Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,8 +14,6 @@ def get_quantization_recipe(method, model_architecture):
|
|
| 14 |
Returns the appropriate llm-compressor recipe based on the selected method.
|
| 15 |
"""
|
| 16 |
if method == "AWQ":
|
| 17 |
-
# Mappings for Llama-like architectures. This may need to be expanded
|
| 18 |
-
# for other model types.
|
| 19 |
mappings = [
|
| 20 |
AWQMapping("re:.*input_layernorm", ["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"]),
|
| 21 |
AWQMapping("re:.*v_proj", ["re:.*o_proj"]),
|
|
@@ -31,8 +29,6 @@ def get_quantization_recipe(method, model_architecture):
|
|
| 31 |
),
|
| 32 |
]
|
| 33 |
elif method == "GPTQ":
|
| 34 |
-
# Sequential targets need to be identified based on the model architecture.
|
| 35 |
-
# This is a common pattern for Llama-like models.
|
| 36 |
sequential_target_map = {
|
| 37 |
"LlamaForCausalLM": "LlamaDecoderLayer",
|
| 38 |
"MistralForCausalLM": "MistralDecoderLayer",
|
|
@@ -49,7 +45,6 @@ def get_quantization_recipe(method, model_architecture):
|
|
| 49 |
),
|
| 50 |
]
|
| 51 |
elif method == "FP8":
|
| 52 |
-
# For MoE models, it's common to ignore the gate layers.
|
| 53 |
ignore_layers = ["lm_head"]
|
| 54 |
if "Mixtral" in model_architecture:
|
| 55 |
ignore_layers.append("re:.*block_sparse_moe.gate")
|
|
@@ -62,11 +57,15 @@ def get_quantization_recipe(method, model_architecture):
|
|
| 62 |
else:
|
| 63 |
raise ValueError(f"Unsupported quantization method: {method}")
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
"""
|
| 68 |
Compresses a model using llm-compressor and uploads it to a new HF repo.
|
| 69 |
"""
|
|
|
|
|
|
|
| 70 |
if not model_id:
|
| 71 |
raise gr.Error("Please select a model from the search bar.")
|
| 72 |
|
|
@@ -75,7 +74,6 @@ def compress_and_upload(model_id: str, quant_method: str, oauth_token: gr.OAuthT
|
|
| 75 |
|
| 76 |
try:
|
| 77 |
# --- 1. Load Model and Tokenizer ---
|
| 78 |
-
# Load model on CPU first to allow for sequential onloading
|
| 79 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map=None)
|
| 80 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 81 |
|
|
@@ -85,22 +83,21 @@ def compress_and_upload(model_id: str, quant_method: str, oauth_token: gr.OAuthT
|
|
| 85 |
recipe = get_quantization_recipe(quant_method, model.config.architectures[0])
|
| 86 |
|
| 87 |
# --- 3. Run Compression ---
|
| 88 |
-
# Using a small slice of a common dataset for calibration
|
| 89 |
oneshot(
|
| 90 |
model=model,
|
| 91 |
dataset="wikitext",
|
| 92 |
dataset_config_name="wikitext-2-raw-v1",
|
| 93 |
-
split="train[:1%]",
|
| 94 |
recipe=recipe,
|
| 95 |
save_compressed=True,
|
| 96 |
output_dir=output_dir,
|
| 97 |
max_seq_length=512,
|
| 98 |
-
num_calibration_samples=64,
|
| 99 |
)
|
| 100 |
|
| 101 |
# --- 4. Create Repo and Upload ---
|
| 102 |
-
api = HfApi(token=oauth_token
|
| 103 |
-
username = whoami(token=oauth_token
|
| 104 |
repo_id = f"{username}/{output_dir}"
|
| 105 |
|
| 106 |
repo_url = api.create_repo(repo_id=repo_id, exist_ok=True)
|
|
@@ -133,7 +130,7 @@ This conversion was performed by the `llm-compressor-my-repo` Hugging Face Space
|
|
| 133 |
For more details on the recipe used, refer to the `recipe.yaml` file in this repository.
|
| 134 |
"""
|
| 135 |
card = ModelCard(card_content)
|
| 136 |
-
card.push_to_hub(repo_id, token=oauth_token
|
| 137 |
|
| 138 |
return f'<h1>✅ Success!</h1><br/>Model compressed and saved to your new repo: <a href="{repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>'
|
| 139 |
|
|
@@ -166,9 +163,12 @@ with gr.Blocks(css="footer {display: none !important;}") as demo:
|
|
| 166 |
compress_button = gr.Button("Compress and Create Repo", variant="primary")
|
| 167 |
output_html = gr.HTML(label="Result")
|
| 168 |
|
|
|
|
|
|
|
|
|
|
| 169 |
compress_button.click(
|
| 170 |
fn=compress_and_upload,
|
| 171 |
-
inputs=[model_input, quant_method_dropdown, login_button
|
| 172 |
outputs=output_html
|
| 173 |
)
|
| 174 |
|
|
|
|
| 14 |
Returns the appropriate llm-compressor recipe based on the selected method.
|
| 15 |
"""
|
| 16 |
if method == "AWQ":
|
|
|
|
|
|
|
| 17 |
mappings = [
|
| 18 |
AWQMapping("re:.*input_layernorm", ["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"]),
|
| 19 |
AWQMapping("re:.*v_proj", ["re:.*o_proj"]),
|
|
|
|
| 29 |
),
|
| 30 |
]
|
| 31 |
elif method == "GPTQ":
|
|
|
|
|
|
|
| 32 |
sequential_target_map = {
|
| 33 |
"LlamaForCausalLM": "LlamaDecoderLayer",
|
| 34 |
"MistralForCausalLM": "MistralDecoderLayer",
|
|
|
|
| 45 |
),
|
| 46 |
]
|
| 47 |
elif method == "FP8":
|
|
|
|
| 48 |
ignore_layers = ["lm_head"]
|
| 49 |
if "Mixtral" in model_architecture:
|
| 50 |
ignore_layers.append("re:.*block_sparse_moe.gate")
|
|
|
|
| 57 |
else:
|
| 58 |
raise ValueError(f"Unsupported quantization method: {method}")
|
| 59 |
|
| 60 |
+
# --------------------------------------------------------------------------------
|
| 61 |
+
# CHANGE #1: Modified function signature to use gr.Request
|
| 62 |
+
# --------------------------------------------------------------------------------
|
| 63 |
+
def compress_and_upload(model_id: str, quant_method: str, request: gr.Request):
|
| 64 |
"""
|
| 65 |
Compresses a model using llm-compressor and uploads it to a new HF repo.
|
| 66 |
"""
|
| 67 |
+
oauth_token = request.token # Get the token from the request object
|
| 68 |
+
|
| 69 |
if not model_id:
|
| 70 |
raise gr.Error("Please select a model from the search bar.")
|
| 71 |
|
|
|
|
| 74 |
|
| 75 |
try:
|
| 76 |
# --- 1. Load Model and Tokenizer ---
|
|
|
|
| 77 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map=None)
|
| 78 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 79 |
|
|
|
|
| 83 |
recipe = get_quantization_recipe(quant_method, model.config.architectures[0])
|
| 84 |
|
| 85 |
# --- 3. Run Compression ---
|
|
|
|
| 86 |
oneshot(
|
| 87 |
model=model,
|
| 88 |
dataset="wikitext",
|
| 89 |
dataset_config_name="wikitext-2-raw-v1",
|
| 90 |
+
split="train[:1%]",
|
| 91 |
recipe=recipe,
|
| 92 |
save_compressed=True,
|
| 93 |
output_dir=output_dir,
|
| 94 |
max_seq_length=512,
|
| 95 |
+
num_calibration_samples=64,
|
| 96 |
)
|
| 97 |
|
| 98 |
# --- 4. Create Repo and Upload ---
|
| 99 |
+
api = HfApi(token=oauth_token)
|
| 100 |
+
username = whoami(token=oauth_token)["name"]
|
| 101 |
repo_id = f"{username}/{output_dir}"
|
| 102 |
|
| 103 |
repo_url = api.create_repo(repo_id=repo_id, exist_ok=True)
|
|
|
|
| 130 |
For more details on the recipe used, refer to the `recipe.yaml` file in this repository.
|
| 131 |
"""
|
| 132 |
card = ModelCard(card_content)
|
| 133 |
+
card.push_to_hub(repo_id, token=oauth_token)
|
| 134 |
|
| 135 |
return f'<h1>✅ Success!</h1><br/>Model compressed and saved to your new repo: <a href="{repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>'
|
| 136 |
|
|
|
|
| 163 |
compress_button = gr.Button("Compress and Create Repo", variant="primary")
|
| 164 |
output_html = gr.HTML(label="Result")
|
| 165 |
|
| 166 |
+
# --------------------------------------------------------------------------------
|
| 167 |
+
# CHANGE #2: Removed `login_button` from the inputs list
|
| 168 |
+
# --------------------------------------------------------------------------------
|
| 169 |
compress_button.click(
|
| 170 |
fn=compress_and_upload,
|
| 171 |
+
inputs=[model_input, quant_method_dropdown], # login_button removed
|
| 172 |
outputs=output_html
|
| 173 |
)
|
| 174 |
|