Spaces:
Runtime error
Runtime error
| """ | |
| 2025.3.17 | |
| 2025.3.19 | |
| 4.50.3 | |
| 0.15.2 | |
| __UNSLOTH_VERSIONING__ | |
| """ | |
| from torch import Tensor | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from trl.trainer.reward_trainer import (Any, BaseImageProcessor, Callable, DataCollator, Dataset, EvalPrediction, FeatureExtractionMixin, FrozenInstanceError, Optional, PartialState, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RewardConfig, RewardDataCollatorWithPadding, RewardTrainer, Trainer, TrainerCallback, Union, _tokenize, compute_accuracy, decode_and_strip_padding, defaultdict, disable_dropout_in_model, gather_object, generate_model_card, get_comet_experiment_url, inspect, is_peft_available, is_wandb_available, log_table_to_comet_experiment, maybe_apply_chat_template, nested_detach, nn, os, pd, prepare_model_for_kbit_training, print_rich_table, replace, torch, wandb, warnings) | |
| import os | |
| from typing import * | |
| from dataclasses import dataclass, field | |
| from packaging.version import Version | |
| import torch | |
| import numpy as np | |
| from contextlib import nullcontext | |
| from torch.nn import functional as F | |
| from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
| torch_compile_options = { | |
| "epilogue_fusion" : True, | |
| "max_autotune" : False, | |
| "shape_padding" : True, | |
| "trace.enabled" : False, | |
| "triton.cudagraphs" : False, | |
| } | |
| def selective_log_softmax(logits, index): | |
| logits = logits.to(torch.float32) | |
| selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
| # loop to reduce peak mem consumption | |
| # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
| logsumexp_values = torch.logsumexp(logits, dim = -1) | |
| per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
| return per_token_logps | |
| class UnslothRewardConfig(RewardConfig): | |
| """ | |
| Configuration class for the [`RewardTrainer`]. | |
| Using [`~transformers.HfArgumentParser`] we can turn this class into | |
| [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
| command line. | |
| Parameters: | |
| max_length (`int` or `None`, *optional*, defaults to `1024`): | |
| Maximum length of the sequences (prompt + completion) in the batch, filters out entries that exceed the | |
| limit. This argument is required if you want to use the default data collator. | |
| disable_dropout (`bool`, *optional*, defaults to `True`): | |
| Whether to disable dropout in the model. | |
| dataset_num_proc (`int`, *optional*, defaults to `None`): | |
| Number of processes to use for processing the dataset. | |
| center_rewards_coefficient (`float`, *optional*, defaults to `None`): | |
| Coefficient to incentivize the reward model to output mean-zero rewards (proposed by | |
| https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`. | |
| remove_unused_columns (`bool`, *optional*, defaults to `False`): | |
| Whether to remove the columns that are not used by the model's forward pass. Can be `True` only if | |
| the dataset is pretokenized. | |
| """ | |
| vllm_sampling_params: Optional[Any] = field( | |
| default = None, | |
| metadata = {'help': 'vLLM SamplingParams'}, | |
| ) | |
| unsloth_num_chunks : Optional[int] = field( | |
| default = -1, | |
| metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
| ) | |
| def __init__( | |
| self, | |
| output_dir = None, | |
| overwrite_output_dir = None, | |
| do_train = False, | |
| do_eval = False, | |
| do_predict = False, | |
| eval_strategy = 'no', | |
| prediction_loss_only = False, | |
| per_device_train_batch_size = 4, | |
| per_device_eval_batch_size = 4, | |
| per_gpu_train_batch_size = None, | |
| per_gpu_eval_batch_size = None, | |
| gradient_accumulation_steps = 2, | |
| eval_accumulation_steps = 2, | |
| eval_delay = 0, | |
| torch_empty_cache_steps = 250, | |
| learning_rate = 5e-05, | |
| weight_decay = 0.01, | |
| adam_beta1 = 0.9, | |
| adam_beta2 = 0.999, | |
| adam_epsilon = 1e-08, | |
| max_grad_norm = 1.0, | |
| num_train_epochs = 3.0, | |
| max_steps = -1, | |
| lr_scheduler_type = 'linear', | |
| warmup_ratio = 0.1, | |
| warmup_steps = 0, | |
| log_level = 'passive', | |
| log_level_replica = 'warning', | |
| log_on_each_node = True, | |
| logging_dir = None, | |
| logging_strategy = 'steps', | |
| logging_first_step = False, | |
| logging_steps = 1, | |
| logging_nan_inf_filter = False, | |
| save_strategy = 'steps', | |
| save_steps = 500, | |
| save_total_limit = None, | |
| save_safetensors = True, | |
| save_on_each_node = False, | |
| save_only_model = False, | |
| restore_callback_states_from_checkpoint = False, | |
| no_cuda = False, | |
| use_cpu = False, | |
| use_mps_device = False, | |
| seed = 3407, | |
| data_seed = 3407, | |
| jit_mode_eval = False, | |
| use_ipex = False, | |
| bf16 = False, | |
| fp16 = False, | |
| fp16_opt_level = 'O1', | |
| half_precision_backend = 'auto', | |
| bf16_full_eval = False, | |
| fp16_full_eval = False, | |
| tf32 = None, | |
| local_rank = -1, | |
| ddp_backend = None, | |
| tpu_num_cores = None, | |
| tpu_metrics_debug = False, | |
| debug = '', | |
| dataloader_drop_last = False, | |
| eval_steps = None, | |
| dataloader_num_workers = 0, | |
| dataloader_prefetch_factor = None, | |
| past_index = -1, | |
| run_name = None, | |
| disable_tqdm = None, | |
| remove_unused_columns = False, | |
| label_names = None, | |
| load_best_model_at_end = False, | |
| metric_for_best_model = None, | |
| greater_is_better = None, | |
| ignore_data_skip = False, | |
| fsdp = '', | |
| fsdp_min_num_params = 0, | |
| fsdp_config = None, | |
| tp_size = 0, | |
| fsdp_transformer_layer_cls_to_wrap = None, | |
| accelerator_config = None, | |
| deepspeed = None, | |
| label_smoothing_factor = 0.0, | |
| optim = 'adamw_8bit', | |
| optim_args = None, | |
| adafactor = False, | |
| group_by_length = False, | |
| length_column_name = 'length', | |
| report_to = None, | |
| ddp_find_unused_parameters = None, | |
| ddp_bucket_cap_mb = None, | |
| ddp_broadcast_buffers = None, | |
| dataloader_pin_memory = True, | |
| dataloader_persistent_workers = False, | |
| skip_memory_metrics = True, | |
| use_legacy_prediction_loop = False, | |
| push_to_hub = False, | |
| resume_from_checkpoint = None, | |
| hub_model_id = None, | |
| hub_strategy = 'every_save', | |
| hub_token = None, | |
| hub_private_repo = None, | |
| hub_always_push = False, | |
| gradient_checkpointing = False, | |
| gradient_checkpointing_kwargs = None, | |
| include_inputs_for_metrics = False, | |
| eval_do_concat_batches = True, | |
| fp16_backend = 'auto', | |
| evaluation_strategy = None, | |
| push_to_hub_model_id = None, | |
| push_to_hub_organization = None, | |
| push_to_hub_token = None, | |
| mp_parameters = '', | |
| auto_find_batch_size = False, | |
| full_determinism = False, | |
| torchdynamo = None, | |
| ray_scope = 'last', | |
| ddp_timeout = 1800, | |
| torch_compile = False, | |
| torch_compile_backend = None, | |
| torch_compile_mode = None, | |
| dispatch_batches = None, | |
| split_batches = None, | |
| include_tokens_per_second = False, | |
| include_num_input_tokens_seen = False, | |
| neftune_noise_alpha = None, | |
| optim_target_modules = None, | |
| batch_eval_metrics = False, | |
| eval_on_start = False, | |
| use_liger_kernel = False, | |
| eval_use_gather_object = False, | |
| average_tokens_across_devices = False, | |
| max_length = 1024, | |
| disable_dropout = True, | |
| dataset_num_proc = None, | |
| center_rewards_coefficient = None, | |
| vllm_sampling_params = None, | |
| unsloth_num_chunks = -1, | |
| **kwargs, | |
| ): | |
| if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
| if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
| if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
| output_dir = 'unsloth_training_checkpoints' | |
| save_strategy = 'no' | |
| if dataset_num_proc is None: | |
| from multiprocessing import cpu_count | |
| dataset_num_proc = cpu_count() | |
| super().__init__( | |
| output_dir = output_dir, | |
| overwrite_output_dir = overwrite_output_dir, | |
| do_train = do_train, | |
| do_eval = do_eval, | |
| do_predict = do_predict, | |
| eval_strategy = eval_strategy, | |
| prediction_loss_only = prediction_loss_only, | |
| per_device_train_batch_size = per_device_train_batch_size, | |
| per_device_eval_batch_size = per_device_eval_batch_size, | |
| per_gpu_train_batch_size = per_gpu_train_batch_size, | |
| per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
| gradient_accumulation_steps = gradient_accumulation_steps, | |
| eval_accumulation_steps = eval_accumulation_steps, | |
| eval_delay = eval_delay, | |
| torch_empty_cache_steps = torch_empty_cache_steps, | |
| learning_rate = learning_rate, | |
| weight_decay = weight_decay, | |
| adam_beta1 = adam_beta1, | |
| adam_beta2 = adam_beta2, | |
| adam_epsilon = adam_epsilon, | |
| max_grad_norm = max_grad_norm, | |
| num_train_epochs = num_train_epochs, | |
| max_steps = max_steps, | |
| lr_scheduler_type = lr_scheduler_type, | |
| warmup_ratio = warmup_ratio, | |
| warmup_steps = warmup_steps, | |
| log_level = log_level, | |
| log_level_replica = log_level_replica, | |
| log_on_each_node = log_on_each_node, | |
| logging_dir = logging_dir, | |
| logging_strategy = logging_strategy, | |
| logging_first_step = logging_first_step, | |
| logging_steps = logging_steps, | |
| logging_nan_inf_filter = logging_nan_inf_filter, | |
| save_strategy = save_strategy, | |
| save_steps = save_steps, | |
| save_total_limit = save_total_limit, | |
| save_safetensors = save_safetensors, | |
| save_on_each_node = save_on_each_node, | |
| save_only_model = save_only_model, | |
| restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
| no_cuda = no_cuda, | |
| use_cpu = use_cpu, | |
| use_mps_device = use_mps_device, | |
| seed = seed, | |
| data_seed = data_seed, | |
| jit_mode_eval = jit_mode_eval, | |
| use_ipex = use_ipex, | |
| bf16 = bf16, | |
| fp16 = fp16, | |
| fp16_opt_level = fp16_opt_level, | |
| half_precision_backend = half_precision_backend, | |
| bf16_full_eval = bf16_full_eval, | |
| fp16_full_eval = fp16_full_eval, | |
| tf32 = tf32, | |
| local_rank = local_rank, | |
| ddp_backend = ddp_backend, | |
| tpu_num_cores = tpu_num_cores, | |
| tpu_metrics_debug = tpu_metrics_debug, | |
| debug = debug, | |
| dataloader_drop_last = dataloader_drop_last, | |
| eval_steps = eval_steps, | |
| dataloader_num_workers = dataloader_num_workers, | |
| dataloader_prefetch_factor = dataloader_prefetch_factor, | |
| past_index = past_index, | |
| run_name = run_name, | |
| disable_tqdm = disable_tqdm, | |
| remove_unused_columns = remove_unused_columns, | |
| label_names = label_names, | |
| load_best_model_at_end = load_best_model_at_end, | |
| metric_for_best_model = metric_for_best_model, | |
| greater_is_better = greater_is_better, | |
| ignore_data_skip = ignore_data_skip, | |
| fsdp = fsdp, | |
| fsdp_min_num_params = fsdp_min_num_params, | |
| fsdp_config = fsdp_config, | |
| tp_size = tp_size, | |
| fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
| accelerator_config = accelerator_config, | |
| deepspeed = deepspeed, | |
| label_smoothing_factor = label_smoothing_factor, | |
| optim = optim, | |
| optim_args = optim_args, | |
| adafactor = adafactor, | |
| group_by_length = group_by_length, | |
| length_column_name = length_column_name, | |
| report_to = report_to, | |
| ddp_find_unused_parameters = ddp_find_unused_parameters, | |
| ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
| ddp_broadcast_buffers = ddp_broadcast_buffers, | |
| dataloader_pin_memory = dataloader_pin_memory, | |
| dataloader_persistent_workers = dataloader_persistent_workers, | |
| skip_memory_metrics = skip_memory_metrics, | |
| use_legacy_prediction_loop = use_legacy_prediction_loop, | |
| push_to_hub = push_to_hub, | |
| resume_from_checkpoint = resume_from_checkpoint, | |
| hub_model_id = hub_model_id, | |
| hub_strategy = hub_strategy, | |
| hub_token = hub_token, | |
| hub_private_repo = hub_private_repo, | |
| hub_always_push = hub_always_push, | |
| gradient_checkpointing = gradient_checkpointing, | |
| gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
| include_inputs_for_metrics = include_inputs_for_metrics, | |
| eval_do_concat_batches = eval_do_concat_batches, | |
| fp16_backend = fp16_backend, | |
| evaluation_strategy = evaluation_strategy, | |
| push_to_hub_model_id = push_to_hub_model_id, | |
| push_to_hub_organization = push_to_hub_organization, | |
| push_to_hub_token = push_to_hub_token, | |
| mp_parameters = mp_parameters, | |
| auto_find_batch_size = auto_find_batch_size, | |
| full_determinism = full_determinism, | |
| torchdynamo = torchdynamo, | |
| ray_scope = ray_scope, | |
| ddp_timeout = ddp_timeout, | |
| torch_compile = torch_compile, | |
| torch_compile_backend = torch_compile_backend, | |
| torch_compile_mode = torch_compile_mode, | |
| dispatch_batches = dispatch_batches, | |
| split_batches = split_batches, | |
| include_tokens_per_second = include_tokens_per_second, | |
| include_num_input_tokens_seen = include_num_input_tokens_seen, | |
| neftune_noise_alpha = neftune_noise_alpha, | |
| optim_target_modules = optim_target_modules, | |
| batch_eval_metrics = batch_eval_metrics, | |
| eval_on_start = eval_on_start, | |
| use_liger_kernel = use_liger_kernel, | |
| eval_use_gather_object = eval_use_gather_object, | |
| average_tokens_across_devices = average_tokens_across_devices, | |
| max_length = max_length, | |
| disable_dropout = disable_dropout, | |
| dataset_num_proc = dataset_num_proc, | |
| center_rewards_coefficient = center_rewards_coefficient,**kwargs) | |
| self.vllm_sampling_params = vllm_sampling_params | |
| self.unsloth_num_chunks = unsloth_num_chunks | |
| pass | |
| class _UnslothRewardTrainer(Trainer): | |
| _tag_names = ["trl", "reward-trainer"] | |
| def __init__( | |
| self, | |
| model: Optional[Union[PreTrainedModel, nn.Module]] = None, | |
| args: Optional[RewardConfig] = None, | |
| data_collator: Optional[DataCollator] = None, | |
| train_dataset: Optional[Dataset] = None, | |
| eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
| processing_class: Optional[ | |
| Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
| ] = None, | |
| model_init: Optional[Callable[[], PreTrainedModel]] = None, | |
| compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, | |
| callbacks: Optional[list[TrainerCallback]] = None, | |
| optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = ( | |
| None, | |
| None, | |
| ), | |
| preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
| peft_config: Optional[dict] = None, | |
| ): | |
| """ | |
| Initialize RewardTrainer. | |
| Args: | |
| model (`transformers.PreTrainedModel`): | |
| The model to train, preferably an `AutoModelForSequenceClassification`. | |
| args (`RewardConfig`): | |
| The arguments to use for training. | |
| data_collator (`transformers.DataCollator`): | |
| The data collator to use for training. If None is specified, the default data collator (`RewardDataCollatorWithPadding`) will be used | |
| which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
| train_dataset (`datasets.Dataset`): | |
| The dataset to use for training. | |
| eval_dataset (`datasets.Dataset`): | |
| The dataset to use for evaluation. | |
| processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
| Processing class used to process the data. If provided, will be used to automatically process the inputs | |
| for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
| reuse the fine-tuned model. | |
| model_init (`Callable[[], transformers.PreTrainedModel]`): | |
| The model initializer to use for training. If None is specified, the default model initializer will be used. | |
| compute_metrics (`Callable[[transformers.EvalPrediction], dict]`, *optional* defaults to `compute_accuracy`): | |
| The metrics to use for evaluation. If no metrics are specified, the default metric (`compute_accuracy`) will be used. | |
| callbacks (`list[transformers.TrainerCallback]`): | |
| The callbacks to use for training. | |
| optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
| The optimizer and scheduler to use for training. | |
| preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
| The function to use to preprocess the logits before computing the metrics. | |
| peft_config (`dict`, defaults to `None`): | |
| The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. | |
| """ | |
| if not is_peft_available() and peft_config is not None: | |
| raise ValueError( | |
| "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" | |
| ) | |
| elif is_peft_available() and peft_config is not None: | |
| if not isinstance(model, PeftModel): | |
| if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_quantized", False): | |
| _supports_gc_kwargs = "gradient_checkpointing_kwargs" in list( | |
| inspect.signature(prepare_model_for_kbit_training).parameters | |
| ) | |
| prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} | |
| if not _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: | |
| warnings.warn( | |
| "You passed `gradient_checkpointing_kwargs` in the trainer's kwargs, but your peft version does not support it. " | |
| "please update to the latest version of peft to use `gradient_checkpointing_kwargs`.", | |
| UserWarning, | |
| ) | |
| elif _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: | |
| prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs | |
| model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
| model = model | |
| # Disable dropout in the model | |
| if args.disable_dropout: | |
| disable_dropout_in_model(model) | |
| if compute_metrics is None: | |
| compute_metrics = compute_accuracy | |
| if data_collator is None: | |
| if processing_class is None: | |
| raise ValueError( | |
| "A processing_class must be specified when using the default RewardDataCollatorWithPadding" | |
| ) | |
| max_length = args.max_length | |
| data_collator = RewardDataCollatorWithPadding(processing_class) | |
| if args.remove_unused_columns: | |
| try: # for bc before https://github.com/huggingface/transformers/pull/25435 | |
| args.remove_unused_columns = False | |
| except FrozenInstanceError: | |
| args = replace(args, remove_unused_columns=False) | |
| # warn users | |
| warnings.warn( | |
| "When using RewardDataCollatorWithPadding, you should set `remove_unused_columns=False` in your RewardConfig" | |
| " we have set it for you, but you should do it yourself in the future.", | |
| UserWarning, | |
| ) | |
| self.use_reward_data_collator = True | |
| else: | |
| self.use_reward_data_collator = False | |
| # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
| # input tensor associated with the key "input_ids". However, in Reward, the sampled data does not include the | |
| # "input_ids" key. Instead, the available keys are "input_ids_chosen" and "input_ids_rejected". As a result, | |
| # the trainer issues the warning: "Could not estimate the number of tokens of the input, floating-point | |
| # operations will not be computed." To suppress this warning, we set the "estimate_tokens" key in the model's | |
| # "warnings_issued" dictionary to True. This acts as a flag to indicate that the warning has already been | |
| # issued. | |
| model.warnings_issued["estimate_tokens"] = True | |
| if "input_ids_chosen" not in train_dataset.column_names: | |
| with PartialState().local_main_process_first(): | |
| fn_kwargs = {"tokenizer": processing_class} | |
| train_dataset = train_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}) | |
| train_dataset = train_dataset.map( | |
| _tokenize, | |
| batched=True, | |
| fn_kwargs=fn_kwargs, | |
| num_proc=args.dataset_num_proc, | |
| ) | |
| # This filter is important because otherwise you get samples that exceed the model's context length and | |
| # get truncated => noisy signal the chosen/rejected label gets lost. The downside is that the | |
| # user might get surprised if N samples are missing from training. | |
| train_dataset = train_dataset.filter( | |
| lambda x: len(x["input_ids_chosen"]) <= max_length and len(x["input_ids_rejected"]) <= max_length, | |
| num_proc=args.dataset_num_proc, | |
| ) | |
| if eval_dataset is not None: | |
| eval_dataset = eval_dataset.map( | |
| maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class} | |
| ) | |
| eval_dataset = eval_dataset.map( | |
| _tokenize, | |
| fn_kwargs=fn_kwargs, | |
| batched=True, | |
| num_proc=args.dataset_num_proc, | |
| ) | |
| # This filter is important because otherwise you get samples that exceed the model's context length and | |
| # get truncated => noisy signal the chosen/rejected label gets lost. The downside is that the | |
| # user might get surprised if N samples are missing from training. | |
| eval_dataset = eval_dataset.filter( | |
| lambda x: len(x["input_ids_chosen"]) <= max_length | |
| and len(x["input_ids_rejected"]) <= max_length, | |
| num_proc=args.dataset_num_proc, | |
| ) | |
| super().__init__( | |
| model=model, | |
| args=args, | |
| data_collator=data_collator, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| processing_class=processing_class, | |
| model_init=model_init, | |
| compute_metrics=compute_metrics, | |
| callbacks=callbacks, | |
| optimizers=optimizers, | |
| preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
| ) | |
| # Add tags for models that have been loaded with the correct transformers version | |
| if hasattr(self.model, "add_model_tags"): | |
| self.model.add_model_tags(self._tag_names) | |
| def compute_loss( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module], | |
| inputs: dict[str, Union[torch.Tensor, Any]], | |
| return_outputs=False, | |
| num_items_in_batch=None, | |
| ) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: | |
| rewards_chosen = model( | |
| input_ids=inputs["input_ids_chosen"], | |
| attention_mask=inputs["attention_mask_chosen"], | |
| return_dict=True, | |
| )["logits"] | |
| rewards_rejected = model( | |
| input_ids=inputs["input_ids_rejected"], | |
| attention_mask=inputs["attention_mask_rejected"], | |
| return_dict=True, | |
| )["logits"] | |
| # calculate loss, optionally modulate with margin | |
| if "margin" in inputs: | |
| loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean() | |
| else: | |
| loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean() | |
| if self.args.center_rewards_coefficient is not None: | |
| loss += self.args.center_rewards_coefficient * torch.mean((rewards_chosen + rewards_rejected) ** 2) | |
| if return_outputs: | |
| return loss, { | |
| "rewards_chosen": rewards_chosen, | |
| "rewards_rejected": rewards_rejected, | |
| } | |
| return loss | |
| def prediction_step( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module], | |
| inputs: dict[str, Union[torch.Tensor, Any]], | |
| prediction_loss_only: bool, | |
| ignore_keys: Optional[list[str]] = None, | |
| ) -> tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: | |
| inputs = self._prepare_inputs(inputs) | |
| if ignore_keys is None: | |
| if hasattr(self.model, "config"): | |
| ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) | |
| else: | |
| ignore_keys = [] | |
| with torch.no_grad(): | |
| loss, logits_dict = self.compute_loss(model, inputs, return_outputs=True) | |
| if prediction_loss_only: | |
| return (loss, None, None) | |
| loss = loss.detach() | |
| logits = tuple(v for k, v in logits_dict.items() if k not in ignore_keys) | |
| logits = nested_detach(logits) | |
| # Stack accepted against rejected, mean over logits | |
| # and softmax to get preferences between accepted and rejected to sum to 1 | |
| logits = torch.stack(logits).mean(dim=2).softmax(dim=0).T | |
| labels = torch.zeros(logits.shape[0]) | |
| labels = self._prepare_inputs(labels) | |
| return loss, logits, labels | |
| def evaluate(self, *args, **kwargs): | |
| num_print_samples = kwargs.pop("num_print_samples", 4) | |
| self.visualize_samples(num_print_samples) | |
| return super().evaluate(*args, **kwargs) | |
| def visualize_samples(self, num_print_samples: int): | |
| """ | |
| Visualize the reward model logits prediction | |
| Args: | |
| num_print_samples (`int`, defaults to `4`): | |
| The number of samples to print. Set to `-1` to print all samples. | |
| """ | |
| eval_dataloader = self.get_eval_dataloader() | |
| table = defaultdict(list) | |
| for _, inputs in enumerate(eval_dataloader): | |
| _, logits, _ = self.prediction_step(self.model, inputs, prediction_loss_only=False) | |
| chosen_text = decode_and_strip_padding(inputs["input_ids_chosen"], self.processing_class) | |
| rejected_text = decode_and_strip_padding(inputs["input_ids_rejected"], self.processing_class) | |
| table["chosen_text"].extend(gather_object(chosen_text)) | |
| table["rejected_text"].extend(gather_object(rejected_text)) | |
| table["logits"].extend( | |
| gather_object([[round(inner_item, 4) for inner_item in item] for item in logits.tolist()]) | |
| ) | |
| if num_print_samples >= 0 and len(table["chosen_text"]) >= num_print_samples: | |
| break | |
| df = pd.DataFrame(table) | |
| if self.accelerator.process_index == 0: | |
| print_rich_table(df[:num_print_samples]) | |
| if "wandb" in self.args.report_to: | |
| import wandb | |
| if wandb.run is not None: | |
| wandb.log({"completions": wandb.Table(dataframe=df)}) | |
| if "comet_ml" in self.args.report_to: | |
| log_table_to_comet_experiment( | |
| name="completions.csv", | |
| table=df, | |
| ) | |
| def create_model_card( | |
| self, | |
| model_name: Optional[str] = None, | |
| dataset_name: Optional[str] = None, | |
| tags: Union[str, list[str], None] = None, | |
| ): | |
| """ | |
| Creates a draft of a model card using the information available to the `Trainer`. | |
| Args: | |
| model_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the model. | |
| dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the dataset used for training. | |
| tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
| Tags to be associated with the model card. | |
| """ | |
| if not self.is_world_process_zero(): | |
| return | |
| if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
| base_model = self.model.config._name_or_path | |
| else: | |
| base_model = None | |
| tags = tags or [] | |
| if isinstance(tags, str): | |
| tags = [tags] | |
| if hasattr(self.model.config, "unsloth_version"): | |
| tags.append("unsloth") | |
| model_card = generate_model_card( | |
| base_model=base_model, | |
| model_name=model_name, | |
| hub_model_id=self.hub_model_id, | |
| dataset_name=dataset_name, | |
| tags=tags, | |
| wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
| comet_url=get_comet_experiment_url(), | |
| trainer_name="Reward", | |
| ) | |
| model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
| class UnslothRewardTrainer(_UnslothRewardTrainer): | |
| """ | |
| """ | |
| def __init__( | |
| self, | |
| model = None, | |
| args = None, | |
| data_collator = None, | |
| train_dataset = None, | |
| eval_dataset = None, | |
| processing_class = None, | |
| model_init = None, | |
| compute_metrics = None, | |
| callbacks = None, | |
| preprocess_logits_for_metrics = None, | |
| peft_config = None, | |
| **kwargs | |
| ): | |
| if args is None: args = UnslothRewardConfig() | |
| use_bf16 = getattr(args, 'bf16', False) | |
| use_fp16 = getattr(args, 'fp16', False) | |
| force_float32 = False | |
| if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
| print('Unsloth: Switching to float32 training since model cannot work with float16') | |
| force_float32 = True | |
| mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
| dtype = getattr(model.config, 'torch_dtype', None) | |
| if dtype is None: dtype = model.get_input_embeddings().dtype | |
| from unsloth_zoo.utils import _get_dtype | |
| dtype = _get_dtype(dtype) | |
| float16 = dtype == torch.float16 | |
| if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
| if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
| if force_float32: | |
| args.fp16 = False | |
| args.bf16 = False | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
| elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
| args.fp16 = float16 | |
| args.bf16 = not float16 | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
| if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
| args.eval_strategy = 'steps' | |
| if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
| ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
| if ga_steps is not None and ga_steps > 1: | |
| from transformers import __version__ as transformers_version | |
| if Version(transformers_version) <= Version('4.45.2'): | |
| print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
| '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
| if getattr(args, 'eval_strategy', 'no') != 'no': | |
| eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
| if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
| if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
| fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
| bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
| if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
| if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
| if force_float32: | |
| args.bf16_full_eval = False | |
| args.fp16_full_eval = False | |
| elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
| args.bf16_full_eval = True | |
| args.fp16_full_eval = False | |
| elif not bf16_full_eval and not fp16_full_eval: | |
| args.bf16_full_eval = args.bf16 | |
| args.fp16_full_eval = args.fp16 | |
| _output_logits = False | |
| if locals().get('compute_metrics', None) is not None: _output_logits = True | |
| if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
| if _output_logits: | |
| os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
| if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
| pass | |
| else: | |
| model_max_seq_length = getattr(model, 'max_seq_length', None) | |
| args_max_seq_length = getattr(args, 'max_seq_length', None) | |
| if args_max_seq_length is None and model_max_seq_length is not None: | |
| max_seq_length = model.max_seq_length | |
| if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
| if model is not None and hasattr(model, 'for_training'): | |
| model.for_training() | |
| if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
| if 'processing_class' in locals(): | |
| if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
| if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
| __tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
| from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) | |
| elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer) | |
| else: | |
| if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
| if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
| if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq): | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) | |
| else: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) | |
| other_metrics = [] | |
| from unsloth_zoo.logging_utils import PatchRLStatistics | |
| PatchRLStatistics('reward_trainer', other_metrics) | |
| super().__init__( | |
| model = model, | |
| args = args, | |
| data_collator = data_collator, | |
| train_dataset = train_dataset, | |
| eval_dataset = eval_dataset, | |
| processing_class = processing_class, | |
| model_init = model_init, | |
| compute_metrics = compute_metrics, | |
| callbacks = callbacks, | |
| preprocess_logits_for_metrics = preprocess_logits_for_metrics, | |
| peft_config = peft_config,**kwargs) | |
| if hasattr(self, 'neftune_hook_handle'): | |
| self.neftune_hook_handle.remove() | |
| if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
| if getattr(args, 'neftune_noise_alpha', None) is not None: | |
| model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
| pass | |
| pass | |