Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- Dockerfile +30 -0
- app.py +134 -0
- chunks.txt +0 -0
- requirements.txt +2 -0
Dockerfile
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use a lightweight Python base image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
bash \
|
| 10 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
+
|
| 12 |
+
# Install Python dependencies
|
| 13 |
+
COPY requirements.txt .
|
| 14 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 15 |
+
|
| 16 |
+
# Create a non-root user
|
| 17 |
+
RUN useradd -m -u 1000 user
|
| 18 |
+
|
| 19 |
+
# Copy application files
|
| 20 |
+
COPY app.py .
|
| 21 |
+
COPY chunks.txt .
|
| 22 |
+
|
| 23 |
+
# Switch to non-root user
|
| 24 |
+
USER user
|
| 25 |
+
|
| 26 |
+
# Set environment variable for Gemini API key (to be provided via Hugging Face Secrets)
|
| 27 |
+
ENV GEMINI_API_KEY=AIzaSyDteeiTCZIt9J-NntBUrdWLG3WuXGhules
|
| 28 |
+
|
| 29 |
+
# Run the Streamlit app
|
| 30 |
+
CMD ["streamlit", "run", "app.py", "--server.port", "7860", "--server.address", "0.0.0.0"]
|
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import requests
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
# Config
|
| 7 |
+
CHUNKS_FILE = "chunks.txt" # Updated to match Dockerfile structure
|
| 8 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "AIzaSyDteeiTCZIt9J-NntBUrdWLG3WuXGhules")
|
| 9 |
+
GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent"
|
| 10 |
+
MAX_CONTEXT_LENGTH = 1000
|
| 11 |
+
MAX_RESPONSE_LENGTH = 300
|
| 12 |
+
|
| 13 |
+
# Load chunks
|
| 14 |
+
def load_chunks(chunks_file):
|
| 15 |
+
chunks = []
|
| 16 |
+
try:
|
| 17 |
+
with open(chunks_file, 'r', encoding='utf-8') as file:
|
| 18 |
+
current_chunk = ""
|
| 19 |
+
for line in file:
|
| 20 |
+
if line.startswith("Chunk"):
|
| 21 |
+
if current_chunk:
|
| 22 |
+
chunks.append(current_chunk.strip())
|
| 23 |
+
current_chunk = ""
|
| 24 |
+
else:
|
| 25 |
+
current_chunk += line
|
| 26 |
+
if current_chunk:
|
| 27 |
+
chunks.append(current_chunk.strip())
|
| 28 |
+
return chunks
|
| 29 |
+
except Exception as e:
|
| 30 |
+
st.error(f"⚠️ Error loading chunks: {e}")
|
| 31 |
+
return []
|
| 32 |
+
|
| 33 |
+
# Basic keyword search
|
| 34 |
+
def search_messages(query, chunks, top_k=3):
|
| 35 |
+
query_words = set(query.lower().split())
|
| 36 |
+
scores = []
|
| 37 |
+
for chunk in chunks:
|
| 38 |
+
chunk_words = set(chunk.lower().split())
|
| 39 |
+
match_count = len(query_words.intersection(chunk_words))
|
| 40 |
+
score = match_count / max(len(chunk_words), 1)
|
| 41 |
+
scores.append((score, chunk))
|
| 42 |
+
scores.sort(reverse=True)
|
| 43 |
+
return [chunk for _, chunk in scores[:top_k]]
|
| 44 |
+
|
| 45 |
+
# Call Gemini
|
| 46 |
+
def generate_response(query, chunks):
|
| 47 |
+
try:
|
| 48 |
+
context = "\n".join(chunks)[:MAX_CONTEXT_LENGTH]
|
| 49 |
+
prompt = f"""
|
| 50 |
+
You are a professional customer support assistant. You resolve user issues by analyzing previous customer interactions and providing clear, helpful, and empathetic responses.
|
| 51 |
+
|
| 52 |
+
Instructions:
|
| 53 |
+
- Use the provided chat history as your internal knowledge base.
|
| 54 |
+
- Do not mention or reference the history directly.
|
| 55 |
+
- Understand recurring issues and recognize patterns from similar past cases.
|
| 56 |
+
- For the given user query:
|
| 57 |
+
- Greet and acknowledge the concern professionally.
|
| 58 |
+
- Suggest a solution or steps, based on insights from similar historical interactions.
|
| 59 |
+
- If the solution is uncertain, offer best practices or next steps.
|
| 60 |
+
- End with a polite closing and an offer for further help.
|
| 61 |
+
- don't mention about past history or previous tickets.
|
| 62 |
+
|
| 63 |
+
Chat History:
|
| 64 |
+
{context}
|
| 65 |
+
|
| 66 |
+
User Query:
|
| 67 |
+
"{query}"
|
| 68 |
+
|
| 69 |
+
Your Response:
|
| 70 |
+
""".strip()
|
| 71 |
+
|
| 72 |
+
headers = {
|
| 73 |
+
"Content-Type": "application/json",
|
| 74 |
+
"X-goog-api-key": GEMINI_API_KEY
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
data = {
|
| 78 |
+
"contents": [{"parts": [{"text": prompt}]}],
|
| 79 |
+
"generationConfig": {"maxOutputTokens": MAX_RESPONSE_LENGTH}
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
response = requests.post(GEMINI_API_URL, headers=headers, json=data)
|
| 83 |
+
response.raise_for_status()
|
| 84 |
+
response_data = response.json()
|
| 85 |
+
return response_data["candidates"][0]["content"]["parts"][0]["text"].strip()
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
return f"⚠️ Error generating response: {e}"
|
| 89 |
+
|
| 90 |
+
# App UI
|
| 91 |
+
def main():
|
| 92 |
+
st.set_page_config(page_title=" Support Assistant", layout="centered")
|
| 93 |
+
st.title("✅ Assistant ✅")
|
| 94 |
+
st.caption("Submit support questions that are related to previously resolved tickets to ensure efficient and accurate assistance")
|
| 95 |
+
|
| 96 |
+
# Load chunks and history
|
| 97 |
+
if "chunks" not in st.session_state:
|
| 98 |
+
st.session_state.chunks = load_chunks(CHUNKS_FILE)
|
| 99 |
+
if "messages" not in st.session_state:
|
| 100 |
+
st.session_state.messages = []
|
| 101 |
+
|
| 102 |
+
# Show chat history
|
| 103 |
+
for message in st.session_state.messages:
|
| 104 |
+
role, content = message["role"], message["content"]
|
| 105 |
+
with st.chat_message("user" if role == "user" else "assistant"):
|
| 106 |
+
st.markdown(content)
|
| 107 |
+
if role == "assistant":
|
| 108 |
+
with st.expander("📋 Copy Response"):
|
| 109 |
+
st.code(content, language="markdown")
|
| 110 |
+
|
| 111 |
+
# User input
|
| 112 |
+
user_input = st.chat_input("Type your support question here...")
|
| 113 |
+
|
| 114 |
+
if user_input:
|
| 115 |
+
# Display user message
|
| 116 |
+
with st.chat_message("user"):
|
| 117 |
+
st.markdown(user_input)
|
| 118 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 119 |
+
|
| 120 |
+
# Show bot is thinking...
|
| 121 |
+
with st.chat_message("assistant"):
|
| 122 |
+
with st.spinner("🧠 Thinking..."):
|
| 123 |
+
relevant_chunks = search_messages(user_input, st.session_state.chunks)
|
| 124 |
+
bot_reply = generate_response(user_input, relevant_chunks)
|
| 125 |
+
time.sleep(0.5) # simulate delay
|
| 126 |
+
st.markdown(bot_reply)
|
| 127 |
+
with st.expander("📋 Copy Response"):
|
| 128 |
+
st.code(bot_reply, language="markdown")
|
| 129 |
+
|
| 130 |
+
# Save bot reply
|
| 131 |
+
st.session_state.messages.append({"role": "assistant", "content": bot_reply})
|
| 132 |
+
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
main()
|
chunks.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.32.0
|
| 2 |
+
requests==2.32.3
|