File size: 20,998 Bytes
411ab9e
 
 
d371d24
411ab9e
 
 
98be1e8
 
 
 
 
 
00936a3
411ab9e
 
 
d371d24
411ab9e
 
 
00936a3
411ab9e
 
00936a3
222c0be
00936a3
222c0be
00936a3
240d878
 
00936a3
240d878
 
 
 
 
 
 
 
 
 
 
00936a3
240d878
 
 
 
 
00936a3
 
 
 
 
 
 
 
 
 
411ab9e
 
 
 
 
00936a3
411ab9e
222c0be
 
 
 
 
 
 
411ab9e
00936a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411ab9e
00936a3
 
 
 
 
222c0be
00936a3
 
222c0be
00936a3
411ab9e
 
 
 
d371d24
00936a3
 
 
d371d24
00936a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411ab9e
 
 
d7b2698
98be1e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7b2698
 
 
98be1e8
d7b2698
 
411ab9e
 
 
 
 
d371d24
a7bfa27
 
d371d24
a7bfa27
411ab9e
b1f5ebf
a7bfa27
 
411ab9e
 
98be1e8
 
 
a17d990
98be1e8
a17d990
 
 
98be1e8
 
 
 
a17d990
 
 
 
d371d24
411ab9e
 
 
d371d24
 
411ab9e
 
 
00936a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240d878
 
 
00936a3
 
240d878
00936a3
 
 
 
 
 
 
 
240d878
 
00936a3
 
240d878
00936a3
 
 
 
 
 
411ab9e
 
a7bfa27
411ab9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bfa27
411ab9e
 
 
d371d24
 
411ab9e
 
 
 
d371d24
 
411ab9e
d371d24
 
 
 
 
 
a17d990
9e00411
 
 
d371d24
 
 
 
 
 
 
 
240d878
00936a3
 
d371d24
 
98be1e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d371d24
 
 
 
 
98be1e8
d371d24
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import gradio as gr
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch

from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier, GPTQModifier
from llmcompressor.modifiers.awq import AWQModifier, AWQMapping
from transformers import (
    AutoModelForCausalLM,
    Qwen2_5_VLForConditionalGeneration,
    AutoConfig,
    AutoModel
)
import torch

# --- Helper Functions ---


def get_quantization_recipe(method, model_architecture):
    """
    Returns the appropriate llm-compressor recipe based on the selected method.
    Updated to support Qwen2_5_VLForConditionalGeneration architecture and more quantization methods.
    """
    if method == "AWQ":
        if model_architecture not in ["LlamaForCausalLM", "Qwen2_5_VLForConditionalGeneration"]:
            raise ValueError(
                f"AWQ quantization is only supported for LlamaForCausalLM and Qwen2_5_VLForConditionalGeneration architectures, got {model_architecture}"
            )

        # AWQ is fundamentally incompatible with Qwen2.5-VL models due to conflicts with
        # the complex 3D rotary positional embedding system used for multimodal processing
        if model_architecture == "Qwen2_5_VLForConditionalGeneration":
            raise ValueError(
                f"AWQ quantization is not compatible with {model_architecture} architecture "
                "due to fundamental conflicts with complex 3D rotary positional embeddings. "
                "This quantization method modifies weights in a way that breaks the multimodal "
                "positional encoding system. Please use GPTQ, W4A16, W8A16, W8A8_INT8, W8A8_FP8, or FP8 methods instead."
            )
        else:  # LlamaForCausalLM and other supported architectures
            # Create AWQ mappings for Llama models
            mappings = [
                AWQMapping(
                    "re:.*input_layernorm", ["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"]
                ),
                AWQMapping("re:.*v_proj", ["re:.*o_proj"]),
                AWQMapping(
                    "re:.*post_attention_layernorm", ["re:.*gate_proj", "re:.*up_proj"]
                ),
                AWQMapping("re:.*up_proj", ["re:.*down_proj"]),
            ]
            return [
                AWQModifier(
                    ignore=["lm_head"],
                    scheme="W4A16_ASYM",
                    targets=["Linear"],
                    mappings=mappings,
                ),
            ]

    elif method == "GPTQ":
        sequential_target_map = {
            "LlamaForCausalLM": "LlamaDecoderLayer",
            "MistralForCausalLM": "MistralDecoderLayer",
            "MixtralForCausalLM": "MixtralDecoderLayer",
            "Qwen2_5_VLForConditionalGeneration": "Qwen2_5_VLDecoderLayer",  # Add Qwen2.5-VL support
        }
        sequential_target = sequential_target_map.get(model_architecture)
        if sequential_target is None:
            raise ValueError(
                f"GPTQ quantization is not supported for {model_architecture} architecture. "
                "Supported architectures are: "
                f"{', '.join(sequential_target_map.keys())}"
            )

        if model_architecture == "Qwen2_5_VLForConditionalGeneration":
            return [
                GPTQModifier(
                    targets="Linear",
                    scheme="W4A16",
                    sequential_targets=[sequential_target],
                    ignore=["lm_head", "re:visual.*", "re:model.visual.*"],  # Ignore visual components
                ),
            ]
        else:
            return [
                GPTQModifier(
                    targets="Linear",
                    scheme="W4A16",
                    sequential_targets=[sequential_target],
                    ignore=["re:.*lm_head"],
                ),
            ]
    elif method in ["W4A16", "W8A16", "W8A8_INT8", "W8A8_FP8", "FP8"]:
        # All these methods use the QuantizationModifier
        if model_architecture not in ["LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM", "Qwen2_5_VLForConditionalGeneration"]:
            raise ValueError(
                f"Quantization method {method} is not supported for {model_architecture} architecture. "
                "Supported architectures are: LlamaForCausalLM, MistralForCausalLM, MixtralForCausalLM, Qwen2_5_VLForConditionalGeneration"
            )

        # Map method names to actual schemes (correct names for llmcompressor)
        scheme_map = {
            "W4A16": "W4A16",
            "W8A16": "W8A16",
            "W8A8_INT8": "W8A8",  # Use the correct scheme name
            "W8A8_FP8": "W8A8",  # Both use W8A8 but with different dtypes
            "FP8": "FP8"
        }

        ignore_layers = ["lm_head"]
        if "Mixtral" in model_architecture:
            ignore_layers.append("re:.*block_sparse_moe.gate")
        elif "Qwen2_5_VL" in model_architecture:
            ignore_layers.extend(["re:visual.*", "re:model.visual.*"])  # Ignore visual components for Qwen2.5-VL

        # For methods that support sequential onloading for Qwen2.5-VL, we use GPTQModifier with sequential_targets
        if model_architecture == "Qwen2_5_VLForConditionalGeneration" and method in ["W4A16"]:
            return [
                GPTQModifier(
                    targets="Linear",
                    scheme=scheme_map[method],
                    sequential_targets=["Qwen2_5_VLDecoderLayer"],  # Sequential onloading for memory efficiency
                    ignore=ignore_layers,
                ),
            ]
        else:
            return [QuantizationModifier(
                scheme=scheme_map[method],
                targets="Linear",
                ignore=ignore_layers
            )]

    elif method == "SmoothQuant":
        if model_architecture not in ["LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM"]:
            raise ValueError(
                f"SmoothQuant is not supported for {model_architecture} architecture. "
                "Supported architectures are: LlamaForCausalLM, MistralForCausalLM, MixtralForCausalLM"
            )

        ignore_layers = ["lm_head"]
        if "Mixtral" in model_architecture:
            ignore_layers.append("re:.*block_sparse_moe.gate")

        return [QuantizationModifier(
            scheme="W8A8",  # SmoothQuant typically uses W8A8
            targets="Linear",
            ignore=ignore_layers
        )]

    elif method == "SparseGPT":
        if model_architecture not in ["LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM"]:
            raise ValueError(
                f"SparseGPT is not supported for {model_architecture} architecture. "
                "Supported architectures are: LlamaForCausalLM, MistralForCausalLM, MixtralForCausalLM"
            )

        ignore_layers = ["lm_head"]
        if "Mixtral" in model_architecture:
            ignore_layers.append("re:.*block_sparse_moe.gate")

        return [
            GPTQModifier(  # SparseGPT uses GPTQ algorithm with different parameters
                targets="Linear",
                scheme="W4A16",  # Default scheme for sparsity
                ignore=ignore_layers,
            )
        ]

    else:
        raise ValueError(f"Unsupported quantization method: {method}")


def get_model_class_by_name(model_type_name):
    """
    Returns the appropriate model class based on the user-selected model type name.
    """
    if model_type_name == "CausalLM (standard text generation)":
        return AutoModelForCausalLM
    elif model_type_name == "Qwen2_5_VLForConditionalGeneration (Qwen2.5-VL)":
        from transformers import Qwen2_5_VLForConditionalGeneration
        return Qwen2_5_VLForConditionalGeneration
    elif model_type_name == "Qwen2ForCausalLM (Qwen2)":
        from transformers import Qwen2ForCausalLM
        return Qwen2ForCausalLM
    elif model_type_name == "LlamaForCausalLM (Llama, Llama2, Llama3)":
        from transformers import LlamaForCausalLM
        return LlamaForCausalLM
    elif model_type_name == "MistralForCausalLM (Mistral, Mixtral)":
        from transformers import MistralForCausalLM
        return MistralForCausalLM
    elif model_type_name == "GemmaForCausalLM (Gemma)":
        from transformers import GemmaForCausalLM
        return GemmaForCausalLM
    elif model_type_name == "Gemma2ForCausalLM (Gemma2)":
        from transformers import Gemma2ForCausalLM
        return Gemma2ForCausalLM
    elif model_type_name == "PhiForCausalLM (Phi, Phi2)":
        from transformers import PhiForCausalLM
        return PhiForCausalLM
    elif model_type_name == "Phi3ForCausalLM (Phi3)":
        from transformers import Phi3ForCausalLM
        return Phi3ForCausalLM
    elif model_type_name == "FalconForCausalLM (Falcon)":
        from transformers import FalconForCausalLM
        return FalconForCausalLM
    elif model_type_name == "MptForCausalLM (MPT)":
        from transformers import MptForCausalLM
        return MptForCausalLM
    elif model_type_name == "GPT2LMHeadModel (GPT2)":
        from transformers import GPT2LMHeadModel
        return GPT2LMHeadModel
    elif model_type_name == "GPTNeoXForCausalLM (GPT-NeoX)":
        from transformers import GPTNeoXForCausalLM
        return GPTNeoXForCausalLM
    elif model_type_name == "GPTJForCausalLM (GPT-J)":
        from transformers import GPTJForCausalLM
        return GPTJForCausalLM
    else:
        # Default case - should not happen if all options are handled
        return AutoModelForCausalLM


def determine_model_class(model_id: str, token: str, manual_model_type: str = None):
    """
    Determines the appropriate model class based on either:
    1. Automatic detection from model config, or
    2. User selection (if provided)
    """
    # If user specified a manual model type and it's not auto-detect, use that
    if manual_model_type and manual_model_type != "Auto-detect (recommended)":
        return get_model_class_by_name(manual_model_type)

    # Otherwise, try automatic detection
    try:
        # Load the model configuration to determine the appropriate class
        config = AutoConfig.from_pretrained(model_id, token=token, trust_remote_code=True)

        # Check if model type is in the configuration
        if hasattr(config, 'model_type'):
            model_type = config.model_type.lower()

            # Handle different model types based on their config
            if model_type in ['qwen2_5_vl', 'qwen2-vl', 'qwen2vl']:
                from transformers import Qwen2_5_VLForConditionalGeneration
                return Qwen2_5_VLForConditionalGeneration
            elif model_type in ['qwen2', 'qwen', 'qwen2.5']:
                from transformers import Qwen2ForCausalLM
                return Qwen2ForCausalLM
            elif model_type in ['llama', 'llama2', 'llama3', 'llama3.1', 'llama3.2', 'llama3.3']:
                from transformers import LlamaForCausalLM
                return LlamaForCausalLM
            elif model_type in ['mistral', 'mixtral']:
                from transformers import MistralForCausalLM
                return MistralForCausalLM
            elif model_type in ['gemma', 'gemma2']:
                from transformers import GemmaForCausalLM, Gemma2ForCausalLM
                return Gemma2ForCausalLM if 'gemma2' in model_type else GemmaForCausalLM
            elif model_type in ['phi', 'phi2', 'phi3', 'phi3.5']:
                from transformers import PhiForCausalLM, Phi3ForCausalLM
                return Phi3ForCausalLM if 'phi3' in model_type else PhiForCausalLM
            elif model_type in ['falcon']:
                from transformers import FalconForCausalLM
                return FalconForCausalLM
            elif model_type in ['mpt']:
                from transformers import MptForCausalLM
                return MptForCausalLM
            elif model_type in ['gpt2', 'gpt', 'gpt_neox', 'gptj']:
                from transformers import GPT2LMHeadModel, GPTNeoXForCausalLM, GPTJForCausalLM
                if 'neox' in model_type:
                    return GPTNeoXForCausalLM
                elif 'j' in model_type:
                    return GPTJForCausalLM
                else:
                    return GPT2LMHeadModel
            else:
                # Default to AutoModelForCausalLM for standard text generation models
                return AutoModelForCausalLM
        else:
            # If no model type is specified in config, default to AutoModelForCausalLM
            return AutoModelForCausalLM
    except Exception as e:
        print(f"Could not determine model class from config: {e}")
        return AutoModelForCausalLM  # fallback to default


def compress_and_upload(
    model_id: str,
    quant_method: str,
    model_type_selection: str,  # New parameter for manual model type selection
    oauth_token: gr.OAuthToken | None,
):
    """
    Compresses a model using llm-compressor and uploads it to a new HF repo.
    """
    if not model_id:
        raise gr.Error("Please select a model from the search bar.")

    if oauth_token is None:
        raise gr.Error("Authentication error. Please log in to continue.")

    token = oauth_token.token

    try:
        # Use the provided token for all hub interactions
        username = whoami(token=token)["name"]

        # --- 1. Load Model and Tokenizer ---
        # Determine the appropriate model class based on the model's configuration or user selection
        model_class = determine_model_class(model_id, token, model_type_selection)

        try:
            model = model_class.from_pretrained(
                model_id, torch_dtype="auto", device_map=None, token=token, trust_remote_code=True
            )
        except ValueError as e:
            if "Unrecognized configuration class" in str(e):
                # If automatic detection fails, fall back to AutoModel and let transformers handle it
                print(f"Automatic model class detection failed, falling back to AutoModel: {e}")
                model = AutoModel.from_pretrained(
                    model_id, torch_dtype="auto", device_map=None, token=token, trust_remote_code=True
                )
            else:
                raise

        output_dir = f"{model_id.split('/')[-1]}-{quant_method}"

        # --- 2. Get Recipe ---
        if not model.config.architectures:
            raise gr.Error("Could not determine model architecture.")
        recipe = get_quantization_recipe(quant_method, model.config.architectures[0])

        # --- 3. Run Compression ---
        # Determine if this is a Qwen2.5-VL model to use appropriate dataset and data collator
        if model.config.architectures and "Qwen2_5_VLForConditionalGeneration" in model.config.architectures[0]:
            # Use a multimodal dataset and data collator for Qwen2.5-VL models
            try:
                from datasets import load_dataset
                # Use a small subset of flickr30k for calibration if available
                ds = load_dataset("lmms-lab/flickr30k", split="test[:64]")
                ds = ds.shuffle(seed=42)

                # Define a data collator for multimodal inputs
                def qwen2_5_vl_data_collator(batch):
                    assert len(batch) == 1
                    return {key: torch.tensor(value) if isinstance(value, (list, int, float)) else value
                            for key, value in batch[0].items()}

                oneshot(
                    model=model,
                    dataset=ds,
                    recipe=recipe,
                    save_compressed=True,
                    output_dir=output_dir,
                    max_seq_length=2048,  # Increased for multimodal models
                    num_calibration_samples=64,
                    data_collator=qwen2_5_vl_data_collator,
                )
            except Exception as e:
                print(f"Could not load multimodal dataset, falling back to text-only: {e}")
                # Fall back to text-only dataset - load it properly and pass as dataset
                from datasets import load_dataset
                fallback_ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train[:1%]")
                oneshot(
                    model=model,
                    dataset=fallback_ds,
                    recipe=recipe,
                    save_compressed=True,
                    output_dir=output_dir,
                    max_seq_length=512,
                    num_calibration_samples=64,
                )
        else:
            # For non-multimodal models, use the original approach
            from datasets import load_dataset
            ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train[:1%]")
            oneshot(
                model=model,
                dataset=ds,
                recipe=recipe,
                save_compressed=True,
                output_dir=output_dir,
                max_seq_length=512,
                num_calibration_samples=64,
            )

        # --- 4. Create Repo and Upload ---
        api = HfApi(token=token)
        repo_id = f"{username}/{output_dir}"

        repo_url = api.create_repo(repo_id=repo_id, exist_ok=True)

        api.upload_folder(
            folder_path=output_dir,
            repo_id=repo_id,
            commit_message=f"Upload {quant_method} compressed model",
        )

        # --- 5. Create Model Card ---
        card_content = f"""
---
license: apache-2.0
base_model: {model_id}
tags:
- llm-compressor
- quantization
- {quant_method.lower()}
---

# {quant_method} Compressed Model: {repo_id}

This model was compressed from [`{model_id}`](https://huggingface.co/{model_id}) using the [vLLM LLM-Compressor](https://github.com/vllm-project/llm-compressor) library.

This conversion was performed by the `llm-compressor-my-repo` Hugging Face Space.

## Quantization Method: {quant_method}

For more details on the recipe used, refer to the `recipe.yaml` file in this repository.
"""
        card = ModelCard(card_content)
        card.push_to_hub(repo_id, token=token)

        return f'<h1>✅ Success!</h1><br/>Model compressed and saved to your new repo: <a href="{repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>'

    except gr.Error as e:
        raise e
    except Exception as e:
        error_message = str(e).replace("\n", "<br/>")
        return f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{error_message}</pre>'



# --- Gradio Interface ---
def build_gradio_app():
    with gr.Blocks(css="footer {display: none !important;}") as demo:
        gr.Markdown("# LLM-Compressor My Repo")
        gr.Markdown(
            "Log in, choose a model, select a quantization method, and this Space will create a new compressed model repository on your Hugging Face profile."
        )

        with gr.Row():
            login_button = gr.LoginButton(min_width=250)  # noqa: F841

        gr.Markdown("### 1. Select a Model from the Hugging Face Hub")
        model_input = HuggingfaceHubSearch(
            label="Search for a Model",
            search_type="model",
        )

        gr.Markdown("### 2. Choose a Quantization Method")
        quant_method_dropdown = gr.Dropdown(
            ["W4A16", "W8A16", "W8A8_INT8", "W8A8_FP8", "GPTQ", "FP8", "AWQ", "SmoothQuant", "SparseGPT"],
            label="Quantization Method",
            value="W4A16"
        )

        gr.Markdown("### 3. Model Type (Auto-detected, but you can override if needed)")
        model_type_dropdown = gr.Dropdown(
            choices=[
                "Auto-detect (recommended)",
                "CausalLM (standard text generation)",
                "Qwen2_5_VLForConditionalGeneration (Qwen2.5-VL)",
                "Qwen2ForCausalLM (Qwen2)",
                "LlamaForCausalLM (Llama, Llama2, Llama3)",
                "MistralForCausalLM (Mistral, Mixtral)",
                "GemmaForCausalLM (Gemma)",
                "Gemma2ForCausalLM (Gemma2)",
                "PhiForCausalLM (Phi, Phi2)",
                "Phi3ForCausalLM (Phi3)",
                "FalconForCausalLM (Falcon)",
                "MptForCausalLM (MPT)",
                "GPT2LMHeadModel (GPT2)",
                "GPTNeoXForCausalLM (GPT-NeoX)",
                "GPTJForCausalLM (GPT-J)"
            ],
            label="Model Type",
            value="Auto-detect (recommended)"
        )

        compress_button = gr.Button("Compress and Create Repo", variant="primary")
        output_html = gr.HTML(label="Result")

        compress_button.click(
            fn=compress_and_upload,
            inputs=[model_input, quant_method_dropdown, model_type_dropdown],
            outputs=output_html,
        )
    return demo

def main():
    demo = build_gradio_app()
    demo.queue(max_size=5).launch()

if __name__ == "__main__":
    main()