Spaces:
Running
Running
Abid Ali Awan
commited on
Commit
·
22b0228
1
Parent(s):
f15d60c
deploying the app
Browse files- README.md +7 -3
- app.py +526 -0
- requirements.txt +1 -0
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
---
|
| 2 |
title: Gemini 2 Pro Chat
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.15.0
|
|
@@ -11,4 +11,8 @@ license: mit
|
|
| 11 |
short_description: 'Image, Audio, and Document understanding + Code Execution. '
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Gemini 2 Pro Chat
|
| 3 |
+
emoji: ♊💬
|
| 4 |
+
colorFrom: Green
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.15.0
|
|
|
|
| 11 |
short_description: 'Image, Audio, and Document understanding + Code Execution. '
|
| 12 |
---
|
| 13 |
|
| 14 |
+
## Gemini 2.0 Pro Multi-modal Chatbot
|
| 15 |
+
This module sets up a Gradio interface for a multi-modal chatbot powered by the Gemini 2.0 Pro model.
|
| 16 |
+
It supports text, image, audio, and document inputs and uses the google.genai library to generate responses.
|
| 17 |
+
All response-generation operations now use the streaming endpoint (generate_content_stream) so that the UI
|
| 18 |
+
receives incremental updates.
|
app.py
ADDED
|
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import io
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from typing import Dict, List, Optional, Union
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from google import genai
|
| 9 |
+
from google.genai import types # New types module from google-genai
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
# Retrieve API key for Google GenAI from the environment variables.
|
| 13 |
+
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
| 14 |
+
|
| 15 |
+
# Initialize the client so that it can be reused across functions.
|
| 16 |
+
CLIENT = genai.Client(api_key=GOOGLE_API_KEY)
|
| 17 |
+
|
| 18 |
+
# General constants for the UI
|
| 19 |
+
TITLE = """<h1 align="center">Gemini 2.0 Pro Multi-modal Chatbot</h1>"""
|
| 20 |
+
AVATAR_IMAGES = (None, "https://media.roboflow.com/spaces/gemini-icon.png")
|
| 21 |
+
IMAGE_WIDTH = 512
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
|
| 25 |
+
"""
|
| 26 |
+
Convert a comma-separated string of stop sequences into a list.
|
| 27 |
+
|
| 28 |
+
Parameters:
|
| 29 |
+
stop_sequences (str): A string containing stop sequences separated by commas.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
Optional[List[str]]: A list of trimmed stop sequences if provided; otherwise, None.
|
| 33 |
+
"""
|
| 34 |
+
if not stop_sequences:
|
| 35 |
+
return None
|
| 36 |
+
return [sequence.strip() for sequence in stop_sequences.split(",")]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 40 |
+
"""
|
| 41 |
+
Resize an image to a fixed width while maintaining the aspect ratio.
|
| 42 |
+
|
| 43 |
+
Parameters:
|
| 44 |
+
image (Image.Image): The original image.
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Image.Image: The resized image with width fixed at IMAGE_WIDTH.
|
| 48 |
+
"""
|
| 49 |
+
image_height = int(image.height * IMAGE_WIDTH / image.width)
|
| 50 |
+
return image.resize((IMAGE_WIDTH, image_height))
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def image_to_base64_html_from_pil(image: Image.Image, max_width: int = 150) -> str:
|
| 54 |
+
"""
|
| 55 |
+
Convert a PIL Image to an HTML <img> tag with base64-encoded image data.
|
| 56 |
+
|
| 57 |
+
Parameters:
|
| 58 |
+
image (Image.Image): The image to encode.
|
| 59 |
+
max_width (int): Maximum width (in pixels) for the displayed image.
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
str: An HTML string with the embedded image.
|
| 63 |
+
"""
|
| 64 |
+
buffered = io.BytesIO()
|
| 65 |
+
image.save(buffered, format="JPEG")
|
| 66 |
+
b64_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 67 |
+
return (
|
| 68 |
+
f'<img src="data:image/jpeg;base64,{b64_data}" alt="Uploaded Image" '
|
| 69 |
+
f'style="max-width:{max_width}px;">'
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def preprocess_chat_history_messages(
|
| 74 |
+
chat_history: List[Union[dict, gr.ChatMessage]],
|
| 75 |
+
) -> List[Dict[str, Union[str, List[str]]]]:
|
| 76 |
+
"""
|
| 77 |
+
Normalize chat history messages into a consistent list of dictionaries.
|
| 78 |
+
|
| 79 |
+
Each message (whether as a dict or gr.ChatMessage) is converted into a dictionary
|
| 80 |
+
containing a role and a list of parts (message content).
|
| 81 |
+
|
| 82 |
+
Parameters:
|
| 83 |
+
chat_history (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
List[Dict[str, Union[str, List[str]]]]: A normalized list of messages.
|
| 87 |
+
"""
|
| 88 |
+
messages = []
|
| 89 |
+
for msg in chat_history:
|
| 90 |
+
if isinstance(msg, dict):
|
| 91 |
+
content = msg.get("content")
|
| 92 |
+
role = msg.get("role")
|
| 93 |
+
else:
|
| 94 |
+
content = msg.content
|
| 95 |
+
role = msg.role
|
| 96 |
+
|
| 97 |
+
if content is not None:
|
| 98 |
+
# Convert "assistant" role to "model" if needed.
|
| 99 |
+
role = "model" if role == "assistant" else role
|
| 100 |
+
messages.append({"role": role, "parts": [content]})
|
| 101 |
+
return messages
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def chat_history_to_prompt(chat_history: List[Union[dict, gr.ChatMessage]]) -> str:
|
| 105 |
+
"""
|
| 106 |
+
Convert the entire chat conversation into a single text prompt.
|
| 107 |
+
|
| 108 |
+
Each message is prefixed by “User:” or “Assistant:” to form a full conversation.
|
| 109 |
+
|
| 110 |
+
Parameters:
|
| 111 |
+
chat_history (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
str: A string that concatenates the conversation history.
|
| 115 |
+
"""
|
| 116 |
+
conversation = ""
|
| 117 |
+
for msg in chat_history:
|
| 118 |
+
content = get_message_content(msg)
|
| 119 |
+
role = msg.get("role") if isinstance(msg, dict) else msg.role
|
| 120 |
+
if role in ["assistant", "model"]:
|
| 121 |
+
conversation += f"Assistant: {content}\n"
|
| 122 |
+
else:
|
| 123 |
+
conversation += f"User: {content}\n"
|
| 124 |
+
return conversation
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def upload(files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]]):
|
| 128 |
+
"""
|
| 129 |
+
Process uploaded image files: resize them, convert to an HTML <img> tag (with base64 data),
|
| 130 |
+
and append it as a new user message to the chatbot history.
|
| 131 |
+
|
| 132 |
+
Parameters:
|
| 133 |
+
files (Optional[List[str]]): List of image file paths.
|
| 134 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The current conversation history.
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
List[Union[dict, gr.ChatMessage]]: Updated conversation history.
|
| 138 |
+
"""
|
| 139 |
+
for file in files:
|
| 140 |
+
image = Image.open(file).convert("RGB")
|
| 141 |
+
image = preprocess_image(image)
|
| 142 |
+
image_html = image_to_base64_html_from_pil(image)
|
| 143 |
+
chatbot.append(gr.ChatMessage(role="user", content=image_html))
|
| 144 |
+
return chatbot
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def upload_audio(
|
| 148 |
+
files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]]
|
| 149 |
+
):
|
| 150 |
+
"""
|
| 151 |
+
Process uploaded audio files: read and base64-encode them, wrap the data in an HTML audio player,
|
| 152 |
+
and append it as a new user message.
|
| 153 |
+
|
| 154 |
+
Parameters:
|
| 155 |
+
files (Optional[List[str]]): List of audio file paths.
|
| 156 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
| 157 |
+
|
| 158 |
+
Returns:
|
| 159 |
+
List[Union[dict, gr.ChatMessage]]: The updated chatbot history.
|
| 160 |
+
"""
|
| 161 |
+
for file in files:
|
| 162 |
+
with open(file, "rb") as f:
|
| 163 |
+
audio_bytes = f.read()
|
| 164 |
+
b64_data = base64.b64encode(audio_bytes).decode("utf-8")
|
| 165 |
+
audio_html = f"""<audio controls style="max-width:150px;">
|
| 166 |
+
<source src="data:audio/mp3;base64,{b64_data}" type="audio/mp3">
|
| 167 |
+
Your browser does not support the audio element.
|
| 168 |
+
</audio>"""
|
| 169 |
+
chatbot.append(gr.ChatMessage(role="user", content=audio_html))
|
| 170 |
+
return chatbot
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def upload_document(
|
| 174 |
+
files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]]
|
| 175 |
+
):
|
| 176 |
+
"""
|
| 177 |
+
Process uploaded document files (assumed to be PDFs) and add a notification message
|
| 178 |
+
(with an HTML snippet) indicating that the document has been uploaded.
|
| 179 |
+
|
| 180 |
+
Parameters:
|
| 181 |
+
files (Optional[List[str]]): List of document file paths.
|
| 182 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
| 183 |
+
|
| 184 |
+
Returns:
|
| 185 |
+
List[Union[dict, gr.ChatMessage]]: The updated chatbot history.
|
| 186 |
+
"""
|
| 187 |
+
for file in files:
|
| 188 |
+
filename = os.path.basename(file)
|
| 189 |
+
doc_html = f"<p>📄 Document uploaded: {filename}</p>"
|
| 190 |
+
chatbot.append(gr.ChatMessage(role="user", content=doc_html))
|
| 191 |
+
return chatbot
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def user(text_prompt: str, chatbot: List[gr.ChatMessage]):
|
| 195 |
+
"""
|
| 196 |
+
Append a new user text message to the chat history.
|
| 197 |
+
|
| 198 |
+
Parameters:
|
| 199 |
+
text_prompt (str): The input text provided by the user.
|
| 200 |
+
chatbot (List[gr.ChatMessage]): The existing conversation history.
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
Tuple[str, List[gr.ChatMessage]]: A tuple of an empty string (clearing the prompt)
|
| 204 |
+
and the updated conversation history.
|
| 205 |
+
"""
|
| 206 |
+
if text_prompt:
|
| 207 |
+
chatbot.append(gr.ChatMessage(role="user", content=text_prompt))
|
| 208 |
+
return "", chatbot
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def get_message_content(msg):
|
| 212 |
+
"""
|
| 213 |
+
Retrieve the content of a message that can be either a dictionary or a gr.ChatMessage.
|
| 214 |
+
|
| 215 |
+
Parameters:
|
| 216 |
+
msg (Union[dict, gr.ChatMessage]): The message object.
|
| 217 |
+
|
| 218 |
+
Returns:
|
| 219 |
+
str: The textual content of the message.
|
| 220 |
+
"""
|
| 221 |
+
if isinstance(msg, dict):
|
| 222 |
+
return msg.get("content", "")
|
| 223 |
+
return msg.content
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def bot(
|
| 227 |
+
image_files: Optional[List[str]],
|
| 228 |
+
audio_files: Optional[List[str]],
|
| 229 |
+
doc_files: Optional[List[str]],
|
| 230 |
+
chatbot: List[Union[dict, gr.ChatMessage]],
|
| 231 |
+
):
|
| 232 |
+
"""
|
| 233 |
+
Generate a chatbot response from Gemini 2.0 based on provided inputs.
|
| 234 |
+
This function supports three branches:
|
| 235 |
+
1. Document branch: when doc_files are provided.
|
| 236 |
+
2. Multi-modal branch: when image and/or audio files are provided.
|
| 237 |
+
3. Text-only conversation branch.
|
| 238 |
+
All branches now use generate_content_stream to yield incremental responses.
|
| 239 |
+
|
| 240 |
+
Parameters:
|
| 241 |
+
image_files (Optional[List[str]]): List of image file paths.
|
| 242 |
+
audio_files (Optional[List[str]]): List of audio file paths.
|
| 243 |
+
doc_files (Optional[List[str]]): List of document file paths.
|
| 244 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
| 245 |
+
|
| 246 |
+
Yields:
|
| 247 |
+
List[Union[dict, gr.ChatMessage]]: The updated conversation history with streamed responses.
|
| 248 |
+
"""
|
| 249 |
+
if len(chatbot) == 0:
|
| 250 |
+
return chatbot
|
| 251 |
+
|
| 252 |
+
# Append a placeholder for the assistant's response.
|
| 253 |
+
chatbot.append(gr.ChatMessage(role="assistant", content=""))
|
| 254 |
+
|
| 255 |
+
generation_config = types.GenerateContentConfig(
|
| 256 |
+
temperature=0.4,
|
| 257 |
+
max_output_tokens=4096,
|
| 258 |
+
top_k=32,
|
| 259 |
+
top_p=1,
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Branch 1: Document uploads.
|
| 263 |
+
if doc_files and len(doc_files) > 0:
|
| 264 |
+
prev_msg_content = get_message_content(chatbot[-2]) if len(chatbot) >= 2 else ""
|
| 265 |
+
prompt = [prev_msg_content] if prev_msg_content else []
|
| 266 |
+
doc_parts = []
|
| 267 |
+
for file in doc_files:
|
| 268 |
+
with open(file, "rb") as f:
|
| 269 |
+
doc_bytes = f.read()
|
| 270 |
+
doc_parts.append(
|
| 271 |
+
types.Part.from_bytes(
|
| 272 |
+
data=doc_bytes,
|
| 273 |
+
mime_type="application/pdf",
|
| 274 |
+
)
|
| 275 |
+
)
|
| 276 |
+
# Combine document parts and previous text.
|
| 277 |
+
contents = doc_parts + prompt
|
| 278 |
+
# Use the streaming endpoint.
|
| 279 |
+
response = CLIENT.models.generate_content_stream(
|
| 280 |
+
model="gemini-2.0-pro-exp-02-05",
|
| 281 |
+
contents=contents,
|
| 282 |
+
config=generation_config,
|
| 283 |
+
)
|
| 284 |
+
for chunk in response:
|
| 285 |
+
for i in range(0, len(chunk.text), 10):
|
| 286 |
+
section = chunk.text[i : i + 10]
|
| 287 |
+
if isinstance(chatbot[-1], dict):
|
| 288 |
+
chatbot[-1]["content"] += section
|
| 289 |
+
else:
|
| 290 |
+
chatbot[-1].content += section
|
| 291 |
+
time.sleep(0.01)
|
| 292 |
+
yield chatbot
|
| 293 |
+
return
|
| 294 |
+
|
| 295 |
+
# Branch 2: Image or audio uploads.
|
| 296 |
+
elif (image_files and len(image_files) > 0) or (
|
| 297 |
+
audio_files and len(audio_files) > 0
|
| 298 |
+
):
|
| 299 |
+
prev_msg_content = get_message_content(chatbot[-2]) if len(chatbot) >= 2 else ""
|
| 300 |
+
text_prompt = [prev_msg_content] if prev_msg_content else []
|
| 301 |
+
image_prompt = (
|
| 302 |
+
[Image.open(file).convert("RGB") for file in image_files]
|
| 303 |
+
if image_files
|
| 304 |
+
else []
|
| 305 |
+
)
|
| 306 |
+
audio_prompt = []
|
| 307 |
+
if audio_files:
|
| 308 |
+
for file in audio_files:
|
| 309 |
+
with open(file, "rb") as f:
|
| 310 |
+
audio_bytes = f.read()
|
| 311 |
+
audio_prompt.append(
|
| 312 |
+
types.Part.from_bytes(
|
| 313 |
+
data=audio_bytes,
|
| 314 |
+
mime_type="audio/mp3",
|
| 315 |
+
)
|
| 316 |
+
)
|
| 317 |
+
# Combine all inputs into a multi-modal prompt.
|
| 318 |
+
contents = text_prompt + image_prompt + audio_prompt
|
| 319 |
+
response = CLIENT.models.generate_content_stream(
|
| 320 |
+
model="gemini-2.0-pro-exp-02-05",
|
| 321 |
+
contents=contents,
|
| 322 |
+
config=generation_config,
|
| 323 |
+
)
|
| 324 |
+
for chunk in response:
|
| 325 |
+
for i in range(0, len(chunk.text), 10):
|
| 326 |
+
section = chunk.text[i : i + 10]
|
| 327 |
+
if isinstance(chatbot[-1], dict):
|
| 328 |
+
chatbot[-1]["content"] += section
|
| 329 |
+
else:
|
| 330 |
+
chatbot[-1].content += section
|
| 331 |
+
time.sleep(0.01)
|
| 332 |
+
yield chatbot
|
| 333 |
+
return
|
| 334 |
+
|
| 335 |
+
# Branch 3: Text-only conversation.
|
| 336 |
+
else:
|
| 337 |
+
conversation_text = chat_history_to_prompt(chatbot)
|
| 338 |
+
response = CLIENT.models.generate_content_stream(
|
| 339 |
+
model="gemini-2.0-pro-exp-02-05",
|
| 340 |
+
contents=[conversation_text],
|
| 341 |
+
config=generation_config,
|
| 342 |
+
)
|
| 343 |
+
for chunk in response:
|
| 344 |
+
for i in range(0, len(chunk.text), 10):
|
| 345 |
+
section = chunk.text[i : i + 10]
|
| 346 |
+
if isinstance(chatbot[-1], dict):
|
| 347 |
+
chatbot[-1]["content"] += section
|
| 348 |
+
else:
|
| 349 |
+
chatbot[-1].content += section
|
| 350 |
+
time.sleep(0.01)
|
| 351 |
+
yield chatbot
|
| 352 |
+
return
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def run_code_execution(code_prompt: str, chatbot: List[Union[dict, gr.ChatMessage]]):
|
| 356 |
+
"""
|
| 357 |
+
Append the user's code execution query to the chat history, then call Gemini
|
| 358 |
+
with code execution enabled using the user's input. The results (including any
|
| 359 |
+
generated code and execution output) are appended as a new assistant message.
|
| 360 |
+
"""
|
| 361 |
+
# Only add a user message if there is content.
|
| 362 |
+
if code_prompt.strip():
|
| 363 |
+
chatbot.append(gr.ChatMessage(role="user", content=code_prompt))
|
| 364 |
+
# Append an empty assistant message to update with the code execution response.
|
| 365 |
+
chatbot.append(gr.ChatMessage(role="assistant", content=""))
|
| 366 |
+
|
| 367 |
+
generation_config = types.GenerateContentConfig(
|
| 368 |
+
tools=[types.Tool(code_execution=types.ToolCodeExecution)]
|
| 369 |
+
)
|
| 370 |
+
response = CLIENT.models.generate_content(
|
| 371 |
+
model="gemini-2.0-pro-exp-02-05",
|
| 372 |
+
contents=code_prompt,
|
| 373 |
+
config=generation_config,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
output_text = ""
|
| 377 |
+
for part in response.candidates[0].content.parts:
|
| 378 |
+
if part.text is not None:
|
| 379 |
+
output_text += f"{part.text}\n"
|
| 380 |
+
if part.executable_code is not None:
|
| 381 |
+
# Display the executable code in a code block (using markdown formatting)
|
| 382 |
+
output_text += (
|
| 383 |
+
f"\n**Generated Code:**\n```python\n{part.executable_code.code}\n```\n"
|
| 384 |
+
)
|
| 385 |
+
if part.code_execution_result is not None:
|
| 386 |
+
output_text += (
|
| 387 |
+
f"\n**Output:**\n```\n{part.code_execution_result.output}\n```\n"
|
| 388 |
+
)
|
| 389 |
+
if part.inline_data is not None:
|
| 390 |
+
image_data = base64.b64decode(part.inline_data.data)
|
| 391 |
+
image = Image.open(io.BytesIO(image_data))
|
| 392 |
+
buffered = io.BytesIO()
|
| 393 |
+
image.save(buffered, format="PNG")
|
| 394 |
+
b64_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 395 |
+
output_text += f'\n<img src="data:image/png;base64,{b64_data}" alt="Inline Image" style="max-width:300px;"/>\n'
|
| 396 |
+
output_text += "\n---\n"
|
| 397 |
+
|
| 398 |
+
# Update the last assistant message with the code execution result.
|
| 399 |
+
if isinstance(chatbot[-1], dict):
|
| 400 |
+
chatbot[-1]["content"] = output_text
|
| 401 |
+
else:
|
| 402 |
+
chatbot[-1].content = output_text
|
| 403 |
+
|
| 404 |
+
# Clear the text prompt after processing.
|
| 405 |
+
return "", chatbot
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
# Define the Gradio UI components.
|
| 409 |
+
chatbot_component = gr.Chatbot(
|
| 410 |
+
label="Gemini 2.0 Pro",
|
| 411 |
+
type="messages", # Using message objects.
|
| 412 |
+
bubble_full_width=False,
|
| 413 |
+
avatar_images=AVATAR_IMAGES,
|
| 414 |
+
scale=2,
|
| 415 |
+
height=400,
|
| 416 |
+
)
|
| 417 |
+
text_prompt_component = gr.Textbox(
|
| 418 |
+
placeholder="Enter your message or code query here...",
|
| 419 |
+
show_label=False,
|
| 420 |
+
autofocus=True,
|
| 421 |
+
scale=19,
|
| 422 |
+
)
|
| 423 |
+
upload_button_component = gr.UploadButton(
|
| 424 |
+
label="Upload Images",
|
| 425 |
+
file_count="multiple",
|
| 426 |
+
file_types=["image"],
|
| 427 |
+
scale=1,
|
| 428 |
+
)
|
| 429 |
+
upload_audio_button_component = gr.UploadButton(
|
| 430 |
+
label="Upload Audio",
|
| 431 |
+
file_count="multiple",
|
| 432 |
+
file_types=["audio"],
|
| 433 |
+
scale=1,
|
| 434 |
+
)
|
| 435 |
+
upload_doc_button_component = gr.UploadButton(
|
| 436 |
+
label="Upload Documents",
|
| 437 |
+
file_count="multiple",
|
| 438 |
+
file_types=[".pdf"],
|
| 439 |
+
scale=1,
|
| 440 |
+
)
|
| 441 |
+
run_button_component = gr.Button(value="Run", variant="primary", scale=1, min_width=60)
|
| 442 |
+
run_code_execution_button = gr.Button(
|
| 443 |
+
value="Run Code Execution", variant="secondary", scale=1
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
# Define input lists for button chaining.
|
| 447 |
+
user_inputs = [text_prompt_component, chatbot_component]
|
| 448 |
+
bot_inputs = [
|
| 449 |
+
upload_button_component,
|
| 450 |
+
upload_audio_button_component,
|
| 451 |
+
upload_doc_button_component,
|
| 452 |
+
chatbot_component,
|
| 453 |
+
]
|
| 454 |
+
|
| 455 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 456 |
+
gr.HTML(TITLE)
|
| 457 |
+
with gr.Column():
|
| 458 |
+
chatbot_component.render()
|
| 459 |
+
with gr.Row(equal_height=True):
|
| 460 |
+
text_prompt_component.render()
|
| 461 |
+
run_button_component.render()
|
| 462 |
+
with gr.Row():
|
| 463 |
+
# Render file-upload buttons and the code execution button in a single row.
|
| 464 |
+
upload_button_component.render()
|
| 465 |
+
upload_audio_button_component.render()
|
| 466 |
+
upload_doc_button_component.render()
|
| 467 |
+
run_code_execution_button.render()
|
| 468 |
+
|
| 469 |
+
# When the Run button is clicked, first process the user text then stream a response.
|
| 470 |
+
run_button_component.click(
|
| 471 |
+
fn=user,
|
| 472 |
+
inputs=user_inputs,
|
| 473 |
+
outputs=[text_prompt_component, chatbot_component],
|
| 474 |
+
queue=False,
|
| 475 |
+
).then(
|
| 476 |
+
fn=bot,
|
| 477 |
+
inputs=bot_inputs,
|
| 478 |
+
outputs=[chatbot_component],
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
# Allow submission using the Enter key.
|
| 482 |
+
text_prompt_component.submit(
|
| 483 |
+
fn=user,
|
| 484 |
+
inputs=user_inputs,
|
| 485 |
+
outputs=[text_prompt_component, chatbot_component],
|
| 486 |
+
queue=False,
|
| 487 |
+
).then(
|
| 488 |
+
fn=bot,
|
| 489 |
+
inputs=bot_inputs,
|
| 490 |
+
outputs=[chatbot_component],
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
# Handle image uploads.
|
| 494 |
+
upload_button_component.upload(
|
| 495 |
+
fn=upload,
|
| 496 |
+
inputs=[upload_button_component, chatbot_component],
|
| 497 |
+
outputs=[chatbot_component],
|
| 498 |
+
queue=False,
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
# Handle audio uploads.
|
| 502 |
+
upload_audio_button_component.upload(
|
| 503 |
+
fn=upload_audio,
|
| 504 |
+
inputs=[upload_audio_button_component, chatbot_component],
|
| 505 |
+
outputs=[chatbot_component],
|
| 506 |
+
queue=False,
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
# Handle document uploads.
|
| 510 |
+
upload_doc_button_component.upload(
|
| 511 |
+
fn=upload_document,
|
| 512 |
+
inputs=[upload_doc_button_component, chatbot_component],
|
| 513 |
+
outputs=[chatbot_component],
|
| 514 |
+
queue=False,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# When the Code Execution button is clicked, process the code prompt and stream the output.
|
| 518 |
+
run_code_execution_button.click(
|
| 519 |
+
fn=run_code_execution,
|
| 520 |
+
inputs=[text_prompt_component, chatbot_component],
|
| 521 |
+
outputs=[text_prompt_component, chatbot_component],
|
| 522 |
+
queue=False,
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
# Launch the demo interface with queuing enabled.
|
| 526 |
+
demo.queue(max_size=99, api_open=False).launch(debug=False, pwa=True, show_error=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
google-genai==1.0.0
|