Spaces:
Sleeping
Sleeping
File size: 7,549 Bytes
e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 7fa9875 e7bb669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import re
import json
from typing import Optional, Tuple
import numpy as np
import pandas as pd
from statsmodels.tsa.holtwinters import ExponentialSmoothing, Holt
try:
from prophet import Prophet
_HAS_PROPHET = True
except Exception:
_HAS_PROPHET = False
_KEEP = re.compile(r"[^А-Яа-яЁё0-9 ,.!?:;()«»\"'–—\-•\n]")
def clean_ru(text: str) -> str:
text = _KEEP.sub(" ", text or "")
return re.sub(r"\s+", " ", text).strip()
def normalize_columns(df: pd.DataFrame) -> pd.DataFrame:
work = df.copy()
for col in list(work.columns):
lc = col.lower()
if lc in ("date", "дата"):
work.rename(columns={col: "date"}, inplace=True)
elif lc in ("amount", "сумма"):
work.rename(columns={col: "amount"}, inplace=True)
elif lc in ("category", "категория"):
work.rename(columns={col: "category"}, inplace=True)
elif lc in ("type", "тип"):
work.rename(columns={col: "type"}, inplace=True)
required = {"date", "amount", "type"}
missing = required - set(map(str, work.columns))
if missing:
raise ValueError(f"Отсутствуют колонки: {', '.join(sorted(missing))}")
work["date"] = pd.to_datetime(work["date"], errors="coerce")
work = work.dropna(subset=["date"])
work["amount"] = pd.to_numeric(work["amount"], errors="coerce").fillna(0.0)
if "category" not in work.columns:
work["category"] = "Без категории"
return work
def is_expense(t: str) -> bool:
t = str(t).strip().lower()
return t in {"expense", "расход", "расходы", "-", "e", "exp"}
def is_income(t: str) -> bool:
t = str(t).strip().lower()
return t in {"income", "доход", "+", "i", "inc"}
def prepare_components_series(
df: pd.DataFrame, freq: str = "M"
) -> Tuple[pd.Series, pd.Series, pd.Series]:
if df is None or df.empty:
raise ValueError("Пустая таблица транзакций.")
work = normalize_columns(df)
work["is_expense"] = work["type"].apply(is_expense)
work["is_income"] = work["type"].apply(is_income)
inc = (
work.loc[work["is_income"]]
.set_index("date")["amount"]
.resample(freq)
.sum()
.sort_index()
)
exp = (
work.loc[work["is_expense"]]
.set_index("date")["amount"]
.abs()
.mul(-1)
.resample(freq)
.sum()
.sort_index()
)
if not inc.empty or not exp.empty:
start = min([x.index.min() for x in [inc, exp] if not x.empty])
end = max([x.index.max() for x in [inc, exp] if not x.empty])
full_idx = pd.date_range(start, end, freq=freq)
inc = inc.reindex(full_idx, fill_value=0.0)
exp = exp.reindex(full_idx, fill_value=0.0)
net = inc + exp
inc.index.name = exp.index.name = net.index.name = "period_end"
return inc, exp, net
def fit_and_forecast(
history: pd.Series, steps: int, freq: str, method: str = "auto"
) -> pd.Series:
if len(history) < 3:
last = float(history.iloc[-1]) if len(history) else 0.0
start = (
history.index[-1]
if len(history)
else pd.Timestamp.today().normalize()
) + pd.tseries.frequencies.to_offset(freq)
idx = pd.date_range(start, periods=steps, freq=freq)
return pd.Series([last] * steps, index=idx, name="forecast")
use_prophet = False
if method == "prophet":
use_prophet = True
elif method == "auto":
if freq.startswith("A"): # годовая
use_prophet = _HAS_PROPHET and (len(history) >= 5)
else: # месячная
use_prophet = _HAS_PROPHET and (len(history) >= 18)
if use_prophet:
try:
pfreq = "Y" if freq.startswith("A") else "M"
dfp = history.reset_index()
dfp.columns = ["ds", "y"]
m = Prophet(
yearly_seasonality=(pfreq == "M"),
weekly_seasonality=False,
daily_seasonality=False,
seasonality_mode="additive",
)
m.fit(dfp)
future = m.make_future_dataframe(periods=steps, freq=pfreq)
fcst = m.predict(future).tail(steps)
yhat = pd.Series(
fcst["yhat"].values,
index=pd.DatetimeIndex(fcst["ds"]),
name="forecast",
)
if pfreq == "M":
yhat.index = yhat.index.to_period("M").to_timestamp(how="end")
else:
yhat.index = yhat.index.to_period("Y").to_timestamp(how="end")
if yhat.index.freq is None:
yhat.index = pd.date_range(
yhat.index[0],
periods=len(yhat),
freq=("A-DEC" if pfreq == "Y" else "M"),
)
return yhat
except Exception:
pass
# Holt / Holt-Winters
try:
if freq.startswith("A"):
model = Holt(history, initialization_method="estimated")
else:
if len(history) >= 24:
model = ExponentialSmoothing(
history,
trend="add",
seasonal="add",
seasonal_periods=12,
initialization_method="estimated",
)
else:
model = Holt(history, initialization_method="estimated")
fit = model.fit(optimized=True)
fc = fit.forecast(steps)
if not isinstance(fc.index, pd.DatetimeIndex) or len(fc.index) != steps:
start = history.index[-1] + pd.tseries.frequencies.to_offset(freq)
idx = pd.date_range(start, periods=steps, freq=freq)
fc = pd.Series(np.asarray(fc), index=idx, name="forecast")
return fc
except Exception:
tail = min(6, len(history))
baseline = float(history.tail(tail).mean()) if tail else 0.0
start = history.index[-1] + pd.tseries.frequencies.to_offset(freq)
idx = pd.date_range(start, periods=steps, freq=freq)
return pd.Series([baseline] * steps, index=idx, name="forecast")
def current_month_snapshot(df: pd.DataFrame) -> dict:
if df is None or df.empty:
return {}
w = normalize_columns(df)
w["is_income"] = w["type"].apply(is_income)
w["is_expense"] = w["type"].apply(is_expense)
lastp = w["date"].dt.to_period("M").max()
cur = w[w["date"].dt.to_period("M") == lastp].copy()
if cur.empty:
return {}
income_total = float(cur.loc[cur["is_income"], "amount"].sum())
expense_total = -float(cur.loc[cur["is_expense"], "amount"].abs().sum())
net = income_total + expense_total
exp_df = cur.loc[cur["is_expense"], ["category", "amount"]].copy()
exp_df["amount"] = -exp_df["amount"].abs()
top = (
exp_df.groupby("category")["amount"]
.sum()
.sort_values()
.head(5)
)
return {
"month": str(lastp),
"income_total": income_total,
"expense_total": expense_total,
"net": net,
"top_expense_categories": [
(str(k), float(v)) for k, v in top.items()
],
}
def read_json_stdin() -> dict:
import sys
raw = sys.stdin.read()
return json.loads(raw or "{}")
def write_json_stdout(obj) -> None:
import sys
sys.stdout.write(json.dumps(obj, ensure_ascii=False))
sys.stdout.flush()
|