Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system("pip install git+https://github.com/openai/whisper.git")
|
| 3 |
+
import whisper
|
| 4 |
+
import evaluate
|
| 5 |
+
from evaluate.utils import launch_gradio_widget
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import random
|
| 10 |
+
import classify
|
| 11 |
+
import replace_explitives
|
| 12 |
+
from whisper.model import Whisper
|
| 13 |
+
from whisper.tokenizer import get_tokenizer
|
| 14 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
| 15 |
+
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# pull in emotion detection
|
| 19 |
+
# --- Add element for specification
|
| 20 |
+
# pull in text classification
|
| 21 |
+
# --- Add custom labels
|
| 22 |
+
# --- Associate labels with radio elements
|
| 23 |
+
# add logic to initiate mock notificaiton when detected
|
| 24 |
+
# pull in misophonia-specific model
|
| 25 |
+
|
| 26 |
+
model_cache = {}
|
| 27 |
+
|
| 28 |
+
# Building prediction function for gradio
|
| 29 |
+
emo_dict = {
|
| 30 |
+
'sad': 'Sad',
|
| 31 |
+
'hap': 'Happy',
|
| 32 |
+
'ang': 'Anger',
|
| 33 |
+
'neu': 'Neutral'
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
|
| 37 |
+
class_options = {
|
| 38 |
+
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"]
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
| 42 |
+
|
| 43 |
+
def classify_emotion(audio):
|
| 44 |
+
#### Emotion classification ####
|
| 45 |
+
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
| 46 |
+
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio)
|
| 47 |
+
return emo_dict[text_lab[0]]
|
| 48 |
+
|
| 49 |
+
def slider_logic(slider):
|
| 50 |
+
threshold = 0
|
| 51 |
+
if slider == 1:
|
| 52 |
+
threshold = .98
|
| 53 |
+
elif slider == 2:
|
| 54 |
+
threshold = .88
|
| 55 |
+
elif slider == 3:
|
| 56 |
+
threshold = .77
|
| 57 |
+
elif slider == 4:
|
| 58 |
+
threshold = .66
|
| 59 |
+
elif slider == 5:
|
| 60 |
+
threshold = .55
|
| 61 |
+
else:
|
| 62 |
+
threshold = []
|
| 63 |
+
return threshold
|
| 64 |
+
|
| 65 |
+
# Create a Gradio interface with audio file and text inputs
|
| 66 |
+
def classify_toxicity(audio_file, slider):
|
| 67 |
+
# Transcribe the audio file using Whisper ASR
|
| 68 |
+
if audio_file != None:
|
| 69 |
+
transcribed_text = pipe(audio_file)["text"]
|
| 70 |
+
else:
|
| 71 |
+
transcribed_text = text_input
|
| 72 |
+
|
| 73 |
+
threshold = slider_logic(slider)
|
| 74 |
+
model = whisper.load_model("large")
|
| 75 |
+
# model = model_cache[model_name]
|
| 76 |
+
# class_names = classify_anxiety.split(",")
|
| 77 |
+
classify_anxiety = "misophonia"
|
| 78 |
+
class_names_list = class_options.get(classify_anxiety, [])
|
| 79 |
+
class_str = ""
|
| 80 |
+
for elm in class_names_list:
|
| 81 |
+
class_str += elm + ","
|
| 82 |
+
#class_names = class_names_temp.split(",")
|
| 83 |
+
class_names = class_str.split(",")
|
| 84 |
+
print("class names ", class_names, "classify_anxiety ", classify_anxiety)
|
| 85 |
+
|
| 86 |
+
tokenizer = get_tokenizer("large")
|
| 87 |
+
# tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
|
| 88 |
+
|
| 89 |
+
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
|
| 90 |
+
model=model,
|
| 91 |
+
class_names=class_names,
|
| 92 |
+
# class_names=classify_anxiety,
|
| 93 |
+
tokenizer=tokenizer,
|
| 94 |
+
)
|
| 95 |
+
audio_features = classify.calculate_audio_features(audio_file, model)
|
| 96 |
+
average_logprobs = classify.calculate_average_logprobs(
|
| 97 |
+
model=model,
|
| 98 |
+
audio_features=audio_features,
|
| 99 |
+
class_names=class_names,
|
| 100 |
+
tokenizer=tokenizer,
|
| 101 |
+
)
|
| 102 |
+
average_logprobs -= internal_lm_average_logprobs
|
| 103 |
+
scores = average_logprobs.softmax(-1).tolist()
|
| 104 |
+
holder1 = {class_name: score for class_name, score in zip(class_names, scores)}
|
| 105 |
+
# miso_label_dict = {label: score for label, score in classify_anxiety[0].items()}
|
| 106 |
+
holder2 = ""
|
| 107 |
+
holder3= " "
|
| 108 |
+
return {class_name: score for class_name, score in zip(class_names, scores)}
|
| 109 |
+
|
| 110 |
+
def positive_affirmations():
|
| 111 |
+
affirmations = [
|
| 112 |
+
"I have survived my anxiety before and I will survive again now",
|
| 113 |
+
"I am not in danger; I am just uncomfortable; this too will pass",
|
| 114 |
+
"I forgive and release the past and look forward to the future",
|
| 115 |
+
"I can't control what other people say but I can control my breathing and my response"
|
| 116 |
+
]
|
| 117 |
+
selected_affirm = random.choice(affirmations)
|
| 118 |
+
return selected_affirm
|
| 119 |
+
|
| 120 |
+
with gr.Blocks() as iface:
|
| 121 |
+
show_state = gr.State([])
|
| 122 |
+
with gr.Column():
|
| 123 |
+
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
|
| 124 |
+
with gr.Column():
|
| 125 |
+
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
| 126 |
+
submit_btn = gr.Button(label="Run")
|
| 127 |
+
with gr.Column():
|
| 128 |
+
# out_val = gr.Textbox()
|
| 129 |
+
out_class = gr.Label()
|
| 130 |
+
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, sense_slider], outputs=out_class)
|
| 131 |
+
|
| 132 |
+
iface.launch()
|