File size: 7,549 Bytes
e7bb669
 
7fa9875
 
e7bb669
 
 
 
 
 
7fa9875
e7bb669
 
 
 
 
 
7fa9875
e7bb669
 
 
 
7fa9875
e7bb669
 
 
 
 
 
 
 
 
 
 
 
7fa9875
e7bb669
 
 
 
7fa9875
e7bb669
 
7fa9875
e7bb669
7fa9875
e7bb669
 
7fa9875
e7bb669
 
7fa9875
e7bb669
 
 
 
7fa9875
e7bb669
 
 
 
7fa9875
 
 
 
e7bb669
 
7fa9875
e7bb669
 
 
 
7fa9875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bb669
 
 
7fa9875
e7bb669
 
 
7fa9875
e7bb669
 
 
 
7fa9875
 
 
 
e7bb669
 
7fa9875
 
 
 
 
e7bb669
 
 
 
 
 
 
7fa9875
e7bb669
7fa9875
e7bb669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa9875
 
 
 
 
e7bb669
 
 
 
 
 
 
7fa9875
 
 
 
 
e7bb669
 
 
 
7fa9875
e7bb669
 
 
 
 
 
7fa9875
 
 
 
 
e7bb669
 
 
7fa9875
e7bb669
 
7fa9875
e7bb669
 
 
 
 
 
 
 
 
 
 
 
7fa9875
e7bb669
 
 
 
 
 
7fa9875
e7bb669
 
 
 
7fa9875
 
e7bb669
 
7fa9875
 
e7bb669
7fa9875
 
 
 
 
 
 
e7bb669
 
 
 
 
7fa9875
 
 
e7bb669
 
7fa9875
e7bb669
 
7fa9875
e7bb669
 
 
7fa9875
e7bb669
 
7fa9875
e7bb669
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import re
import json
from typing import Optional, Tuple

import numpy as np
import pandas as pd
from statsmodels.tsa.holtwinters import ExponentialSmoothing, Holt

try:
    from prophet import Prophet

    _HAS_PROPHET = True
except Exception:
    _HAS_PROPHET = False

_KEEP = re.compile(r"[^А-Яа-яЁё0-9 ,.!?:;()«»\"'–—\-•\n]")


def clean_ru(text: str) -> str:
    text = _KEEP.sub(" ", text or "")
    return re.sub(r"\s+", " ", text).strip()


def normalize_columns(df: pd.DataFrame) -> pd.DataFrame:
    work = df.copy()
    for col in list(work.columns):
        lc = col.lower()
        if lc in ("date", "дата"):
            work.rename(columns={col: "date"}, inplace=True)
        elif lc in ("amount", "сумма"):
            work.rename(columns={col: "amount"}, inplace=True)
        elif lc in ("category", "категория"):
            work.rename(columns={col: "category"}, inplace=True)
        elif lc in ("type", "тип"):
            work.rename(columns={col: "type"}, inplace=True)

    required = {"date", "amount", "type"}
    missing = required - set(map(str, work.columns))
    if missing:
        raise ValueError(f"Отсутствуют колонки: {', '.join(sorted(missing))}")

    work["date"] = pd.to_datetime(work["date"], errors="coerce")
    work = work.dropna(subset=["date"])

    work["amount"] = pd.to_numeric(work["amount"], errors="coerce").fillna(0.0)

    if "category" not in work.columns:
        work["category"] = "Без категории"

    return work


def is_expense(t: str) -> bool:
    t = str(t).strip().lower()
    return t in {"expense", "расход", "расходы", "-", "e", "exp"}


def is_income(t: str) -> bool:
    t = str(t).strip().lower()
    return t in {"income", "доход", "+", "i", "inc"}


def prepare_components_series(
    df: pd.DataFrame, freq: str = "M"
) -> Tuple[pd.Series, pd.Series, pd.Series]:
    if df is None or df.empty:
        raise ValueError("Пустая таблица транзакций.")

    work = normalize_columns(df)
    work["is_expense"] = work["type"].apply(is_expense)
    work["is_income"] = work["type"].apply(is_income)

    inc = (
        work.loc[work["is_income"]]
        .set_index("date")["amount"]
        .resample(freq)
        .sum()
        .sort_index()
    )
    exp = (
        work.loc[work["is_expense"]]
        .set_index("date")["amount"]
        .abs()
        .mul(-1)
        .resample(freq)
        .sum()
        .sort_index()
    )

    if not inc.empty or not exp.empty:
        start = min([x.index.min() for x in [inc, exp] if not x.empty])
        end = max([x.index.max() for x in [inc, exp] if not x.empty])
        full_idx = pd.date_range(start, end, freq=freq)
        inc = inc.reindex(full_idx, fill_value=0.0)
        exp = exp.reindex(full_idx, fill_value=0.0)

    net = inc + exp
    inc.index.name = exp.index.name = net.index.name = "period_end"
    return inc, exp, net


def fit_and_forecast(
    history: pd.Series, steps: int, freq: str, method: str = "auto"
) -> pd.Series:
    if len(history) < 3:
        last = float(history.iloc[-1]) if len(history) else 0.0
        start = (
            history.index[-1]
            if len(history)
            else pd.Timestamp.today().normalize()
        ) + pd.tseries.frequencies.to_offset(freq)
        idx = pd.date_range(start, periods=steps, freq=freq)
        return pd.Series([last] * steps, index=idx, name="forecast")

    use_prophet = False
    if method == "prophet":
        use_prophet = True
    elif method == "auto":
        if freq.startswith("A"):  # годовая
            use_prophet = _HAS_PROPHET and (len(history) >= 5)
        else:  # месячная
            use_prophet = _HAS_PROPHET and (len(history) >= 18)

    if use_prophet:
        try:
            pfreq = "Y" if freq.startswith("A") else "M"
            dfp = history.reset_index()
            dfp.columns = ["ds", "y"]

            m = Prophet(
                yearly_seasonality=(pfreq == "M"),
                weekly_seasonality=False,
                daily_seasonality=False,
                seasonality_mode="additive",
            )
            m.fit(dfp)
            future = m.make_future_dataframe(periods=steps, freq=pfreq)
            fcst = m.predict(future).tail(steps)
            yhat = pd.Series(
                fcst["yhat"].values,
                index=pd.DatetimeIndex(fcst["ds"]),
                name="forecast",
            )

            if pfreq == "M":
                yhat.index = yhat.index.to_period("M").to_timestamp(how="end")
            else:
                yhat.index = yhat.index.to_period("Y").to_timestamp(how="end")

            if yhat.index.freq is None:
                yhat.index = pd.date_range(
                    yhat.index[0],
                    periods=len(yhat),
                    freq=("A-DEC" if pfreq == "Y" else "M"),
                )
            return yhat
        except Exception:
            pass

    # Holt / Holt-Winters
    try:
        if freq.startswith("A"):
            model = Holt(history, initialization_method="estimated")
        else:
            if len(history) >= 24:
                model = ExponentialSmoothing(
                    history,
                    trend="add",
                    seasonal="add",
                    seasonal_periods=12,
                    initialization_method="estimated",
                )
            else:
                model = Holt(history, initialization_method="estimated")

        fit = model.fit(optimized=True)
        fc = fit.forecast(steps)

        if not isinstance(fc.index, pd.DatetimeIndex) or len(fc.index) != steps:
            start = history.index[-1] + pd.tseries.frequencies.to_offset(freq)
            idx = pd.date_range(start, periods=steps, freq=freq)
            fc = pd.Series(np.asarray(fc), index=idx, name="forecast")
        return fc
    except Exception:
        tail = min(6, len(history))
        baseline = float(history.tail(tail).mean()) if tail else 0.0
        start = history.index[-1] + pd.tseries.frequencies.to_offset(freq)
        idx = pd.date_range(start, periods=steps, freq=freq)
        return pd.Series([baseline] * steps, index=idx, name="forecast")


def current_month_snapshot(df: pd.DataFrame) -> dict:
    if df is None or df.empty:
        return {}
    w = normalize_columns(df)
    w["is_income"] = w["type"].apply(is_income)
    w["is_expense"] = w["type"].apply(is_expense)

    lastp = w["date"].dt.to_period("M").max()
    cur = w[w["date"].dt.to_period("M") == lastp].copy()
    if cur.empty:
        return {}

    income_total = float(cur.loc[cur["is_income"], "amount"].sum())
    expense_total = -float(cur.loc[cur["is_expense"], "amount"].abs().sum())
    net = income_total + expense_total

    exp_df = cur.loc[cur["is_expense"], ["category", "amount"]].copy()
    exp_df["amount"] = -exp_df["amount"].abs()
    top = (
        exp_df.groupby("category")["amount"]
        .sum()
        .sort_values()
        .head(5)
    )

    return {
        "month": str(lastp),
        "income_total": income_total,
        "expense_total": expense_total,
        "net": net,
        "top_expense_categories": [
            (str(k), float(v)) for k, v in top.items()
        ],
    }


def read_json_stdin() -> dict:
    import sys

    raw = sys.stdin.read()
    return json.loads(raw or "{}")


def write_json_stdout(obj) -> None:
    import sys

    sys.stdout.write(json.dumps(obj, ensure_ascii=False))
    sys.stdout.flush()