Spaces:
Running
Running
File size: 28,731 Bytes
411ab9e d371d24 411ab9e 98be1e8 00936a3 2ce1bf6 411ab9e d371d24 2ce1bf6 411ab9e 00936a3 411ab9e 00936a3 222c0be 00936a3 222c0be 00936a3 240d878 00936a3 240d878 00936a3 240d878 00936a3 411ab9e 00936a3 411ab9e 222c0be 411ab9e 00936a3 411ab9e 00936a3 222c0be 00936a3 222c0be 00936a3 411ab9e d371d24 00936a3 d371d24 00936a3 411ab9e d7b2698 98be1e8 d7b2698 98be1e8 d7b2698 2ce1bf6 d7b2698 411ab9e d371d24 a7bfa27 d371d24 a7bfa27 411ab9e b1f5ebf a7bfa27 411ab9e 2ce1bf6 98be1e8 a17d990 2ce1bf6 c2bdc87 2ce1bf6 a17d990 98be1e8 2ce1bf6 c2bdc87 2ce1bf6 c2bdc87 a17d990 d371d24 411ab9e 2ce1bf6 d371d24 2ce1bf6 411ab9e 2ce1bf6 411ab9e 2ce1bf6 00936a3 2ce1bf6 00936a3 2ce1bf6 00936a3 2ce1bf6 00936a3 2ce1bf6 00936a3 2ce1bf6 240d878 2ce1bf6 00936a3 240d878 00936a3 2ce1bf6 00936a3 240d878 2ce1bf6 240d878 2ce1bf6 00936a3 240d878 00936a3 2ce1bf6 411ab9e 2ce1bf6 a7bfa27 411ab9e 2ce1bf6 411ab9e 2ce1bf6 411ab9e 2ce1bf6 411ab9e 2ce1bf6 411ab9e a7bfa27 411ab9e 2ce1bf6 411ab9e d371d24 411ab9e d371d24 411ab9e d371d24 a17d990 9e00411 d371d24 240d878 00936a3 d371d24 98be1e8 d371d24 2ce1bf6 d371d24 98be1e8 d371d24 2ce1bf6 d371d24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
import gradio as gr
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier, GPTQModifier
from llmcompressor.modifiers.awq import AWQModifier, AWQMapping
from transformers import (
AutoModelForCausalLM,
Qwen2_5_VLForConditionalGeneration,
AutoConfig,
AutoModel
)
import torch
import time
import threading
from typing import Callable, Optional
# --- Helper Functions ---
class ProgressTracker:
"""Class to track progress and send updates to the UI"""
def __init__(self):
self.current_stage = 0
self.total_stages = 5 # Load model, Get recipe, Run compression, Create repo, Create model card
self.stage_descriptions = [
"Loading model and tokenizer...",
"Preparing quantization recipe...",
"Running quantization compression...",
"Creating Hugging Face repository and uploading...",
"Generating model card..."
]
self.progress = 0.0
self.status = ""
self.lock = threading.Lock()
def update_stage(self, stage_idx: int, description: str = ""):
with self.lock:
self.current_stage = stage_idx
self.status = description or self.stage_descriptions[stage_idx]
# Calculate progress (each stage is 20% of total)
self.progress = min(100.0, (stage_idx / self.total_stages) * 100)
def update_progress(self, current: float, total: float, description: str = ""):
with self.lock:
# Calculate progress within the current stage
stage_progress = (current / total) * (100.0 / self.total_stages)
self.progress = min(100.0, ((self.current_stage / self.total_stages) * 100) + stage_progress)
if description:
self.status = description
def get_state(self):
with self.lock:
return {
"progress": self.progress,
"status": self.status,
"current_stage": self.current_stage + 1, # 1-indexed for display
"total_stages": self.total_stages
}
def get_quantization_recipe(method, model_architecture):
"""
Returns the appropriate llm-compressor recipe based on the selected method.
Updated to support Qwen2_5_VLForConditionalGeneration architecture and more quantization methods.
"""
if method == "AWQ":
if model_architecture not in ["LlamaForCausalLM", "Qwen2_5_VLForConditionalGeneration"]:
raise ValueError(
f"AWQ quantization is only supported for LlamaForCausalLM and Qwen2_5_VLForConditionalGeneration architectures, got {model_architecture}"
)
# AWQ is fundamentally incompatible with Qwen2.5-VL models due to conflicts with
# the complex 3D rotary positional embedding system used for multimodal processing
if model_architecture == "Qwen2_5_VLForConditionalGeneration":
raise ValueError(
f"AWQ quantization is not compatible with {model_architecture} architecture "
"due to fundamental conflicts with complex 3D rotary positional embeddings. "
"This quantization method modifies weights in a way that breaks the multimodal "
"positional encoding system. Please use GPTQ, W4A16, W8A16, W8A8_INT8, W8A8_FP8, or FP8 methods instead."
)
else: # LlamaForCausalLM and other supported architectures
# Create AWQ mappings for Llama models
mappings = [
AWQMapping(
"re:.*input_layernorm", ["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"]
),
AWQMapping("re:.*v_proj", ["re:.*o_proj"]),
AWQMapping(
"re:.*post_attention_layernorm", ["re:.*gate_proj", "re:.*up_proj"]
),
AWQMapping("re:.*up_proj", ["re:.*down_proj"]),
]
return [
AWQModifier(
ignore=["lm_head"],
scheme="W4A16_ASYM",
targets=["Linear"],
mappings=mappings,
),
]
elif method == "GPTQ":
sequential_target_map = {
"LlamaForCausalLM": "LlamaDecoderLayer",
"MistralForCausalLM": "MistralDecoderLayer",
"MixtralForCausalLM": "MixtralDecoderLayer",
"Qwen2_5_VLForConditionalGeneration": "Qwen2_5_VLDecoderLayer", # Add Qwen2.5-VL support
}
sequential_target = sequential_target_map.get(model_architecture)
if sequential_target is None:
raise ValueError(
f"GPTQ quantization is not supported for {model_architecture} architecture. "
"Supported architectures are: "
f"{', '.join(sequential_target_map.keys())}"
)
if model_architecture == "Qwen2_5_VLForConditionalGeneration":
return [
GPTQModifier(
targets="Linear",
scheme="W4A16",
sequential_targets=[sequential_target],
ignore=["lm_head", "re:visual.*", "re:model.visual.*"], # Ignore visual components
),
]
else:
return [
GPTQModifier(
targets="Linear",
scheme="W4A16",
sequential_targets=[sequential_target],
ignore=["re:.*lm_head"],
),
]
elif method in ["W4A16", "W8A16", "W8A8_INT8", "W8A8_FP8", "FP8"]:
# All these methods use the QuantizationModifier
if model_architecture not in ["LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM", "Qwen2_5_VLForConditionalGeneration"]:
raise ValueError(
f"Quantization method {method} is not supported for {model_architecture} architecture. "
"Supported architectures are: LlamaForCausalLM, MistralForCausalLM, MixtralForCausalLM, Qwen2_5_VLForConditionalGeneration"
)
# Map method names to actual schemes (correct names for llmcompressor)
scheme_map = {
"W4A16": "W4A16",
"W8A16": "W8A16",
"W8A8_INT8": "W8A8", # Use the correct scheme name
"W8A8_FP8": "W8A8", # Both use W8A8 but with different dtypes
"FP8": "FP8"
}
ignore_layers = ["lm_head"]
if "Mixtral" in model_architecture:
ignore_layers.append("re:.*block_sparse_moe.gate")
elif "Qwen2_5_VL" in model_architecture:
ignore_layers.extend(["re:visual.*", "re:model.visual.*"]) # Ignore visual components for Qwen2.5-VL
# For methods that support sequential onloading for Qwen2.5-VL, we use GPTQModifier with sequential_targets
if model_architecture == "Qwen2_5_VLForConditionalGeneration" and method in ["W4A16"]:
return [
GPTQModifier(
targets="Linear",
scheme=scheme_map[method],
sequential_targets=["Qwen2_5_VLDecoderLayer"], # Sequential onloading for memory efficiency
ignore=ignore_layers,
),
]
else:
return [QuantizationModifier(
scheme=scheme_map[method],
targets="Linear",
ignore=ignore_layers
)]
elif method == "SmoothQuant":
if model_architecture not in ["LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM"]:
raise ValueError(
f"SmoothQuant is not supported for {model_architecture} architecture. "
"Supported architectures are: LlamaForCausalLM, MistralForCausalLM, MixtralForCausalLM"
)
ignore_layers = ["lm_head"]
if "Mixtral" in model_architecture:
ignore_layers.append("re:.*block_sparse_moe.gate")
return [QuantizationModifier(
scheme="W8A8", # SmoothQuant typically uses W8A8
targets="Linear",
ignore=ignore_layers
)]
elif method == "SparseGPT":
if model_architecture not in ["LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM"]:
raise ValueError(
f"SparseGPT is not supported for {model_architecture} architecture. "
"Supported architectures are: LlamaForCausalLM, MistralForCausalLM, MixtralForCausalLM"
)
ignore_layers = ["lm_head"]
if "Mixtral" in model_architecture:
ignore_layers.append("re:.*block_sparse_moe.gate")
return [
GPTQModifier( # SparseGPT uses GPTQ algorithm with different parameters
targets="Linear",
scheme="W4A16", # Default scheme for sparsity
ignore=ignore_layers,
)
]
else:
raise ValueError(f"Unsupported quantization method: {method}")
def get_model_class_by_name(model_type_name):
"""
Returns the appropriate model class based on the user-selected model type name.
"""
if model_type_name == "CausalLM (standard text generation)":
return AutoModelForCausalLM
elif model_type_name == "Qwen2_5_VLForConditionalGeneration (Qwen2.5-VL)":
from transformers import Qwen2_5_VLForConditionalGeneration
return Qwen2_5_VLForConditionalGeneration
elif model_type_name == "Qwen2ForCausalLM (Qwen2)":
from transformers import Qwen2ForCausalLM
return Qwen2ForCausalLM
elif model_type_name == "LlamaForCausalLM (Llama, Llama2, Llama3)":
from transformers import LlamaForCausalLM
return LlamaForCausalLM
elif model_type_name == "MistralForCausalLM (Mistral, Mixtral)":
from transformers import MistralForCausalLM
return MistralForCausalLM
elif model_type_name == "GemmaForCausalLM (Gemma)":
from transformers import GemmaForCausalLM
return GemmaForCausalLM
elif model_type_name == "Gemma2ForCausalLM (Gemma2)":
from transformers import Gemma2ForCausalLM
return Gemma2ForCausalLM
elif model_type_name == "PhiForCausalLM (Phi, Phi2)":
from transformers import PhiForCausalLM
return PhiForCausalLM
elif model_type_name == "Phi3ForCausalLM (Phi3)":
from transformers import Phi3ForCausalLM
return Phi3ForCausalLM
elif model_type_name == "FalconForCausalLM (Falcon)":
from transformers import FalconForCausalLM
return FalconForCausalLM
elif model_type_name == "MptForCausalLM (MPT)":
from transformers import MptForCausalLM
return MptForCausalLM
elif model_type_name == "GPT2LMHeadModel (GPT2)":
from transformers import GPT2LMHeadModel
return GPT2LMHeadModel
elif model_type_name == "GPTNeoXForCausalLM (GPT-NeoX)":
from transformers import GPTNeoXForCausalLM
return GPTNeoXForCausalLM
elif model_type_name == "GPTJForCausalLM (GPT-J)":
from transformers import GPTJForCausalLM
return GPTJForCausalLM
else:
# Default case - should not happen if all options are handled
return AutoModelForCausalLM
def determine_model_class(model_id: str, token: str, manual_model_type: str = None):
"""
Determines the appropriate model class based on either:
1. Automatic detection from model config, or
2. User selection (if provided)
"""
# If user specified a manual model type and it's not auto-detect, use that
if manual_model_type and manual_model_type != "Auto-detect (recommended)":
return get_model_class_by_name(manual_model_type)
# Otherwise, try automatic detection
try:
# Load the model configuration to determine the appropriate class
config = AutoConfig.from_pretrained(model_id, token=token, trust_remote_code=True)
# Check if model type is in the configuration
if hasattr(config, 'model_type'):
model_type = config.model_type.lower()
# Handle different model types based on their config
if model_type in ['qwen2_5_vl', 'qwen2-vl', 'qwen2vl']:
from transformers import Qwen2_5_VLForConditionalGeneration
return Qwen2_5_VLForConditionalGeneration
elif model_type in ['qwen2', 'qwen', 'qwen2.5']:
from transformers import Qwen2ForCausalLM
return Qwen2ForCausalLM
elif model_type in ['llama', 'llama2', 'llama3', 'llama3.1', 'llama3.2', 'llama3.3']:
from transformers import LlamaForCausalLM
return LlamaForCausalLM
elif model_type in ['mistral', 'mixtral']:
from transformers import MistralForCausalLM
return MistralForCausalLM
elif model_type in ['gemma', 'gemma2']:
from transformers import GemmaForCausalLM, Gemma2ForCausalLM
return Gemma2ForCausalLM if 'gemma2' in model_type else GemmaForCausalLM
elif model_type in ['phi', 'phi2', 'phi3', 'phi3.5']:
from transformers import PhiForCausalLM, Phi3ForCausalLM
return Phi3ForCausalLM if 'phi3' in model_type else PhiForCausalLM
elif model_type in ['falcon']:
from transformers import FalconForCausalLM
return FalconForCausalLM
elif model_type in ['mpt']:
from transformers import MptForCausalLM
return MptForCausalLM
elif model_type in ['gpt2', 'gpt', 'gpt_neox', 'gptj']:
from transformers import GPT2LMHeadModel, GPTNeoXForCausalLM, GPTJForCausalLM
if 'neox' in model_type:
return GPTNeoXForCausalLM
elif 'j' in model_type:
return GPTJForCausalLM
else:
return GPT2LMHeadModel
else:
# Default to AutoModelForCausalLM for standard text generation models
return AutoModelForCausalLM
else:
# If no model type is specified in config, default to AutoModelForCausalLM
return AutoModelForCausalLM
except Exception as e:
print(f"Could not determine model class from config: {e}")
return AutoModelForCausalLM # fallback to default
def compress_and_upload(
model_id: str,
quant_method: str,
model_type_selection: str, # New parameter for manual model type selection
oauth_token: gr.OAuthToken | None,
progress=gr.Progress() # Gradio progress tracker
):
"""
Compresses a model using llm-compressor and uploads it to a new HF repo.
"""
if not model_id:
raise gr.Error("Please select a model from the search bar.")
if oauth_token is None:
raise gr.Error("Authentication error. Please log in to continue.")
token = oauth_token.token
try:
# Use the provided token for all hub interactions
username = whoami(token=token)["name"]
# --- 1. Load Model and Tokenizer ---
progress(0, desc="Stage 1/5: Loading model and tokenizer...")
# Determine the appropriate model class based on the model's configuration or user selection
model_class = determine_model_class(model_id, token, model_type_selection)
try:
# Show sub-steps during model loading
progress(0.05, desc="Stage 1/5: Determining model class...")
# Determine the optimal device configuration based on available resources
if torch.cuda.is_available():
# If CUDA is available, use auto device mapping to distribute model across available devices
model = model_class.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else "auto",
device_map="auto",
token=token,
trust_remote_code=True
)
else:
# If no CUDA, load on CPU
model = model_class.from_pretrained(
model_id,
torch_dtype="auto",
device_map="cpu",
token=token,
trust_remote_code=True
)
progress(0.15, desc="Stage 1/5: Model loaded, loading tokenizer...")
except ValueError as e:
if "Unrecognized configuration class" in str(e):
# If automatic detection fails, fall back to AutoModel and let transformers handle it
print(f"Automatic model class detection failed, falling back to AutoModel: {e}")
progress(0.05, desc="Stage 1/5: Using fallback model class...")
if torch.cuda.is_available():
model = AutoModel.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else "auto",
device_map="auto",
token=token,
trust_remote_code=True
)
else:
model = AutoModel.from_pretrained(
model_id,
torch_dtype="auto",
device_map="cpu",
token=token,
trust_remote_code=True
)
progress(0.15, desc="Stage 1/5: Model loaded with fallback class...")
elif "offload_dir" in str(e):
# If the error mentions offload_dir, try with disk offloading
print(f"Model requires offloading, trying with temporary offload directory: {e}")
progress(0.05, desc="Stage 1/5: Setting up model with offloading...")
import tempfile
with tempfile.TemporaryDirectory() as temp_dir:
model = model_class.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else "auto",
device_map="auto",
offload_folder=temp_dir,
token=token,
trust_remote_code=True
)
progress(0.15, desc="Stage 1/5: Model loaded with offloading...")
else:
raise
except RuntimeError as e:
if "out of memory" in str(e).lower() or "offload_dir" in str(e):
# If there's an out of memory error or offload_dir error, try memory-efficient loading
print(f"Memory issue detected, trying with CPU offloading: {e}")
progress(0.05, desc="Stage 1/5: Setting up memory-efficient model loading...")
# Use CPU offloading to handle memory constraints
import tempfile
with tempfile.TemporaryDirectory() as temp_dir:
model = model_class.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else "auto",
device_map="auto",
offload_folder=temp_dir,
max_memory={0: "24GB", "cpu": "48GB"}, # Limit GPU memory usage
token=token,
trust_remote_code=True
)
progress(0.15, desc="Stage 1/5: Model loaded with memory-efficient approach...")
else:
raise
output_dir = f"{model_id.split('/')[-1]}-{quant_method}"
# --- 2. Get Recipe ---
progress(0.2, desc="Stage 2/5: Preparing quantization recipe...")
if not model.config.architectures:
raise gr.Error("Could not determine model architecture.")
progress(0.25, desc="Stage 2/5: Analyzing model architecture...")
recipe = get_quantization_recipe(quant_method, model.config.architectures[0])
progress(0.3, desc="Stage 2/5: Quantization recipe prepared!")
# --- 3. Run Compression ---
progress(0.35, desc="Stage 3/5: Setting up quantization dataset...")
# Determine if this is a Qwen2.5-VL model to use appropriate dataset and data collator
if model.config.architectures and "Qwen2_5_VLForConditionalGeneration" in model.config.architectures[0]:
# Use a multimodal dataset and data collator for Qwen2.5-VL models
try:
from datasets import load_dataset
progress(0.36, desc="Stage 3/5: Loading multimodal dataset for Qwen2.5-VL model...")
# Use a small subset of flickr30k for calibration if available
ds = load_dataset("lmms-lab/flickr30k", split="test[:64]")
ds = ds.shuffle(seed=42)
progress(0.38, desc="Stage 3/5: Dataset loaded, preparing data collator...")
# Define a data collator for multimodal inputs
def qwen2_5_vl_data_collator(batch):
assert len(batch) == 1
return {key: torch.tensor(value) if isinstance(value, (list, int, float)) else value
for key, value in batch[0].items()}
progress(0.4, desc="Stage 3/5: Starting quantization process for Qwen2.5-VL model...")
oneshot(
model=model,
dataset=ds,
recipe=recipe,
save_compressed=True,
output_dir=output_dir,
max_seq_length=2048, # Increased for multimodal models
num_calibration_samples=64,
data_collator=qwen2_5_vl_data_collator,
)
progress(0.7, desc="Stage 3/5: Qwen2.5-VL quantization completed!")
except Exception as e:
print(f"Could not load multimodal dataset, falling back to text-only: {e}")
progress(0.36, desc="Stage 3/5: Multimodal dataset failed, using fallback dataset...")
# Fall back to text-only dataset - load it properly and pass as dataset
from datasets import load_dataset
fallback_ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train[:1%]")
progress(0.4, desc="Stage 3/5: Running quantization with fallback dataset...")
oneshot(
model=model,
dataset=fallback_ds,
recipe=recipe,
save_compressed=True,
output_dir=output_dir,
max_seq_length=512,
num_calibration_samples=64,
)
progress(0.7, desc="Stage 3/5: Quantization with fallback dataset completed!")
else:
# For non-multimodal models, use the original approach
from datasets import load_dataset
progress(0.36, desc="Stage 3/5: Loading text dataset...")
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train[:1%]")
progress(0.4, desc="Stage 3/5: Starting quantization process for standard model...")
oneshot(
model=model,
dataset=ds,
recipe=recipe,
save_compressed=True,
output_dir=output_dir,
max_seq_length=512,
num_calibration_samples=64,
)
progress(0.7, desc="Stage 3/5: Quantization completed!")
# --- 4. Create Repo and Upload ---
progress(0.75, desc="Stage 4/5: Preparing Hugging Face repository...")
api = HfApi(token=token)
repo_id = f"{username}/{output_dir}"
progress(0.78, desc="Stage 4/5: Creating repository...")
repo_url = api.create_repo(repo_id=repo_id, exist_ok=True)
progress(0.8, desc="Stage 4/5: Uploading model files...")
api.upload_folder(
folder_path=output_dir,
repo_id=repo_id,
commit_message=f"Upload {quant_method} compressed model",
)
progress(0.9, desc="Stage 4/5: Upload completed!")
# --- 5. Create Model Card ---
progress(0.95, desc="Stage 5/5: Generating model card...")
card_content = f"""
---
license: apache-2.0
base_model: {model_id}
tags:
- llm-compressor
- quantization
- {quant_method.lower()}
---
# {quant_method} Compressed Model: {repo_id}
This model was compressed from [`{model_id}`](https://huggingface.co/{model_id}) using the [vLLM LLM-Compressor](https://github.com/vllm-project/llm-compressor) library.
This conversion was performed by the `llm-compressor-my-repo` Hugging Face Space.
## Quantization Method: {quant_method}
For more details on the recipe used, refer to the `recipe.yaml` file in this repository.
"""
card = ModelCard(card_content)
card.push_to_hub(repo_id, token=token)
progress(1.0, desc="✅ All stages completed! Your compressed model is ready.")
return f'<h1>✅ Success!</h1><br/>Model compressed and saved to your new repo: <a href="{repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>'
except gr.Error as e:
raise e
except Exception as e:
error_message = str(e).replace("\n", "<br/>")
return f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{error_message}</pre>'
# --- Gradio Interface ---
def build_gradio_app():
with gr.Blocks(css="footer {display: none !important;}") as demo:
gr.Markdown("# LLM-Compressor My Repo")
gr.Markdown(
"Log in, choose a model, select a quantization method, and this Space will create a new compressed model repository on your Hugging Face profile."
)
with gr.Row():
login_button = gr.LoginButton(min_width=250) # noqa: F841
gr.Markdown("### 1. Select a Model from the Hugging Face Hub")
model_input = HuggingfaceHubSearch(
label="Search for a Model",
search_type="model",
)
gr.Markdown("### 2. Choose a Quantization Method")
quant_method_dropdown = gr.Dropdown(
["W4A16", "W8A16", "W8A8_INT8", "W8A8_FP8", "GPTQ", "FP8", "AWQ", "SmoothQuant", "SparseGPT"],
label="Quantization Method",
value="W4A16"
)
gr.Markdown("### 3. Model Type (Auto-detected, but you can override if needed)")
model_type_dropdown = gr.Dropdown(
choices=[
"Auto-detect (recommended)",
"CausalLM (standard text generation)",
"Qwen2_5_VLForConditionalGeneration (Qwen2.5-VL)",
"Qwen2ForCausalLM (Qwen2)",
"LlamaForCausalLM (Llama, Llama2, Llama3)",
"MistralForCausalLM (Mistral, Mixtral)",
"GemmaForCausalLM (Gemma)",
"Gemma2ForCausalLM (Gemma2)",
"PhiForCausalLM (Phi, Phi2)",
"Phi3ForCausalLM (Phi3)",
"FalconForCausalLM (Falcon)",
"MptForCausalLM (MPT)",
"GPT2LMHeadModel (GPT2)",
"GPTNeoXForCausalLM (GPT-NeoX)",
"GPTJForCausalLM (GPT-J)"
],
label="Model Type",
value="Auto-detect (recommended)"
)
compress_button = gr.Button("Compress and Create Repo", variant="primary")
output_html = gr.HTML(label="Result")
# Create the event handler with updates to disable button during processing
btn_click = compress_button.click(
fn=compress_and_upload,
inputs=[model_input, quant_method_dropdown, model_type_dropdown],
outputs=output_html,
show_progress=True # Show built-in progress bar
)
# Disable button during processing then re-enable it afterward
btn_click.then(
fn=lambda: gr.Button(interactive=False, value="Processing..."),
inputs=[],
outputs=[compress_button],
queue=False
).then(
fn=lambda: gr.Button(interactive=True, value="Compress and Create Repo"),
inputs=[],
outputs=[compress_button],
queue=False
)
return demo
def main():
demo = build_gradio_app()
demo.queue(max_size=5).launch()
if __name__ == "__main__":
main()
|