Spaces:
Runtime error
Runtime error
| # Agung Wijaya - WebUI 2023 - Gradio | |
| # file app.py | |
| # Import | |
| import os | |
| import psutil | |
| import shutil | |
| import numpy as np | |
| import gradio as gr | |
| import subprocess | |
| from pathlib import Path | |
| import ffmpeg | |
| import json | |
| import re | |
| import time | |
| import random | |
| import torch | |
| import librosa | |
| import util | |
| from config import device | |
| from infer_pack.models import ( | |
| SynthesizerTrnMs256NSFsid, | |
| SynthesizerTrnMs256NSFsid_nono | |
| ) | |
| from vc_infer_pipeline import VC | |
| from typing import Union | |
| from os import path, getenv | |
| from datetime import datetime | |
| from scipy.io.wavfile import write | |
| # Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa | |
| in_hf_space = getenv('SYSTEM') == 'spaces' | |
| # Set High Quality (.wav) or not (.mp3) | |
| high_quality = True | |
| # Read config.json | |
| config_json = json.loads(open("config.json").read()) | |
| # Load hubert model | |
| hubert_model = util.load_hubert_model(device, 'hubert_base.pt') | |
| hubert_model.eval() | |
| # Load models | |
| loaded_models = [] | |
| for model_name in config_json.get('models'): | |
| print(f'Loading model: {model_name}') | |
| # Load model info | |
| model_info = json.load( | |
| open(path.join('model', model_name, 'config.json'), 'r') | |
| ) | |
| # Load RVC checkpoint | |
| cpt = torch.load( | |
| path.join('model', model_name, model_info['model']), | |
| map_location='cpu' | |
| ) | |
| tgt_sr = cpt['config'][-1] | |
| cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk | |
| if_f0 = cpt.get('f0', 1) | |
| net_g: Union[SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono] | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid( | |
| *cpt['config'], | |
| is_half=util.is_half(device) | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config']) | |
| del net_g.enc_q | |
| # According to original code, this thing seems necessary. | |
| print(net_g.load_state_dict(cpt['weight'], strict=False)) | |
| net_g.eval().to(device) | |
| net_g = net_g.half() if util.is_half(device) else net_g.float() | |
| vc = VC(tgt_sr, device, util.is_half(device)) | |
| loaded_models.append(dict( | |
| name=model_name, | |
| metadata=model_info, | |
| vc=vc, | |
| net_g=net_g, | |
| if_f0=if_f0, | |
| target_sr=tgt_sr | |
| )) | |
| print(f'Models loaded: {len(loaded_models)}') | |
| # Command line test | |
| def command_line_test(): | |
| command = "df -h /home/user/app" | |
| process = subprocess.run(command.split(), stdout=subprocess.PIPE) | |
| result = process.stdout.decode() | |
| return gr.HTML(value=result) | |
| # Check junk files && delete | |
| def check_junk(): | |
| # Find and delete all files after 10 minutes | |
| os.system("find ./ytaudio/* -mmin +10 -delete") | |
| os.system("find ./output/* -mmin +10 -delete") | |
| os.system("find /tmp/gradio/* -mmin +5 -delete") | |
| os.system("find /tmp/*.wav -mmin +5 -delete") | |
| print("Junk files has been deleted!") | |
| # Function Information | |
| def information(): | |
| stats = os.system("du -s /content -h") | |
| disk_usage = "Disk usage: "+str(stats) | |
| info = "<p>"+disk_usage+"<br/></p>" | |
| return gr.HTML(value=info) | |
| # Function YouTube Downloader Audio | |
| def youtube_downloader( | |
| video_identifier, | |
| start_time, | |
| end_time, | |
| output_filename="track.wav", | |
| num_attempts=5, | |
| url_base="", | |
| quiet=False, | |
| force=True, | |
| ): | |
| output_path = Path(output_filename) | |
| if output_path.exists(): | |
| if not force: | |
| return output_path | |
| else: | |
| output_path.unlink() | |
| quiet = "--quiet --no-warnings" if quiet else "" | |
| command = f""" | |
| yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501 | |
| """.strip() | |
| attempts = 0 | |
| while True: | |
| try: | |
| _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) | |
| except subprocess.CalledProcessError: | |
| attempts += 1 | |
| if attempts == num_attempts: | |
| return None | |
| else: | |
| break | |
| if output_path.exists(): | |
| return output_path | |
| else: | |
| return None | |
| # Function Audio Separated | |
| def audio_separated(audio_input, progress=gr.Progress()): | |
| # start progress | |
| progress(progress=0, desc="Starting...") | |
| time.sleep(1) | |
| # check file input | |
| if audio_input is None: | |
| # show progress | |
| for i in progress.tqdm(range(100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return (None, None, 'Please input audio.') | |
| # create filename | |
| filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S") | |
| # progress | |
| progress(progress=0.10, desc="Please wait...") | |
| # make dir output | |
| os.makedirs("output", exist_ok=True) | |
| # progress | |
| progress(progress=0.20, desc="Please wait...") | |
| # write | |
| if high_quality: | |
| write(filename+".wav", audio_input[0], audio_input[1]) | |
| else: | |
| write(filename+".mp3", audio_input[0], audio_input[1]) | |
| # progress | |
| progress(progress=0.50, desc="Please wait...") | |
| # demucs process | |
| if high_quality: | |
| command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output" | |
| else: | |
| command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output" | |
| os.system(command_demucs) | |
| # progress | |
| progress(progress=0.70, desc="Please wait...") | |
| # remove file audio | |
| if high_quality: | |
| command_delete = "rm -v ./"+filename+".wav" | |
| else: | |
| command_delete = "rm -v ./"+filename+".mp3" | |
| os.system(command_delete) | |
| # progress | |
| progress(progress=0.80, desc="Please wait...") | |
| # progress | |
| for i in progress.tqdm(range(80,100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| if high_quality: | |
| return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..." | |
| else: | |
| return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..." | |
| # Function Voice Changer | |
| def voice_changer(audio_input, model_index, pitch_adjust, f0_method, feat_ratio, progress=gr.Progress()): | |
| # start progress | |
| progress(progress=0, desc="Starting...") | |
| time.sleep(1) | |
| # check file input | |
| if audio_input is None: | |
| # progress | |
| for i in progress.tqdm(range(100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return (None, 'Please input audio.') | |
| # check model input | |
| if model_index is None: | |
| # progress | |
| for i in progress.tqdm(range(100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return (None, 'Please select a model.') | |
| model = loaded_models[model_index] | |
| # Reference: so-vits | |
| (audio_samp, audio_npy) = audio_input | |
| # progress | |
| progress(progress=0.10, desc="Please wait...") | |
| # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49 | |
| if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space: | |
| # progress | |
| for i in progress.tqdm(range(10,100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return (None, 'Input audio is longer than 60 secs.') | |
| # Bloody hell: https://stackoverflow.com/questions/26921836/ | |
| if audio_npy.dtype != np.float32: # :thonk: | |
| audio_npy = ( | |
| audio_npy / np.iinfo(audio_npy.dtype).max | |
| ).astype(np.float32) | |
| # progress | |
| progress(progress=0.30, desc="Please wait...") | |
| if len(audio_npy.shape) > 1: | |
| audio_npy = librosa.to_mono(audio_npy.transpose(1, 0)) | |
| # progress | |
| progress(progress=0.40, desc="Please wait...") | |
| if audio_samp != 16000: | |
| audio_npy = librosa.resample( | |
| audio_npy, | |
| orig_sr=audio_samp, | |
| target_sr=16000 | |
| ) | |
| # progress | |
| progress(progress=0.50, desc="Please wait...") | |
| pitch_int = int(pitch_adjust) | |
| times = [0, 0, 0] | |
| output_audio = model['vc'].pipeline( | |
| hubert_model, | |
| model['net_g'], | |
| model['metadata'].get('speaker_id', 0), | |
| audio_npy, | |
| times, | |
| pitch_int, | |
| f0_method, | |
| path.join('model', model['name'], model['metadata']['feat_index']), | |
| path.join('model', model['name'], model['metadata']['feat_npy']), | |
| feat_ratio, | |
| model['if_f0'] | |
| ) | |
| # progress | |
| progress(progress=0.80, desc="Please wait...") | |
| print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s') | |
| # progress | |
| for i in progress.tqdm(range(80,100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return ((model['target_sr'], output_audio), 'Successfully...') | |
| # Function Text to Voice | |
| def text_to_voice(text_input, model_index): | |
| # start progress | |
| progress(progress=0, desc="Starting...") | |
| time.sleep(1) | |
| # check text input | |
| if text_input is None: | |
| # progress | |
| for i in progress.tqdm(range(2,100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return (None, 'Please write text.') | |
| # check model input | |
| if model_index is None: | |
| # progress | |
| for i in progress.tqdm(range(2,100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return (None, 'Please select a model.') | |
| # progress | |
| for i in progress.tqdm(range(2,100), desc="Please wait..."): | |
| time.sleep(0.1) | |
| return None, "Sorry, you can't use it yet because this program is being developed!" | |
| # Themes | |
| theme = gr.themes.Base() | |
| # CSS | |
| css = "footer {visibility: hidden}" | |
| # Blocks | |
| with gr.Blocks(theme=theme, css=css) as App: | |
| # Header | |
| gr.HTML("<center>" | |
| "<h1>🥳🎶🎡 - AI歌手,RVC歌声转换</h1>" | |
| "</center>") | |
| gr.Markdown("### <center>🦄 - 能够自动提取视频中的声音,并去除背景音;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>") | |
| gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
| # Information | |
| with gr.Accordion("Just information!"): | |
| information() | |
| # Tab YouTube Downloader | |
| with gr.Tab("🤗 - b站视频提取声音"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| ydl_url_input = gr.Textbox(label="b站视频的网址(https://...)") | |
| start = gr.Number(value=0, label="起始时间 (秒)") | |
| end = gr.Number(value=15, label="结束时间 (秒)") | |
| ydl_url_submit = gr.Button("提取声音文件吧", variant="primary") | |
| with gr.Column(): | |
| ydl_audio_output = gr.Audio(label="Audio from YouTube") | |
| with gr.Row(): | |
| with gr.Column(): | |
| as_audio_input = ydl_audio_output | |
| as_audio_submit = gr.Button("去除背景音吧", variant="primary") | |
| with gr.Column(): | |
| as_audio_vocals = gr.Audio(label="Vocal only") | |
| as_audio_no_vocals = gr.Audio(label="Music only") | |
| as_audio_message = gr.Textbox(label="Message", visible=False) | |
| ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output]) | |
| as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True) | |
| # Tab Voice Changer | |
| with gr.Tab("🎶 - 歌声转换"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| vc_audio_input = as_audio_vocals | |
| vc_model_index = gr.Dropdown( | |
| [ | |
| '%s' % ( | |
| m['metadata'].get('name') | |
| ) | |
| for m in loaded_models | |
| ], | |
| label='Models', | |
| type='index' | |
| ) | |
| vc_pitch_adjust = gr.Slider(label='Pitch', minimum=-24, maximum=24, step=1, value=0) | |
| vc_f0_method = gr.Radio(label='F0 methods', choices=['pm', 'harvest'], value='pm', interactive=True) | |
| vc_feat_ratio = gr.Slider(label='Feature ratio', minimum=0, maximum=1, step=0.1, value=0.6) | |
| vc_audio_submit = gr.Button("进行歌声转换吧!", variant="primary") | |
| with gr.Column(): | |
| vc_audio_output = gr.Audio(label="Result audio", type="numpy") | |
| vc_audio_message = gr.Textbox(label="Message") | |
| vc_audio_submit.click(fn=voice_changer, inputs=[vc_audio_input, vc_model_index, vc_pitch_adjust, vc_f0_method, vc_feat_ratio], outputs=[vc_audio_output, vc_audio_message], show_progress=True, queue=True) | |
| gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。用户生成内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。</center>") | |
| gr.HTML(''' | |
| <div class="footer"> | |
| <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
| </p> | |
| </div> | |
| ''') | |
| # Check Junk | |
| check_junk() | |
| # Launch | |
| App.queue(concurrency_count=1, max_size=20).launch(server_name="0.0.0.0", server_port=7860) | |
| # Enjoy |