Spaces:
Runtime error
Runtime error
| # coding: utf-8 | |
| __author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' | |
| import sys | |
| import os | |
| sys.path.append(os.path.dirname(__file__)) | |
| import argparse | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import yaml | |
| import os | |
| import soundfile as sf | |
| import matplotlib.pyplot as plt | |
| from ml_collections import ConfigDict | |
| from omegaconf import OmegaConf | |
| from tqdm.auto import tqdm | |
| from typing import Dict, List, Tuple, Any, Union | |
| import loralib as lora | |
| def load_config(model_type: str, config_path: str) -> Union[ConfigDict, OmegaConf]: | |
| """ | |
| Load the configuration from the specified path based on the model type. | |
| Parameters: | |
| ---------- | |
| model_type : str | |
| The type of model to load (e.g., 'htdemucs', 'mdx23c', etc.). | |
| config_path : str | |
| The path to the YAML or OmegaConf configuration file. | |
| Returns: | |
| ------- | |
| config : Any | |
| The loaded configuration, which can be in different formats (e.g., OmegaConf or ConfigDict). | |
| Raises: | |
| ------ | |
| FileNotFoundError: | |
| If the configuration file at `config_path` is not found. | |
| ValueError: | |
| If there is an error loading the configuration file. | |
| """ | |
| try: | |
| with open(config_path, 'r') as f: | |
| if model_type == 'htdemucs': | |
| config = OmegaConf.load(config_path) | |
| else: | |
| config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) | |
| return config | |
| except FileNotFoundError: | |
| raise FileNotFoundError(f"Configuration file not found at {config_path}") | |
| except Exception as e: | |
| raise ValueError(f"Error loading configuration: {e}") | |
| ''' | |
| def get_model_from_config(model_type: str, config_path: str) -> Tuple: | |
| """ | |
| Load the model specified by the model type and configuration file. | |
| Parameters: | |
| ---------- | |
| model_type : str | |
| The type of model to load (e.g., 'mdx23c', 'htdemucs', 'scnet', etc.). | |
| config_path : str | |
| The path to the configuration file (YAML or OmegaConf format). | |
| Returns: | |
| ------- | |
| model : nn.Module or None | |
| The initialized model based on the `model_type`, or None if the model type is not recognized. | |
| config : Any | |
| The configuration used to initialize the model. This could be in different formats | |
| depending on the model type (e.g., OmegaConf, ConfigDict). | |
| Raises: | |
| ------ | |
| ValueError: | |
| If the `model_type` is unknown or an error occurs during model initialization. | |
| """ | |
| config = load_config(model_type, config_path) | |
| if model_type == 'mdx23c': | |
| from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net | |
| model = TFC_TDF_net(config) | |
| elif model_type == 'htdemucs': | |
| from models.demucs4ht import get_model | |
| model = get_model(config) | |
| elif model_type == 'segm_models': | |
| from models.segm_models import Segm_Models_Net | |
| model = Segm_Models_Net(config) | |
| elif model_type == 'torchseg': | |
| from models.torchseg_models import Torchseg_Net | |
| model = Torchseg_Net(config) | |
| elif model_type == 'mel_band_roformer': | |
| from models.bs_roformer import MelBandRoformer | |
| model = MelBandRoformer(**dict(config.model)) | |
| elif model_type == 'bs_roformer': | |
| from models.bs_roformer import BSRoformer | |
| model = BSRoformer(**dict(config.model)) | |
| elif model_type == 'swin_upernet': | |
| from models.upernet_swin_transformers import Swin_UperNet_Model | |
| model = Swin_UperNet_Model(config) | |
| elif model_type == 'bandit': | |
| from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple | |
| model = MultiMaskMultiSourceBandSplitRNNSimple(**config.model) | |
| elif model_type == 'bandit_v2': | |
| from models.bandit_v2.bandit import Bandit | |
| model = Bandit(**config.kwargs) | |
| elif model_type == 'scnet_unofficial': | |
| from models.scnet_unofficial import SCNet | |
| model = SCNet(**config.model) | |
| elif model_type == 'scnet': | |
| from models.scnet import SCNet | |
| model = SCNet(**config.model) | |
| elif model_type == 'apollo': | |
| from models.look2hear.models import BaseModel | |
| model = BaseModel.apollo(**config.model) | |
| elif model_type == 'bs_mamba2': | |
| from models.ts_bs_mamba2 import Separator | |
| model = Separator(**config.model) | |
| else: | |
| raise ValueError(f"Unknown model type: {model_type}") | |
| return model, config | |
| ''' | |
| def read_audio_transposed(path: str, instr: str = None, skip_err: bool = False) -> Tuple[np.ndarray, int]: | |
| """ | |
| Reads an audio file, ensuring mono audio is converted to two-dimensional format, | |
| and transposes the data to have channels as the first dimension. | |
| Parameters | |
| ---------- | |
| path : str | |
| Path to the audio file. | |
| skip_err: bool | |
| If true, not raise errors | |
| instr: | |
| name of instument | |
| Returns | |
| ------- | |
| Tuple[np.ndarray, int] | |
| A tuple containing: | |
| - Transposed audio data as a NumPy array with shape (channels, length). | |
| For mono audio, the shape will be (1, length). | |
| - Sampling rate (int), e.g., 44100. | |
| """ | |
| try: | |
| mix, sr = sf.read(path) | |
| except Exception as e: | |
| if skip_err: | |
| print(f"No stem {instr}: skip!") | |
| return None, None | |
| else: | |
| raise RuntimeError(f"Error reading the file at {path}: {e}") | |
| else: | |
| if len(mix.shape) == 1: # For mono audio | |
| mix = np.expand_dims(mix, axis=-1) | |
| return mix.T, sr | |
| def normalize_audio(audio: np.ndarray) -> tuple[np.ndarray, Dict[str, float]]: | |
| """ | |
| Normalize an audio signal by subtracting the mean and dividing by the standard deviation. | |
| Parameters: | |
| ---------- | |
| audio : np.ndarray | |
| Input audio array with shape (channels, time) or (time,). | |
| Returns: | |
| ------- | |
| tuple[np.ndarray, dict[str, float]] | |
| - Normalized audio array with the same shape as the input. | |
| - Dictionary containing the mean and standard deviation of the original audio. | |
| """ | |
| mono = audio.mean(0) | |
| mean, std = mono.mean(), mono.std() | |
| return (audio - mean) / std, {"mean": mean, "std": std} | |
| def denormalize_audio(audio: np.ndarray, norm_params: Dict[str, float]) -> np.ndarray: | |
| """ | |
| Denormalize an audio signal by reversing the normalization process (multiplying by the standard deviation | |
| and adding the mean). | |
| Parameters: | |
| ---------- | |
| audio : np.ndarray | |
| Normalized audio array to be denormalized. | |
| norm_params : dict[str, float] | |
| Dictionary containing the 'mean' and 'std' values used for normalization. | |
| Returns: | |
| ------- | |
| np.ndarray | |
| Denormalized audio array with the same shape as the input. | |
| """ | |
| return audio * norm_params["std"] + norm_params["mean"] | |
| def apply_tta( | |
| config, | |
| model: torch.nn.Module, | |
| mix: torch.Tensor, | |
| waveforms_orig: Dict[str, torch.Tensor], | |
| device: torch.device, | |
| model_type: str | |
| ) -> Dict[str, torch.Tensor]: | |
| """ | |
| Apply Test-Time Augmentation (TTA) for source separation. | |
| This function processes the input mixture with test-time augmentations, including | |
| channel inversion and polarity inversion, to enhance the separation results. The | |
| results from all augmentations are averaged to produce the final output. | |
| Parameters: | |
| ---------- | |
| config : Any | |
| Configuration object containing model and processing parameters. | |
| model : torch.nn.Module | |
| The trained model used for source separation. | |
| mix : torch.Tensor | |
| The mixed audio tensor with shape (channels, time). | |
| waveforms_orig : Dict[str, torch.Tensor] | |
| Dictionary of original separated waveforms (before TTA) for each instrument. | |
| device : torch.device | |
| Device (CPU or CUDA) on which the model will be executed. | |
| model_type : str | |
| Type of the model being used (e.g., "demucs", "custom_model"). | |
| Returns: | |
| ------- | |
| Dict[str, torch.Tensor] | |
| Updated dictionary of separated waveforms after applying TTA. | |
| """ | |
| # Create augmentations: channel inversion and polarity inversion | |
| track_proc_list = [mix[::-1].copy(), -1.0 * mix.copy()] | |
| # Process each augmented mixture | |
| for i, augmented_mix in enumerate(track_proc_list): | |
| waveforms = demix(config, model, augmented_mix, device, model_type=model_type) | |
| for el in waveforms: | |
| if i == 0: | |
| waveforms_orig[el] += waveforms[el][::-1].copy() | |
| else: | |
| waveforms_orig[el] -= waveforms[el] | |
| # Average the results across augmentations | |
| for el in waveforms_orig: | |
| waveforms_orig[el] /= len(track_proc_list) + 1 | |
| return waveforms_orig | |
| def _getWindowingArray(window_size: int, fade_size: int) -> torch.Tensor: | |
| """ | |
| Generate a windowing array with a linear fade-in at the beginning and a fade-out at the end. | |
| This function creates a window of size `window_size` where the first `fade_size` elements | |
| linearly increase from 0 to 1 (fade-in) and the last `fade_size` elements linearly decrease | |
| from 1 to 0 (fade-out). The middle part of the window is filled with ones. | |
| Parameters: | |
| ---------- | |
| window_size : int | |
| The total size of the window. | |
| fade_size : int | |
| The size of the fade-in and fade-out regions. | |
| Returns: | |
| ------- | |
| torch.Tensor | |
| A tensor of shape (window_size,) containing the generated windowing array. | |
| Example: | |
| ------- | |
| If `window_size=10` and `fade_size=3`, the output will be: | |
| tensor([0.0000, 0.5000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.5000, 0.0000]) | |
| """ | |
| fadein = torch.linspace(0, 1, fade_size) | |
| fadeout = torch.linspace(1, 0, fade_size) | |
| window = torch.ones(window_size) | |
| window[-fade_size:] = fadeout | |
| window[:fade_size] = fadein | |
| return window | |
| def demix( | |
| config: ConfigDict, | |
| model: torch.nn.Module, | |
| mix: torch.Tensor, | |
| device: torch.device, | |
| model_type: str, | |
| pbar: bool = False | |
| ) -> Tuple[List[Dict[str, np.ndarray]], np.ndarray]: | |
| """ | |
| Unified function for audio source separation with support for multiple processing modes. | |
| This function separates audio into its constituent sources using either a generic custom logic | |
| or a Demucs-specific logic. It supports batch processing and overlapping window-based chunking | |
| for efficient and artifact-free separation. | |
| Parameters: | |
| ---------- | |
| config : ConfigDict | |
| Configuration object containing audio and inference settings. | |
| model : torch.nn.Module | |
| The trained model used for audio source separation. | |
| mix : torch.Tensor | |
| Input audio tensor with shape (channels, time). | |
| device : torch.device | |
| The computation device (CPU or CUDA). | |
| model_type : str, optional | |
| Processing mode: | |
| - "demucs" for logic specific to the Demucs model. | |
| Default is "generic". | |
| pbar : bool, optional | |
| If True, displays a progress bar during chunk processing. Default is False. | |
| Returns: | |
| ------- | |
| Union[Dict[str, np.ndarray], np.ndarray] | |
| - A dictionary mapping target instruments to separated audio sources if multiple instruments are present. | |
| - A numpy array of the separated source if only one instrument is present. | |
| """ | |
| mix = torch.tensor(mix, dtype=torch.float32) | |
| if model_type == 'htdemucs': | |
| mode = 'demucs' | |
| else: | |
| mode = 'generic' | |
| # Define processing parameters based on the mode | |
| if mode == 'demucs': | |
| chunk_size = config.training.samplerate * config.training.segment | |
| num_instruments = len(config.training.instruments) | |
| num_overlap = config.inference.num_overlap | |
| step = chunk_size // num_overlap | |
| else: | |
| chunk_size = config.audio.chunk_size | |
| num_instruments = len(prefer_target_instrument(config)) | |
| num_overlap = config.inference.num_overlap | |
| fade_size = chunk_size // 10 | |
| step = chunk_size // num_overlap | |
| border = chunk_size - step | |
| length_init = mix.shape[-1] | |
| windowing_array = _getWindowingArray(chunk_size, fade_size) | |
| # Add padding for generic mode to handle edge artifacts | |
| if length_init > 2 * border and border > 0: | |
| mix = nn.functional.pad(mix, (border, border), mode="reflect") | |
| batch_size = config.inference.batch_size | |
| use_amp = getattr(config.training, 'use_amp', True) | |
| with torch.cuda.amp.autocast(enabled=use_amp): | |
| with torch.inference_mode(): | |
| # Initialize result and counter tensors | |
| req_shape = (num_instruments,) + mix.shape | |
| result = torch.zeros(req_shape, dtype=torch.float32) | |
| counter = torch.zeros(req_shape, dtype=torch.float32) | |
| i = 0 | |
| batch_data = [] | |
| batch_locations = [] | |
| progress_bar = tqdm( | |
| total=mix.shape[1], desc="Processing audio chunks", leave=False | |
| ) if pbar else None | |
| while i < mix.shape[1]: | |
| # Extract chunk and apply padding if necessary | |
| part = mix[:, i:i + chunk_size].to(device) | |
| chunk_len = part.shape[-1] | |
| if mode == "generic" and chunk_len > chunk_size // 2: | |
| pad_mode = "reflect" | |
| else: | |
| pad_mode = "constant" | |
| part = nn.functional.pad(part, (0, chunk_size - chunk_len), mode=pad_mode, value=0) | |
| batch_data.append(part) | |
| batch_locations.append((i, chunk_len)) | |
| i += step | |
| # Process batch if it's full or the end is reached | |
| if len(batch_data) >= batch_size or i >= mix.shape[1]: | |
| arr = torch.stack(batch_data, dim=0) | |
| x = model(arr) | |
| if mode == "generic": | |
| window = windowing_array.clone() # using clone() fixes the clicks at chunk edges when using batch_size=1 | |
| if i - step == 0: # First audio chunk, no fadein | |
| window[:fade_size] = 1 | |
| elif i >= mix.shape[1]: # Last audio chunk, no fadeout | |
| window[-fade_size:] = 1 | |
| for j, (start, seg_len) in enumerate(batch_locations): | |
| if mode == "generic": | |
| result[..., start:start + seg_len] += x[j, ..., :seg_len].cpu() * window[..., :seg_len] | |
| counter[..., start:start + seg_len] += window[..., :seg_len] | |
| else: | |
| result[..., start:start + seg_len] += x[j, ..., :seg_len].cpu() | |
| counter[..., start:start + seg_len] += 1.0 | |
| batch_data.clear() | |
| batch_locations.clear() | |
| if progress_bar: | |
| progress_bar.update(step) | |
| if progress_bar: | |
| progress_bar.close() | |
| # Compute final estimated sources | |
| estimated_sources = result / counter | |
| estimated_sources = estimated_sources.cpu().numpy() | |
| np.nan_to_num(estimated_sources, copy=False, nan=0.0) | |
| # Remove padding for generic mode | |
| if mode == "generic": | |
| if length_init > 2 * border and border > 0: | |
| estimated_sources = estimated_sources[..., border:-border] | |
| # Return the result as a dictionary or a single array | |
| if mode == "demucs": | |
| instruments = config.training.instruments | |
| else: | |
| instruments = prefer_target_instrument(config) | |
| ret_data = {k: v for k, v in zip(instruments, estimated_sources)} | |
| if mode == "demucs" and num_instruments <= 1: | |
| return estimated_sources | |
| else: | |
| return ret_data | |
| def prefer_target_instrument(config: ConfigDict) -> List[str]: | |
| """ | |
| Return the list of target instruments based on the configuration. | |
| If a specific target instrument is specified in the configuration, | |
| it returns a list with that instrument. Otherwise, it returns the list of instruments. | |
| Parameters: | |
| ---------- | |
| config : ConfigDict | |
| Configuration object containing the list of instruments or the target instrument. | |
| Returns: | |
| ------- | |
| List[str] | |
| A list of target instruments. | |
| """ | |
| if getattr(config.training, 'target_instrument', None): | |
| return [config.training.target_instrument] | |
| else: | |
| return config.training.instruments | |
| def load_not_compatible_weights(model: torch.nn.Module, weights: str, verbose: bool = False) -> None: | |
| """ | |
| Load weights into a model, handling mismatched shapes and dimensions. | |
| Args: | |
| model: PyTorch model into which the weights will be loaded. | |
| weights: Path to the weights file. | |
| verbose: If True, prints detailed information about matching and mismatched layers. | |
| """ | |
| new_model = model.state_dict() | |
| old_model = torch.load(weights) | |
| if 'state' in old_model: | |
| # Fix for htdemucs weights loading | |
| old_model = old_model['state'] | |
| if 'state_dict' in old_model: | |
| # Fix for apollo weights loading | |
| old_model = old_model['state_dict'] | |
| for el in new_model: | |
| if el in old_model: | |
| if verbose: | |
| print(f'Match found for {el}!') | |
| if new_model[el].shape == old_model[el].shape: | |
| if verbose: | |
| print('Action: Just copy weights!') | |
| new_model[el] = old_model[el] | |
| else: | |
| if len(new_model[el].shape) != len(old_model[el].shape): | |
| if verbose: | |
| print('Action: Different dimension! Too lazy to write the code... Skip it') | |
| else: | |
| if verbose: | |
| print(f'Shape is different: {tuple(new_model[el].shape)} != {tuple(old_model[el].shape)}') | |
| ln = len(new_model[el].shape) | |
| max_shape = [] | |
| slices_old = [] | |
| slices_new = [] | |
| for i in range(ln): | |
| max_shape.append(max(new_model[el].shape[i], old_model[el].shape[i])) | |
| slices_old.append(slice(0, old_model[el].shape[i])) | |
| slices_new.append(slice(0, new_model[el].shape[i])) | |
| # print(max_shape) | |
| # print(slices_old, slices_new) | |
| slices_old = tuple(slices_old) | |
| slices_new = tuple(slices_new) | |
| max_matrix = np.zeros(max_shape, dtype=np.float32) | |
| for i in range(ln): | |
| max_matrix[slices_old] = old_model[el].cpu().numpy() | |
| max_matrix = torch.from_numpy(max_matrix) | |
| new_model[el] = max_matrix[slices_new] | |
| else: | |
| if verbose: | |
| print(f'Match not found for {el}!') | |
| model.load_state_dict( | |
| new_model | |
| ) | |
| def load_lora_weights(model: torch.nn.Module, lora_path: str, device: str = 'cpu') -> None: | |
| """ | |
| Load LoRA weights into a model. | |
| This function updates the given model with LoRA-specific weights from the specified checkpoint file. | |
| It does not require the checkpoint to match the model's full state dictionary, as only LoRA layers are updated. | |
| Parameters: | |
| ---------- | |
| model : Module | |
| The PyTorch model into which the LoRA weights will be loaded. | |
| lora_path : str | |
| Path to the LoRA checkpoint file. | |
| device : str, optional | |
| The device to load the weights onto, by default 'cpu'. Common values are 'cpu' or 'cuda'. | |
| Returns: | |
| ------- | |
| None | |
| The model is updated in place. | |
| """ | |
| lora_state_dict = torch.load(lora_path, map_location=device) | |
| model.load_state_dict(lora_state_dict, strict=False) | |
| def load_start_checkpoint(args: argparse.Namespace, model: torch.nn.Module, type_='train') -> None: | |
| """ | |
| Load the starting checkpoint for a model. | |
| Args: | |
| args: Parsed command-line arguments containing the checkpoint path. | |
| model: PyTorch model to load the checkpoint into. | |
| type_: how to load weights - for train we can load not fully compatible weights | |
| """ | |
| print(f'Start from checkpoint: {args.start_check_point}') | |
| if type_ in ['train']: | |
| if 1: | |
| load_not_compatible_weights(model, args.start_check_point, verbose=False) | |
| else: | |
| model.load_state_dict(torch.load(args.start_check_point)) | |
| else: | |
| device='cpu' | |
| if args.model_type in ['htdemucs', 'apollo']: | |
| state_dict = torch.load(args.start_check_point, map_location=device, weights_only=False) | |
| # Fix for htdemucs pretrained models | |
| if 'state' in state_dict: | |
| state_dict = state_dict['state'] | |
| # Fix for apollo pretrained models | |
| if 'state_dict' in state_dict: | |
| state_dict = state_dict['state_dict'] | |
| else: | |
| state_dict = torch.load(args.start_check_point, map_location=device, weights_only=True) | |
| model.load_state_dict(state_dict) | |
| if args.lora_checkpoint: | |
| print(f"Loading LoRA weights from: {args.lora_checkpoint}") | |
| load_lora_weights(model, args.lora_checkpoint) | |
| def bind_lora_to_model(config: Dict[str, Any], model: nn.Module) -> nn.Module: | |
| """ | |
| Replaces specific layers in the model with LoRA-extended versions. | |
| Parameters: | |
| ---------- | |
| config : Dict[str, Any] | |
| Configuration containing parameters for LoRA. It should include a 'lora' key with parameters for `MergedLinear`. | |
| model : nn.Module | |
| The original model in which the layers will be replaced. | |
| Returns: | |
| ------- | |
| nn.Module | |
| The modified model with the replaced layers. | |
| """ | |
| if 'lora' not in config: | |
| raise ValueError("Configuration must contain the 'lora' key with parameters for LoRA.") | |
| replaced_layers = 0 # Counter for replaced layers | |
| for name, module in model.named_modules(): | |
| hierarchy = name.split('.') | |
| layer_name = hierarchy[-1] | |
| # Check if this is the target layer to replace (and layer_name == 'to_qkv') | |
| if isinstance(module, nn.Linear): | |
| try: | |
| # Get the parent module | |
| parent_module = model | |
| for submodule_name in hierarchy[:-1]: | |
| parent_module = getattr(parent_module, submodule_name) | |
| # Replace the module with LoRA-enabled layer | |
| setattr( | |
| parent_module, | |
| layer_name, | |
| lora.MergedLinear( | |
| in_features=module.in_features, | |
| out_features=module.out_features, | |
| bias=module.bias is not None, | |
| **config['lora'] | |
| ) | |
| ) | |
| replaced_layers += 1 # Increment the counter | |
| except Exception as e: | |
| print(f"Error replacing layer {name}: {e}") | |
| if replaced_layers == 0: | |
| print("Warning: No layers were replaced. Check the model structure and configuration.") | |
| else: | |
| print(f"Number of layers replaced with LoRA: {replaced_layers}") | |
| return model | |
| def draw_spectrogram(waveform, sample_rate, length, output_file): | |
| import librosa.display | |
| # Cut only required part of spectorgram | |
| x = waveform[:int(length * sample_rate), :] | |
| X = librosa.stft(x.mean(axis=-1)) # perform short-term fourier transform on mono signal | |
| Xdb = librosa.amplitude_to_db(np.abs(X), ref=np.max) # convert an amplitude spectrogram to dB-scaled spectrogram. | |
| fig, ax = plt.subplots() | |
| # plt.figure(figsize=(30, 10)) # initialize the fig size | |
| img = librosa.display.specshow( | |
| Xdb, | |
| cmap='plasma', | |
| sr=sample_rate, | |
| x_axis='time', | |
| y_axis='linear', | |
| ax=ax | |
| ) | |
| ax.set(title='File: ' + os.path.basename(output_file)) | |
| fig.colorbar(img, ax=ax, format="%+2.f dB") | |
| if output_file is not None: | |
| plt.savefig(output_file) | |