Spaces:
Sleeping
Sleeping
File size: 7,084 Bytes
f0581e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# Sample Diabetes Data - Test Your App! ๐
## ๐ File: `sample_diabetes_data.csv`
This is **realistic synthetic CGM data** for a full day (24 hours) with interesting events!
---
## ๐ฏ What's in the Data
### Timeline: January 15, 2025 (6:00 AM - 11:55 PM)
**200 data points** @ 5-minute intervals
### Key Events to Watch For:
#### 1. **Morning Hypo Risk** (6:00 AM - 7:20 AM)
- Glucose drops from 95 โ 80 mg/dL
- **Alert should trigger** around 7:15 AM
- **Breakfast bolus**: 45g carbs + 4.5u insulin at 7:20 AM
- Recovery to 128 mg/dL
#### 2. **Post-Breakfast Spike** (7:20 AM - 8:30 AM)
- Glucose rises to 128 mg/dL
- Gradual descent back to normal range
#### 3. **Morning Exercise** (10:30 AM - 12:00 PM)
- Heart rate increases (65 โ 130 BPM)
- Steps accumulate rapidly
- Glucose stays stable due to activity
#### 4. **Lunch Spike** (12:00 PM - 1:15 PM)
- **Large meal**: 60g carbs + 6u insulin
- Glucose spikes to **176 mg/dL** (near hyper threshold)
- **Alert should trigger** around 1:00 PM
- Gradual descent over 3 hours
#### 5. **Late Afternoon Stability** (3:00 PM - 6:00 PM)
- Glucose stable in target range (100-110 mg/dL)
- Minimal significance scores expected
#### 6. **Dinner** (6:00 PM - 7:00 PM)
- 55g carbs + 5.5u insulin
- Moderate spike to 159 mg/dL
- Controlled descent
#### 7. **SEVERE HYPO EVENT** โ ๏ธ (10:00 PM)
- **CRITICAL**: Glucose drops to **15 mg/dL**!
- Overcorrection with 3u insulin (mistake scenario)
- **Multiple alerts expected**
- Emergency 15g carbs consumed
- Recovery to safe levels
#### 8. **Overnight Stability** (11:00 PM onwards)
- Glucose settles around 100 mg/dL
- Normal sleep HR (52-60 BPM)
---
## ๐งช Expected Results
### Activation Patterns:
- **High activation**: During hypo (7:15 AM, 10:00 PM), hyper (1:00 PM)
- **Low activation**: Stable periods (3-6 PM, after 11 PM)
- **Target activation rate**: ~15-20% overall
### Alerts Expected:
Approximately **3-5 high-risk alerts**:
1. Morning hypo warning (~7:15 AM)
2. Lunch hyper warning (~1:00-1:15 PM)
3. **CRITICAL hypo** (~10:00-10:20 PM) - multiple alerts
### Energy Savings:
- **~80-85%** energy saved vs always-on
- Most savings during stable periods
- More activations during risk events
### Significance Components:
Watch how they change:
- **Glycemic deviation**: High during hypo/hyper
- **Velocity risk**: Spikes during rapid changes
- **IOB risk**: High after insulin doses
- **COB risk**: High after meals
- **Activity risk**: Elevated during exercise
- **Variability**: Shows instability during events
---
## ๐ฎ How to Test
### Option 1: Local App
```bash
cd "C:\Users\adminidiakhoa\sundew_algorithms\HULL_use\diabetes\sundew_diabetes_watch"
streamlit run app_advanced.py
```
1. **Uncheck** "Use synthetic example"
2. Click "Browse files"
3. Upload `sample_diabetes_data.csv`
4. Watch the magic! โจ
### Option 2: Hugging Face Space
1. Visit: https://huggingface.co/spaces/mgbam/sundew_diabetes_watch
2. Upload `sample_diabetes_data.csv`
3. Explore the visualizations
---
## ๐ What to Look For
### 1. Performance Dashboard
- Total events: **200**
- Activations: **30-40** (15-20%)
- Energy savings: **80-85%**
- Alerts: **3-5**
### 2. Glucose Chart
- See the full day pattern
- Identify meal spikes
- Spot hypo events
### 3. Significance vs Threshold
- **Watch the PI controller adapt!**
- Threshold moves to maintain 15% activation
- Significance spikes during risk events
### 4. Energy Level
- **Bio-inspired regeneration** visible
- Drops during activations
- Regenerates during idle periods
- Should fluctuate, not flat
### 5. Significance Components
- **6 colored lines** showing risk factors
- Glycemic deviation dominates during extremes
- Velocity spikes during rapid changes
- IOB/COB after meals
### 6. Alerts Table
Look for warnings around:
- 7:15 AM (morning hypo approach)
- 1:00 PM (post-lunch hyper)
- 10:05-10:20 PM (critical hypo)
### 7. Bootstrap Confidence Intervals
- F1 Score with 95% CI
- Precision with 95% CI
- Recall with 95% CI
- Check that CI ranges are reasonable
---
## ๐ Advanced Analysis
### Export Telemetry
1. Check "Export Telemetry JSON"
2. Download `sundew_diabetes_telemetry.json`
3. Contains all 200 events with full details
4. Use for:
- Hardware power measurement correlation
- Detailed analysis in Excel/Python
- Custom visualizations
- Research papers
### Compare Presets
Try different Sundew configurations:
**`custom_health_hd82`** (Recommended for diabetes)
- 82% energy savings target
- Healthcare-optimized
- Expect: High recall, lower precision
**`tuned_v2`** (Balanced)
- General purpose
- Good balance
- Expect: Medium recall/precision
**`conservative`** (Maximum savings)
- Minimal activations
- Expect: Lower recall, higher savings
**`aggressive`** (Maximum safety)
- More activations
- Expect: Higher recall, lower savings
---
## ๐ Data Format
**Columns:**
- `timestamp`: DateTime in ISO format
- `glucose_mgdl`: Blood glucose in mg/dL (40-400 range)
- `carbs_g`: Carbohydrate intake in grams (0-60)
- `insulin_units`: Insulin dosage in units (0-6)
- `steps`: Cumulative step count (0-1065)
- `hr`: Heart rate in BPM (48-130)
**Frequency**: 5-minute intervals (standard CGM)
**Duration**: 18 hours (6 AM - 12 AM)
---
## ๐ฏ Challenge Yourself
### Can You Spot:
1. The exact time glucose crosses below 70 mg/dL?
2. How long it takes to recover from the severe hypo?
3. Which meal caused the highest glucose spike?
4. When the PI controller adjusts threshold most dramatically?
5. The period with lowest energy consumption?
### Experiment With:
- Different target activation rates (5%, 15%, 30%)
- Different energy pressure values
- Different hypo/hyper thresholds
- Different Sundew presets
---
## ๐ Pro Tips
1. **Enable all visualizations** for full effect
2. **Watch the threshold adapt** in real-time (Significance vs Threshold chart)
3. **Check the 10 PM hypo** - algorithm should light up!
4. **Export telemetry** to see component breakdown
5. **Try bootstrap CI** for statistical rigor
---
## ๐ Learning Outcomes
After testing with this data, you'll understand:
โ
How Sundew adapts threshold to maintain target activation
โ
How 6-factor significance scoring works
โ
How energy regeneration creates sustainable monitoring
โ
How bootstrap CI provides statistical confidence
โ
How ensemble models improve predictions
โ
How alerts trigger during real risk events
---
## ๐ Next Steps
1. **Test with this data** to verify app works
2. **Create your own data** with different patterns
3. **Compare results** across different presets
4. **Export telemetry** for deeper analysis
5. **Share results** with your network!
---
**This data showcases the algorithm at its finest!** ๐ฟโจ
The severe hypo at 10 PM will really make Sundew **SHINE**!
|