Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle
|
| 5 |
+
import json
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
from tensorflow.keras.models import load_model
|
| 8 |
+
import plotly.graph_objects as go
|
| 9 |
+
import plotly.express as px
|
| 10 |
+
from plotly.subplots import make_subplots
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# Load model artifacts
|
| 14 |
+
@st.cache_resource
|
| 15 |
+
def load_model_artifacts():
|
| 16 |
+
try:
|
| 17 |
+
# Load the trained model
|
| 18 |
+
model = load_model('final_model.h5')
|
| 19 |
+
|
| 20 |
+
# Load the scaler
|
| 21 |
+
with open('scaler.pkl', 'rb') as f:
|
| 22 |
+
scaler = pickle.load(f)
|
| 23 |
+
|
| 24 |
+
# Load metadata
|
| 25 |
+
with open('metadata.json', 'r') as f:
|
| 26 |
+
metadata = json.load(f)
|
| 27 |
+
|
| 28 |
+
return model, scaler, metadata
|
| 29 |
+
except Exception as e:
|
| 30 |
+
raise Exception(f"Error loading model artifacts: {str(e)}")
|
| 31 |
+
|
| 32 |
+
# Initialize model components
|
| 33 |
+
model, scaler, metadata = load_model_artifacts()
|
| 34 |
+
feature_names = metadata['feature_names']
|
| 35 |
+
|
| 36 |
+
def predict_student_eligibility(*args):
|
| 37 |
+
"""
|
| 38 |
+
Predict student eligibility based on input features
|
| 39 |
+
"""
|
| 40 |
+
try:
|
| 41 |
+
# Create input dictionary from gradio inputs
|
| 42 |
+
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
| 43 |
+
|
| 44 |
+
# Convert to DataFrame
|
| 45 |
+
input_df = pd.DataFrame([input_data])
|
| 46 |
+
|
| 47 |
+
# Scale the input
|
| 48 |
+
input_scaled = scaler.transform(input_df)
|
| 49 |
+
|
| 50 |
+
# Reshape for CNN
|
| 51 |
+
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 52 |
+
|
| 53 |
+
# Make prediction
|
| 54 |
+
probability = model.predict(input_reshaped)[0][0]
|
| 55 |
+
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 56 |
+
confidence = abs(probability - 0.5) * 2 # Convert to confidence score
|
| 57 |
+
|
| 58 |
+
# Create prediction visualization
|
| 59 |
+
fig = create_prediction_viz(probability, prediction, input_data)
|
| 60 |
+
|
| 61 |
+
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
| 62 |
+
|
| 63 |
+
except Exception as e:
|
| 64 |
+
return f"Error: {str(e)}", "N/A", "N/A", None
|
| 65 |
+
|
| 66 |
+
def create_prediction_viz(probability, prediction, input_data):
|
| 67 |
+
"""
|
| 68 |
+
Create visualization for prediction results
|
| 69 |
+
"""
|
| 70 |
+
# Create subplots
|
| 71 |
+
fig = make_subplots(
|
| 72 |
+
rows=2, cols=2,
|
| 73 |
+
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Feature Distribution'),
|
| 74 |
+
specs=[[{"type": "indicator"}, {"type": "indicator"}],
|
| 75 |
+
[{"type": "bar"}, {"type": "histogram"}]]
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Prediction probability gauge
|
| 79 |
+
fig.add_trace(
|
| 80 |
+
go.Indicator(
|
| 81 |
+
mode="gauge+number+delta",
|
| 82 |
+
value=probability,
|
| 83 |
+
domain={'x': [0, 1], 'y': [0, 1]},
|
| 84 |
+
title={'text': "Eligibility Probability"},
|
| 85 |
+
gauge={
|
| 86 |
+
'axis': {'range': [None, 1]},
|
| 87 |
+
'bar': {'color': "darkblue"},
|
| 88 |
+
'steps': [
|
| 89 |
+
{'range': [0, 0.5], 'color': "lightgray"},
|
| 90 |
+
{'range': [0.5, 1], 'color': "lightgreen"}
|
| 91 |
+
],
|
| 92 |
+
'threshold': {
|
| 93 |
+
'line': {'color': "red", 'width': 4},
|
| 94 |
+
'thickness': 0.75,
|
| 95 |
+
'value': 0.5
|
| 96 |
+
}
|
| 97 |
+
}
|
| 98 |
+
),
|
| 99 |
+
row=1, col=1
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Confidence meter
|
| 103 |
+
confidence = abs(probability - 0.5) * 2
|
| 104 |
+
fig.add_trace(
|
| 105 |
+
go.Indicator(
|
| 106 |
+
mode="gauge+number",
|
| 107 |
+
value=confidence,
|
| 108 |
+
domain={'x': [0, 1], 'y': [0, 1]},
|
| 109 |
+
title={'text': "Prediction Confidence"},
|
| 110 |
+
gauge={
|
| 111 |
+
'axis': {'range': [None, 1]},
|
| 112 |
+
'bar': {'color': "orange"},
|
| 113 |
+
'steps': [
|
| 114 |
+
{'range': [0, 0.3], 'color': "lightcoral"},
|
| 115 |
+
{'range': [0.3, 0.7], 'color': "lightyellow"},
|
| 116 |
+
{'range': [0.7, 1], 'color': "lightgreen"}
|
| 117 |
+
]
|
| 118 |
+
}
|
| 119 |
+
),
|
| 120 |
+
row=1, col=2
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Input features bar chart
|
| 124 |
+
features = list(input_data.keys())
|
| 125 |
+
values = list(input_data.values())
|
| 126 |
+
|
| 127 |
+
fig.add_trace(
|
| 128 |
+
go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
|
| 129 |
+
row=2, col=1
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Feature distribution (example data)
|
| 133 |
+
fig.add_trace(
|
| 134 |
+
go.Histogram(x=values, nbinsx=10, name="Distribution", marker_color="lightcoral"),
|
| 135 |
+
row=2, col=2
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
fig.update_layout(
|
| 139 |
+
height=800,
|
| 140 |
+
showlegend=False,
|
| 141 |
+
title_text="Student Eligibility Prediction Dashboard",
|
| 142 |
+
title_x=0.5
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
return fig
|
| 146 |
+
|
| 147 |
+
def create_model_info():
|
| 148 |
+
"""
|
| 149 |
+
Create model information display
|
| 150 |
+
"""
|
| 151 |
+
info_html = f"""
|
| 152 |
+
<div style="padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin: 10px 0;">
|
| 153 |
+
<h3>🤖 Model Information</h3>
|
| 154 |
+
<ul>
|
| 155 |
+
<li><strong>Model Type:</strong> {metadata.get('model_type', 'CNN')}</li>
|
| 156 |
+
<li><strong>Test Accuracy:</strong> {metadata['performance_metrics']['test_accuracy']:.4f}</li>
|
| 157 |
+
<li><strong>AUC Score:</strong> {metadata['performance_metrics']['auc_score']:.4f}</li>
|
| 158 |
+
<li><strong>Creation Date:</strong> {metadata.get('creation_date', 'N/A')}</li>
|
| 159 |
+
<li><strong>Features:</strong> {len(feature_names)} input features</li>
|
| 160 |
+
</ul>
|
| 161 |
+
</div>
|
| 162 |
+
"""
|
| 163 |
+
return info_html
|
| 164 |
+
|
| 165 |
+
def batch_predict(file):
|
| 166 |
+
"""
|
| 167 |
+
Batch prediction from uploaded CSV file
|
| 168 |
+
"""
|
| 169 |
+
try:
|
| 170 |
+
# Read the uploaded file
|
| 171 |
+
df = pd.read_csv(file.name)
|
| 172 |
+
|
| 173 |
+
# Check if all required features are present
|
| 174 |
+
missing_features = set(feature_names) - set(df.columns)
|
| 175 |
+
if missing_features:
|
| 176 |
+
return f"Missing features: {missing_features}", None
|
| 177 |
+
|
| 178 |
+
# Select only the required features
|
| 179 |
+
df_features = df[feature_names]
|
| 180 |
+
|
| 181 |
+
# Scale the features
|
| 182 |
+
df_scaled = scaler.transform(df_features)
|
| 183 |
+
|
| 184 |
+
# Reshape for CNN
|
| 185 |
+
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
| 186 |
+
|
| 187 |
+
# Make predictions
|
| 188 |
+
probabilities = model.predict(df_reshaped).flatten()
|
| 189 |
+
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
| 190 |
+
|
| 191 |
+
# Create results dataframe
|
| 192 |
+
results_df = df_features.copy()
|
| 193 |
+
results_df['Probability'] = probabilities
|
| 194 |
+
results_df['Prediction'] = predictions
|
| 195 |
+
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
| 196 |
+
|
| 197 |
+
# Save results
|
| 198 |
+
output_file = "batch_predictions.csv"
|
| 199 |
+
results_df.to_csv(output_file, index=False)
|
| 200 |
+
|
| 201 |
+
# Create summary statistics
|
| 202 |
+
summary = f"""
|
| 203 |
+
Batch Prediction Summary:
|
| 204 |
+
- Total predictions: {len(results_df)}
|
| 205 |
+
- Eligible: {sum(1 for p in predictions if p == 'Eligible')}
|
| 206 |
+
- Not Eligible: {sum(1 for p in predictions if p == 'Not Eligible')}
|
| 207 |
+
- Average Probability: {np.mean(probabilities):.4f}
|
| 208 |
+
- Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
return summary, output_file
|
| 212 |
+
|
| 213 |
+
except Exception as e:
|
| 214 |
+
return f"Error processing file: {str(e)}", None
|
| 215 |
+
|
| 216 |
+
# Create Gradio interface
|
| 217 |
+
with gr.Blocks(
|
| 218 |
+
theme=gr.themes.Soft(),
|
| 219 |
+
title="Student Eligibility Prediction",
|
| 220 |
+
css="""
|
| 221 |
+
.gradio-container {
|
| 222 |
+
max-width: 1200px !important;
|
| 223 |
+
}
|
| 224 |
+
.main-header {
|
| 225 |
+
text-align: center;
|
| 226 |
+
padding: 20px;
|
| 227 |
+
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
|
| 228 |
+
color: white;
|
| 229 |
+
border-radius: 10px;
|
| 230 |
+
margin-bottom: 20px;
|
| 231 |
+
}
|
| 232 |
+
"""
|
| 233 |
+
) as demo:
|
| 234 |
+
|
| 235 |
+
# Header
|
| 236 |
+
gr.HTML("""
|
| 237 |
+
<div class="main-header">
|
| 238 |
+
<h1>🎓 Student Eligibility Prediction System</h1>
|
| 239 |
+
<p>AI-powered CNN model for predicting student eligibility with advanced analytics</p>
|
| 240 |
+
</div>
|
| 241 |
+
""")
|
| 242 |
+
|
| 243 |
+
with gr.Tabs():
|
| 244 |
+
# Single Prediction Tab
|
| 245 |
+
with gr.TabItem("Single Prediction"):
|
| 246 |
+
gr.Markdown("### Enter student information to predict eligibility")
|
| 247 |
+
|
| 248 |
+
with gr.Row():
|
| 249 |
+
with gr.Column(scale=1):
|
| 250 |
+
# Create input components dynamically based on features
|
| 251 |
+
inputs = []
|
| 252 |
+
for feature in feature_names:
|
| 253 |
+
inputs.append(
|
| 254 |
+
gr.Number(
|
| 255 |
+
label=f"{feature}",
|
| 256 |
+
value=85, # Default value
|
| 257 |
+
minimum=0,
|
| 258 |
+
maximum=100,
|
| 259 |
+
step=1
|
| 260 |
+
)
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
predict_btn = gr.Button("🔮 Predict Eligibility", variant="primary", size="lg")
|
| 264 |
+
|
| 265 |
+
with gr.Column(scale=2):
|
| 266 |
+
with gr.Row():
|
| 267 |
+
prediction_output = gr.Textbox(label="Prediction", scale=1)
|
| 268 |
+
probability_output = gr.Textbox(label="Probability", scale=1)
|
| 269 |
+
confidence_output = gr.Textbox(label="Confidence", scale=1)
|
| 270 |
+
|
| 271 |
+
prediction_plot = gr.Plot(label="Prediction Visualization")
|
| 272 |
+
|
| 273 |
+
# Model information
|
| 274 |
+
gr.HTML(create_model_info())
|
| 275 |
+
|
| 276 |
+
# Batch Prediction Tab
|
| 277 |
+
with gr.TabItem("Batch Prediction"):
|
| 278 |
+
gr.Markdown("### Upload a CSV file for batch predictions")
|
| 279 |
+
gr.Markdown(f"**Required columns:** {', '.join(feature_names)}")
|
| 280 |
+
|
| 281 |
+
with gr.Row():
|
| 282 |
+
with gr.Column():
|
| 283 |
+
file_input = gr.File(
|
| 284 |
+
label="Upload CSV File",
|
| 285 |
+
file_types=[".csv"],
|
| 286 |
+
type="file"
|
| 287 |
+
)
|
| 288 |
+
batch_predict_btn = gr.Button("📊 Process Batch", variant="primary")
|
| 289 |
+
|
| 290 |
+
with gr.Column():
|
| 291 |
+
batch_output = gr.Textbox(label="Batch Results Summary", lines=10)
|
| 292 |
+
download_file = gr.File(label="Download Results")
|
| 293 |
+
|
| 294 |
+
# Model Analytics Tab
|
| 295 |
+
with gr.TabItem("Model Analytics"):
|
| 296 |
+
gr.Markdown("### Model Performance Metrics")
|
| 297 |
+
|
| 298 |
+
# Performance metrics
|
| 299 |
+
metrics_df = pd.DataFrame([metadata['performance_metrics']])
|
| 300 |
+
gr.Dataframe(metrics_df, label="Performance Metrics")
|
| 301 |
+
|
| 302 |
+
# Feature importance (placeholder - you'd need to calculate this)
|
| 303 |
+
gr.Markdown("### Feature Names")
|
| 304 |
+
gr.Textbox(value=", ".join(feature_names), label="Model Features", lines=3)
|
| 305 |
+
|
| 306 |
+
# Event handlers
|
| 307 |
+
predict_btn.click(
|
| 308 |
+
fn=predict_student_eligibility,
|
| 309 |
+
inputs=inputs,
|
| 310 |
+
outputs=[prediction_output, probability_output, confidence_output, prediction_plot]
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
batch_predict_btn.click(
|
| 314 |
+
fn=batch_predict,
|
| 315 |
+
inputs=[file_input],
|
| 316 |
+
outputs=[batch_output, download_file]
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
# Launch the app
|
| 320 |
+
if __name__ == "__main__":
|
| 321 |
+
demo.launch(share=True)
|