import gradio as gr import spaces import numpy as np import random import torch from diffusers import StableDiffusionXLPipeline device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 repo = "stabilityai/stable-diffusion-xl-base-1.0" pipe = StableDiffusionXLPipeline.from_pretrained( repo, torch_dtype=dtype, use_safetensors=True ).to(device) MAX_SEED = np.iinfo(np.int32).max @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator ).images[0] return image, seed examples = [ "A cozy Scandinavian living room, soft light, natural wood, white tones", "A futuristic cityscape at night with flying cars", "A magical forest with glowing mushrooms and fairies" ] css = """ #col-container { margin: 0 auto; max-width: 580px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Generate images [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) Generate high-quality images with Stability AI's flagship SDXL base model. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=30, ) gr.Examples( examples=examples, inputs=[prompt] ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.launch()