45 |
"""
|
| 46 |
try:
|
| 47 |
+
if model is None or scaler is None:
|
| 48 |
+
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
| 49 |
+
|
| 50 |
# Create input dictionary from gradio inputs
|
| 51 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
| 52 |
|
|
|
|
| 60 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 61 |
|
| 62 |
# Make prediction
|
| 63 |
+
probability = float(model.predict(input_reshaped)[0][0])
|
| 64 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 65 |
confidence = abs(probability - 0.5) * 2 # Convert to confidence score
|
| 66 |
|
|
|
|
| 70 |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
| 71 |
|
| 72 |
except Exception as e:
|
| 73 |
+
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
|
| 74 |
+
|
| 75 |
+
def create_error_plot():
|
| 76 |
+
"""Create a simple error plot"""
|
| 77 |
+
fig = go.Figure()
|
| 78 |
+
fig.add_annotation(
|
| 79 |
+
text="Model not available or error occurred",
|
| 80 |
+
xref="paper", yref="paper",
|
| 81 |
+
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
| 82 |
+
showarrow=False, font=dict(size=20)
|
| 83 |
+
)
|
| 84 |
+
fig.update_layout(
|
| 85 |
+
xaxis={'visible': False},
|
| 86 |
+
yaxis={'visible': False},
|
| 87 |
+
height=400
|
| 88 |
+
)
|
| 89 |
+
return fig
|
| 90 |
|
| 91 |
def create_prediction_viz(probability, prediction, input_data):
|
| 92 |
"""
|
| 93 |
Create visualization for prediction results
|
| 94 |
"""
|
| 95 |
+
try:
|
| 96 |
+
# Create subplots
|
| 97 |
+
fig = make_subplots(
|
| 98 |
+
rows=2, cols=2,
|
| 99 |
+
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
|
| 100 |
+
specs=[[{"type": "indicator"}, {"type": "indicator"}],
|
| 101 |
+
[{"type": "bar"}, {"type": "scatter"}]]
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Prediction probability gauge
|
| 105 |
+
fig.add_trace(
|
| 106 |
+
go.Indicator(
|
| 107 |
+
mode="gauge+number",
|
| 108 |
+
value=probability,
|
| 109 |
+
domain={'x': [0, 1], 'y': [0, 1]},
|
| 110 |
+
title={'text': "Eligibility Probability"},
|
| 111 |
+
gauge={
|
| 112 |
+
'axis': {'range': [None, 1]},
|
| 113 |
+
'bar': {'color': "darkblue"},
|
| 114 |
+
'steps': [
|
| 115 |
+
{'range': [0, 0.5], 'color': "lightcoral"},
|
| 116 |
+
{'range': [0.5, 1], 'color': "lightgreen"}
|
| 117 |
+
],
|
| 118 |
+
'threshold': {
|
| 119 |
+
'line': {'color': "red", 'width': 4},
|
| 120 |
+
'thickness': 0.75,
|
| 121 |
+
'value': 0.5
|
| 122 |
+
}
|
| 123 |
}
|
| 124 |
+
),
|
| 125 |
+
row=1, col=1
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Confidence meter
|
| 129 |
+
confidence = abs(probability - 0.5) * 2
|
| 130 |
+
fig.add_trace(
|
| 131 |
+
go.Indicator(
|
| 132 |
+
mode="gauge+number",
|
| 133 |
+
value=confidence,
|
| 134 |
+
domain={'x': [0, 1], 'y': [0, 1]},
|
| 135 |
+
title={'text': "Prediction Confidence"},
|
| 136 |
+
gauge={
|
| 137 |
+
'axis': {'range': [None, 1]},
|
| 138 |
+
'bar': {'color': "orange"},
|
| 139 |
+
'steps': [
|
| 140 |
+
{'range': [0, 0.3], 'color': "lightcoral"},
|
| 141 |
+
{'range': [0.3, 0.7], 'color': "lightyellow"},
|
| 142 |
+
{'range': [0.7, 1], 'color': "lightgreen"}
|
| 143 |
+
]
|
| 144 |
+
}
|
| 145 |
+
),
|
| 146 |
+
row=1, col=2
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Input features bar chart
|
| 150 |
+
features = list(input_data.keys())
|
| 151 |
+
values = list(input_data.values())
|
| 152 |
+
|
| 153 |
+
fig.add_trace(
|
| 154 |
+
go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
|
| 155 |
+
row=2, col=1
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Simple probability visualization
|
| 159 |
+
fig.add_trace(
|
| 160 |
+
go.Scatter(
|
| 161 |
+
x=[0, 1],
|
| 162 |
+
y=[probability, probability],
|
| 163 |
+
mode='lines+markers',
|
| 164 |
+
name="Probability",
|
| 165 |
+
line=dict(color="red", width=3),
|
| 166 |
+
marker=dict(size=10)
|
| 167 |
+
),
|
| 168 |
+
row=2, col=2
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
fig.update_layout(
|
| 172 |
+
height=800,
|
| 173 |
+
showlegend=False,
|
| 174 |
+
title_text="Student Eligibility Prediction Dashboard",
|
| 175 |
+
title_x=0.5
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
return fig
|
| 179 |
+
except Exception as e:
|
| 180 |
+
return create_error_plot()
|
| 181 |
|
| 182 |
def create_model_info():
|
| 183 |
"""
|
| 184 |
Create model information display
|
| 185 |
"""
|
| 186 |
+
if metadata:
|
| 187 |
+
info_html = f"""
|
| 188 |
+
<div style="padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin: 10px 0;">
|
| 189 |
+
<h3>๐ค Model Information</h3>
|
| 190 |
+
<ul>
|
| 191 |
+
<li><strong>Model Type:</strong> {metadata.get('model_type', 'CNN')}</li>
|
| 192 |
+
<li><strong>Test Accuracy:</strong> {metadata.get('performance_metrics', {}).get('test_accuracy', 'N/A')}</li>
|
| 193 |
+
<li><strong>AUC Score:</strong> {metadata.get('performance_metrics', {}).get('auc_score', 'N/A')}</li>
|
| 194 |
+
<li><strong>Creation Date:</strong> {metadata.get('creation_date', 'N/A')}</li>
|
| 195 |
+
<li><strong>Features:</strong> {len(feature_names)} input features</li>
|
| 196 |
+
</ul>
|
| 197 |
+
</div>
|
| 198 |
+
"""
|
| 199 |
+
else:
|
| 200 |
+
info_html = """
|
| 201 |
+
<div style="padding: 20px; background-color: #ffebee; border-radius: 10px; margin: 10px 0;">
|
| 202 |
+
<h3>โ ๏ธ Model Information</h3>
|
| 203 |
+
<p>Model artifacts not loaded. Please ensure all required files are uploaded.</p>
|
| 204 |
+
</div>
|
| 205 |
+
"""
|
| 206 |
return info_html
|
| 207 |
|
| 208 |
def batch_predict(file):
|
|
|
|
| 210 |
Batch prediction from uploaded CSV file
|
| 211 |
"""
|
| 212 |
try:
|
| 213 |
+
if model is None or scaler is None:
|
| 214 |
+
return "Model not loaded. Please check if all model files are uploaded.", None
|
| 215 |
+
|
| 216 |
+
if file is None:
|
| 217 |
+
return "Please upload a CSV file.", None
|
| 218 |
+
|
| 219 |
# Read the uploaded file
|
| 220 |
df = pd.read_csv(file.name)
|
| 221 |
|
|
|
|
| 248 |
results_df.to_csv(output_file, index=False)
|
| 249 |
|
| 250 |
# Create summary statistics
|
| 251 |
+
eligible_count = sum(1 for p in predictions if p == 'Eligible')
|
| 252 |
+
not_eligible_count = len(predictions) - eligible_count
|
| 253 |
+
|
| 254 |
+
summary = f"""Batch Prediction Summary:
|
| 255 |
+
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 256 |
+
๐ Total predictions: {len(results_df)}
|
| 257 |
+
โ
Eligible: {eligible_count} ({eligible_count/len(predictions)*100:.1f}%)
|
| 258 |
+
โ Not Eligible: {not_eligible_count} ({not_eligible_count/len(predictions)*100:.1f}%)
|
| 259 |
+
๐ Average Probability: {np.mean(probabilities):.4f}
|
| 260 |
+
๐ฏ Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
|
| 261 |
+
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
| 262 |
+
|
| 263 |
+
Results saved to: {output_file}
|
| 264 |
"""
|
| 265 |
|
| 266 |
return summary, output_file
|
|
|
|
| 284 |
border-radius: 10px;
|
| 285 |
margin-bottom: 20px;
|
| 286 |
}
|
| 287 |
+
.feature-input {
|
| 288 |
+
margin: 5px 0;
|
| 289 |
+
}
|
| 290 |
"""
|
| 291 |
) as demo:
|
| 292 |
|
|
|
|
| 300 |
|
| 301 |
with gr.Tabs():
|
| 302 |
# Single Prediction Tab
|
| 303 |
+
with gr.TabItem("๐ฎ Single Prediction"):
|
| 304 |
gr.Markdown("### Enter student information to predict eligibility")
|
| 305 |
|
| 306 |
with gr.Row():
|
| 307 |
with gr.Column(scale=1):
|
| 308 |
+
gr.Markdown("#### Input Features")
|
| 309 |
# Create input components dynamically based on features
|
| 310 |
inputs = []
|
| 311 |
+
for i, feature in enumerate(feature_names):
|
| 312 |
inputs.append(
|
| 313 |
gr.Number(
|
| 314 |
+
label=f"๐ {feature}",
|
| 315 |
+
value=75 + i*5, # Different default values
|
| 316 |
minimum=0,
|
| 317 |
maximum=100,
|
| 318 |
+
step=0.1,
|
| 319 |
+
elem_classes=["feature-input"]
|
| 320 |
)
|
| 321 |
)
|
| 322 |
|
| 323 |
+
predict_btn = gr.Button(
|
| 324 |
+
"๐ฎ Predict Eligibility",
|
| 325 |
+
variant="primary",
|
| 326 |
+
size="lg",
|
| 327 |
+
elem_id="predict-btn"
|
| 328 |
+
)
|
| 329 |
|
| 330 |
with gr.Column(scale=2):
|
| 331 |
+
gr.Markdown("#### Prediction Results")
|
| 332 |
with gr.Row():
|
| 333 |
+
prediction_output = gr.Textbox(label="๐ฏ Prediction", scale=1)
|
| 334 |
+
probability_output = gr.Textbox(label="๐ Probability", scale=1)
|
| 335 |
+
confidence_output = gr.Textbox(label="๐ฏ Confidence", scale=1)
|
| 336 |
|
| 337 |
+
prediction_plot = gr.Plot(label="๐ Prediction Visualization")
|
| 338 |
|
| 339 |
# Model information
|
| 340 |
gr.HTML(create_model_info())
|
| 341 |
|
| 342 |
# Batch Prediction Tab
|
| 343 |
+
with gr.TabItem("๐ Batch Prediction"):
|
| 344 |
gr.Markdown("### Upload a CSV file for batch predictions")
|
| 345 |
+
gr.Markdown(f"**Required columns:** `{', '.join(feature_names)}`")
|
| 346 |
+
|
| 347 |
+
# Sample CSV format
|
| 348 |
+
gr.Markdown("""
|
| 349 |
+
**Example CSV format:**
|
| 350 |
+
```csv
|
| 351 |
+
Feature_1,Feature_2,Feature_3,Feature_4
|
| 352 |
+
85,90,75,88
|
| 353 |
+
92,78,85,91
|
| 354 |
+
```
|
| 355 |
+
""")
|
| 356 |
|
| 357 |
with gr.Row():
|
| 358 |
with gr.Column():
|
| 359 |
file_input = gr.File(
|
| 360 |
+
label="๐ Upload CSV File",
|
| 361 |
file_types=[".csv"],
|
| 362 |
type="file"
|
| 363 |
)
|
| 364 |
+
batch_predict_btn = gr.Button(
|
| 365 |
+
"๐ Process Batch",
|
| 366 |
+
variant="primary",
|
| 367 |
+
size="lg"
|
| 368 |
+
)
|
| 369 |
|
| 370 |
with gr.Column():
|
| 371 |
+
batch_output = gr.Textbox(
|
| 372 |
+
label="๐ Batch Results Summary",
|
| 373 |
+
lines=15,
|
| 374 |
+
max_lines=20
|
| 375 |
+
)
|
| 376 |
+
download_file = gr.File(label="โฌ๏ธ Download Results")
|
| 377 |
|
| 378 |
# Model Analytics Tab
|
| 379 |
+
with gr.TabItem("๐ Model Analytics"):
|
| 380 |
gr.Markdown("### Model Performance Metrics")
|
| 381 |
|
| 382 |
+
if metadata and 'performance_metrics' in metadata:
|
| 383 |
+
# Performance metrics
|
| 384 |
+
metrics_data = metadata['performance_metrics']
|
| 385 |
+
metrics_df = pd.DataFrame([{
|
| 386 |
+
'Metric': k.replace('_', ' ').title(),
|
| 387 |
+
'Value': f"{v:.4f}" if isinstance(v, float) else str(v)
|
| 388 |
+
} for k, v in metrics_data.items()])
|
| 389 |
+
|
| 390 |
+
gr.Dataframe(
|
| 391 |
+
metrics_df,
|
| 392 |
+
label="๐ฏ Performance Metrics",
|
| 393 |
+
headers=['Metric', 'Value']
|
| 394 |
+
)
|
| 395 |
+
else:
|
| 396 |
+
gr.Markdown("โ ๏ธ **Performance metrics not available**")
|
| 397 |
+
|
| 398 |
+
# Feature information
|
| 399 |
+
gr.Markdown("### ๐ Model Features")
|
| 400 |
+
feature_info = pd.DataFrame({
|
| 401 |
+
'Feature Name': feature_names,
|
| 402 |
+
'Index': range(len(feature_names)),
|
| 403 |
+
'Type': ['Numerical'] * len(feature_names)
|
| 404 |
+
})
|
| 405 |
+
gr.Dataframe(feature_info, label="Feature Information")
|
| 406 |
|
| 407 |
+
# Model architecture info
|
| 408 |
+
if metadata:
|
| 409 |
+
gr.Markdown("### ๐๏ธ Model Architecture")
|
| 410 |
+
arch_info = f"""
|
| 411 |
+
- **Model Type**: {metadata.get('model_type', 'CNN')}
|
| 412 |
+
- **Input Shape**: {metadata.get('input_shape', 'N/A')}
|
| 413 |
+
- **Total Features**: {len(feature_names)}
|
| 414 |
+
- **Output Classes**: {len(metadata.get('target_classes', {}))}
|
| 415 |
+
"""
|
| 416 |
+
gr.Markdown(arch_info)
|
| 417 |
|
| 418 |
# Event handlers
|
| 419 |
predict_btn.click(
|
|
|
|
| 430 |
|
| 431 |
# Launch the app
|
| 432 |
if __name__ == "__main__":
|
| 433 |
+
demo.launch(
|
| 434 |
+
share=False,
|
| 435 |
+
server_name="0.0.0.0",
|
| 436 |
+
server_port=7860
|
| 437 |
+
)
|