Spaces:
Running
on
Zero
Running
on
Zero
| """ NLLB-CLIP model configuration""" | |
| import os | |
| from collections import OrderedDict | |
| from typing import TYPE_CHECKING, Any, Mapping, Optional, Union | |
| if TYPE_CHECKING: | |
| from transformers.processing_utils import ProcessorMixin | |
| from transformers.utils import TensorType | |
| from transformers import CLIPVisionConfig | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.onnx import OnnxConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| class NLLBCLIPTextConfig(PretrainedConfig): | |
| model_type = "clip_text_model" | |
| attribute_map = { | |
| "num_attention_heads": "encoder_attention_heads", | |
| "hidden_size": "d_model", | |
| } | |
| def __init__( | |
| self, | |
| vocab_size=128112, | |
| max_position_embeddings=1024, | |
| encoder_layers=12, | |
| encoder_ffn_dim=4096, | |
| encoder_attention_heads=16, | |
| encoder_layerdrop=0.05, | |
| use_cache=True, | |
| activation_function="relu", | |
| d_model=1024, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| activation_dropout=0.0, | |
| init_std=0.02, | |
| scale_embedding=True, | |
| pad_token_id=1, | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| layer_norm_eps=1e-5, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.d_model = d_model | |
| self.encoder_ffn_dim = encoder_ffn_dim | |
| self.encoder_layers = encoder_layers | |
| self.encoder_attention_heads = encoder_attention_heads | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.activation_dropout = activation_dropout | |
| self.activation_function = activation_function | |
| self.init_std = init_std | |
| self.encoder_layerdrop = encoder_layerdrop | |
| self.use_cache = use_cache | |
| self.num_hidden_layers = encoder_layers | |
| self.scale_embedding = scale_embedding | |
| self.layer_norm_eps = layer_norm_eps | |
| super().__init__( | |
| pad_token_id=pad_token_id, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| **kwargs, | |
| ) | |
| def from_pretrained( | |
| cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
| ) -> "PretrainedConfig": | |
| config_dict, kwargs = cls.get_config_dict( | |
| pretrained_model_name_or_path, **kwargs | |
| ) | |
| # get the vision config dict if we are loading from CLIPConfig | |
| if config_dict.get("model_type") == "clip": | |
| config_dict = config_dict["text_config"] | |
| if ( | |
| "model_type" in config_dict | |
| and hasattr(cls, "model_type") | |
| and config_dict["model_type"] != cls.model_type | |
| ): | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class NLLBCLIPConfig(PretrainedConfig): | |
| model_type = "clip" | |
| def __init__( | |
| self, | |
| text_config=None, | |
| vision_config=None, | |
| projection_dim=512, | |
| logit_scale_init_value=2.6592, | |
| **kwargs, | |
| ): | |
| # If `_config_dict` exist, we use them for the backward compatibility. | |
| # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot | |
| # of confusion!). | |
| text_config_dict = kwargs.pop("text_config_dict", None) | |
| vision_config_dict = kwargs.pop("vision_config_dict", None) | |
| super().__init__(**kwargs) | |
| # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in | |
| # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most | |
| # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. | |
| if text_config_dict is not None: | |
| if text_config is None: | |
| text_config = {} | |
| # This is the complete result when using `text_config_dict`. | |
| _text_config_dict = NLLBCLIPTextConfig(**text_config_dict).to_dict() | |
| # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. | |
| for key, value in _text_config_dict.items(): | |
| if ( | |
| key in text_config | |
| and value != text_config[key] | |
| and key not in ["transformers_version"] | |
| ): | |
| # If specified in `text_config_dict` | |
| if key in text_config_dict: | |
| message = ( | |
| f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " | |
| f'The value `text_config_dict["{key}"]` will be used instead.' | |
| ) | |
| # If inferred from default argument values (just to be super careful) | |
| else: | |
| message = ( | |
| f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The " | |
| f'value `text_config["{key}"]` will be overriden.' | |
| ) | |
| logger.warning(message) | |
| # Update all values in `text_config` with the ones in `_text_config_dict`. | |
| text_config.update(_text_config_dict) | |
| if vision_config_dict is not None: | |
| if vision_config is None: | |
| vision_config = {} | |
| # This is the complete result when using `vision_config_dict`. | |
| _vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict() | |
| # convert keys to string instead of integer | |
| if "id2label" in _vision_config_dict: | |
| _vision_config_dict["id2label"] = { | |
| str(key): value | |
| for key, value in _vision_config_dict["id2label"].items() | |
| } | |
| # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. | |
| for key, value in _vision_config_dict.items(): | |
| if ( | |
| key in vision_config | |
| and value != vision_config[key] | |
| and key not in ["transformers_version"] | |
| ): | |
| # If specified in `vision_config_dict` | |
| if key in vision_config_dict: | |
| message = ( | |
| f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " | |
| f'values. The value `vision_config_dict["{key}"]` will be used instead.' | |
| ) | |
| # If inferred from default argument values (just to be super careful) | |
| else: | |
| message = ( | |
| f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. " | |
| f'The value `vision_config["{key}"]` will be overriden.' | |
| ) | |
| logger.warning(message) | |
| # Update all values in `vision_config` with the ones in `_vision_config_dict`. | |
| vision_config.update(_vision_config_dict) | |
| if text_config is None: | |
| text_config = {} | |
| logger.info( | |
| "`text_config` is `None`. Initializing the `NLLBCLIPTextConfig` with default values." | |
| ) | |
| if vision_config is None: | |
| vision_config = {} | |
| logger.info( | |
| "`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values." | |
| ) | |
| self.text_config = NLLBCLIPTextConfig(**text_config) | |
| self.vision_config = CLIPVisionConfig(**vision_config) | |
| self.projection_dim = projection_dim | |
| self.logit_scale_init_value = logit_scale_init_value | |
| self.initializer_factor = 1.0 | |
| def from_text_vision_configs( | |
| cls, text_config: NLLBCLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs | |
| ): | |
| r""" | |
| Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model | |
| configuration. | |
| Returns: | |
| [`CLIPConfig`]: An instance of a configuration object | |
| """ | |
| return cls( | |
| text_config=text_config.to_dict(), | |
| vision_config=vision_config.to_dict(), | |
| **kwargs, | |
| ) | |
| class CLIPOnnxConfig(OnnxConfig): | |
| def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
| return OrderedDict( | |
| [ | |
| ("input_ids", {0: "batch", 1: "sequence"}), | |
| ("attention_mask", {0: "batch", 1: "sequence"}), | |
| ( | |
| "pixel_values", | |
| {0: "batch", 1: "num_channels", 2: "height", 3: "width"}, | |
| ), | |
| ] | |
| ) | |
| def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
| return OrderedDict( | |
| [ | |
| ("logits_per_image", {0: "batch"}), | |
| ("logits_per_text", {0: "batch"}), | |
| ("text_embeds", {0: "batch"}), | |
| ("image_embeds", {0: "batch"}), | |
| ] | |
| ) | |
| def atol_for_validation(self) -> float: | |
| return 1e-4 | |
| def generate_dummy_inputs( | |
| self, | |
| processor: "ProcessorMixin", | |
| batch_size: int = -1, | |
| seq_length: int = -1, | |
| framework: Optional["TensorType"] = None, | |
| ) -> Mapping[str, Any]: | |
| text_input_dict = super().generate_dummy_inputs( | |
| processor.tokenizer, | |
| batch_size=batch_size, | |
| seq_length=seq_length, | |
| framework=framework, | |
| ) | |
| image_input_dict = super().generate_dummy_inputs( | |
| processor.image_processor, batch_size=batch_size, framework=framework | |
| ) | |
| return {**text_input_dict, **image_input_dict} | |
| def default_onnx_opset(self) -> int: | |
| return 14 | |