Spaces:
Runtime error
Runtime error
Commit
·
de332ab
1
Parent(s):
710a66d
Upload folder using huggingface_hub
Browse files- .gitattributes +2 -35
- .gitignore +11 -0
- LICENSE +21 -0
- README.md +17 -13
- attentions.py +646 -0
- commons.py +163 -0
- configs/config.json +60 -0
- configs/finetune_speaker.json +55 -0
- configs/modified_finetune_speaker.json +172 -0
- custom_character_voice/22050.txt +1 -0
- data_utils.py +529 -0
- export_onnx.py +110 -0
- filelists/final_annotation_train.txt +137 -0
- filelists/final_annotation_val.txt +137 -0
- filelists/short_character_anno.list +137 -0
- infer_onnx.py +58 -0
- inference.py +63 -0
- inference_ms.py +71 -0
- logs/pretrained_models/README.md +1 -0
- losses.py +61 -0
- mel_processing.py +181 -0
- models.py +1202 -0
- modules.py +519 -0
- monotonic_align/__init__.py +19 -0
- monotonic_align/core.pyx +42 -0
- monotonic_align/monotonic_align/.gitkeep +1 -0
- monotonic_align/setup.py +9 -0
- preprocess.py +76 -0
- requirements.txt +29 -0
- short_audio_transcribe.py +122 -0
- text/LICENSE +19 -0
- text/__init__.py +64 -0
- text/__pycache__/__init__.cpython-37.pyc +0 -0
- text/__pycache__/mandarin.cpython-37.pyc +0 -0
- text/cleaners.py +13 -0
- text/mandarin.py +326 -0
- text/symbols.py +14 -0
- train.py +585 -0
- train_ms.py +604 -0
- transforms.py +209 -0
- utils.py +286 -0
- webui.py +70 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,2 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
# Auto detect text files and perform LF normalization
|
| 2 |
+
* text=auto
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
DUMMY1
|
| 2 |
+
DUMMY2
|
| 3 |
+
DUMMY3
|
| 4 |
+
logs
|
| 5 |
+
__pycache__
|
| 6 |
+
.ipynb_checkpoints
|
| 7 |
+
.*.swp
|
| 8 |
+
|
| 9 |
+
build
|
| 10 |
+
*.c
|
| 11 |
+
monotonic_align/monotonic_align
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 Kevin Wang
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,13 +1,17 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# VITS2-Chinese 🎶🌟💕
|
| 2 |
+
## 只需上传一段语音素材,程序自动将语音切片、标注、预处理,一键训练
|
| 3 |
+
[English]()
|
| 4 |
+
## 环境配置
|
| 5 |
+
1. 运行
|
| 6 |
+
```
|
| 7 |
+
git clone https://github.com/KevinWang676/VITS2-Chinese.git
|
| 8 |
+
cd VITS2-Chinese
|
| 9 |
+
pip install -r requirements.txt
|
| 10 |
+
```
|
| 11 |
+
2. 运行
|
| 12 |
+
```
|
| 13 |
+
cd monotonic_align
|
| 14 |
+
python setup.py build_ext --inplace
|
| 15 |
+
```
|
| 16 |
+
3. 上传语音文件:请上传一段**中文**、**单说话人**的语音文件,建议为长度大于10分钟的`.wav`文件
|
| 17 |
+
## 语音切片
|
attentions.py
ADDED
|
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
| 8 |
+
|
| 9 |
+
import commons
|
| 10 |
+
import modules
|
| 11 |
+
from modules import LayerNorm
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Encoder(nn.Module): # backward compatible vits2 encoder
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
hidden_channels,
|
| 18 |
+
filter_channels,
|
| 19 |
+
n_heads,
|
| 20 |
+
n_layers,
|
| 21 |
+
kernel_size=1,
|
| 22 |
+
p_dropout=0.0,
|
| 23 |
+
window_size=4,
|
| 24 |
+
**kwargs
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.hidden_channels = hidden_channels
|
| 28 |
+
self.filter_channels = filter_channels
|
| 29 |
+
self.n_heads = n_heads
|
| 30 |
+
self.n_layers = n_layers
|
| 31 |
+
self.kernel_size = kernel_size
|
| 32 |
+
self.p_dropout = p_dropout
|
| 33 |
+
self.window_size = window_size
|
| 34 |
+
|
| 35 |
+
self.drop = nn.Dropout(p_dropout)
|
| 36 |
+
self.attn_layers = nn.ModuleList()
|
| 37 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 38 |
+
self.ffn_layers = nn.ModuleList()
|
| 39 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 40 |
+
# if kwargs has spk_emb_dim, then add a linear layer to project spk_emb_dim to hidden_channels
|
| 41 |
+
self.cond_layer_idx = self.n_layers
|
| 42 |
+
if "gin_channels" in kwargs:
|
| 43 |
+
self.gin_channels = kwargs["gin_channels"]
|
| 44 |
+
if self.gin_channels != 0:
|
| 45 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
| 46 |
+
# vits2 says 3rd block, so idx is 2 by default
|
| 47 |
+
self.cond_layer_idx = (
|
| 48 |
+
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
| 49 |
+
)
|
| 50 |
+
assert (
|
| 51 |
+
self.cond_layer_idx < self.n_layers
|
| 52 |
+
), "cond_layer_idx should be less than n_layers"
|
| 53 |
+
|
| 54 |
+
for i in range(self.n_layers):
|
| 55 |
+
self.attn_layers.append(
|
| 56 |
+
MultiHeadAttention(
|
| 57 |
+
hidden_channels,
|
| 58 |
+
hidden_channels,
|
| 59 |
+
n_heads,
|
| 60 |
+
p_dropout=p_dropout,
|
| 61 |
+
window_size=window_size,
|
| 62 |
+
)
|
| 63 |
+
)
|
| 64 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 65 |
+
self.ffn_layers.append(
|
| 66 |
+
FFN(
|
| 67 |
+
hidden_channels,
|
| 68 |
+
hidden_channels,
|
| 69 |
+
filter_channels,
|
| 70 |
+
kernel_size,
|
| 71 |
+
p_dropout=p_dropout,
|
| 72 |
+
)
|
| 73 |
+
)
|
| 74 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 75 |
+
|
| 76 |
+
def forward(self, x, x_mask, g=None):
|
| 77 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 78 |
+
x = x * x_mask
|
| 79 |
+
for i in range(self.n_layers):
|
| 80 |
+
if i == self.cond_layer_idx and g is not None:
|
| 81 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
| 82 |
+
g = g.transpose(1, 2)
|
| 83 |
+
x = x + g
|
| 84 |
+
x = x * x_mask
|
| 85 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
| 86 |
+
y = self.drop(y)
|
| 87 |
+
x = self.norm_layers_1[i](x + y)
|
| 88 |
+
|
| 89 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 90 |
+
y = self.drop(y)
|
| 91 |
+
x = self.norm_layers_2[i](x + y)
|
| 92 |
+
x = x * x_mask
|
| 93 |
+
return x
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class Decoder(nn.Module):
|
| 97 |
+
def __init__(
|
| 98 |
+
self,
|
| 99 |
+
hidden_channels,
|
| 100 |
+
filter_channels,
|
| 101 |
+
n_heads,
|
| 102 |
+
n_layers,
|
| 103 |
+
kernel_size=1,
|
| 104 |
+
p_dropout=0.0,
|
| 105 |
+
proximal_bias=False,
|
| 106 |
+
proximal_init=True,
|
| 107 |
+
**kwargs
|
| 108 |
+
):
|
| 109 |
+
super().__init__()
|
| 110 |
+
self.hidden_channels = hidden_channels
|
| 111 |
+
self.filter_channels = filter_channels
|
| 112 |
+
self.n_heads = n_heads
|
| 113 |
+
self.n_layers = n_layers
|
| 114 |
+
self.kernel_size = kernel_size
|
| 115 |
+
self.p_dropout = p_dropout
|
| 116 |
+
self.proximal_bias = proximal_bias
|
| 117 |
+
self.proximal_init = proximal_init
|
| 118 |
+
|
| 119 |
+
self.drop = nn.Dropout(p_dropout)
|
| 120 |
+
self.self_attn_layers = nn.ModuleList()
|
| 121 |
+
self.norm_layers_0 = nn.ModuleList()
|
| 122 |
+
self.encdec_attn_layers = nn.ModuleList()
|
| 123 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 124 |
+
self.ffn_layers = nn.ModuleList()
|
| 125 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 126 |
+
for i in range(self.n_layers):
|
| 127 |
+
self.self_attn_layers.append(
|
| 128 |
+
MultiHeadAttention(
|
| 129 |
+
hidden_channels,
|
| 130 |
+
hidden_channels,
|
| 131 |
+
n_heads,
|
| 132 |
+
p_dropout=p_dropout,
|
| 133 |
+
proximal_bias=proximal_bias,
|
| 134 |
+
proximal_init=proximal_init,
|
| 135 |
+
)
|
| 136 |
+
)
|
| 137 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
| 138 |
+
self.encdec_attn_layers.append(
|
| 139 |
+
MultiHeadAttention(
|
| 140 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 144 |
+
self.ffn_layers.append(
|
| 145 |
+
FFN(
|
| 146 |
+
hidden_channels,
|
| 147 |
+
hidden_channels,
|
| 148 |
+
filter_channels,
|
| 149 |
+
kernel_size,
|
| 150 |
+
p_dropout=p_dropout,
|
| 151 |
+
causal=True,
|
| 152 |
+
)
|
| 153 |
+
)
|
| 154 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 155 |
+
|
| 156 |
+
def forward(self, x, x_mask, h, h_mask):
|
| 157 |
+
"""
|
| 158 |
+
x: decoder input
|
| 159 |
+
h: encoder output
|
| 160 |
+
"""
|
| 161 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
| 162 |
+
device=x.device, dtype=x.dtype
|
| 163 |
+
)
|
| 164 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 165 |
+
x = x * x_mask
|
| 166 |
+
for i in range(self.n_layers):
|
| 167 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
| 168 |
+
y = self.drop(y)
|
| 169 |
+
x = self.norm_layers_0[i](x + y)
|
| 170 |
+
|
| 171 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
| 172 |
+
y = self.drop(y)
|
| 173 |
+
x = self.norm_layers_1[i](x + y)
|
| 174 |
+
|
| 175 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 176 |
+
y = self.drop(y)
|
| 177 |
+
x = self.norm_layers_2[i](x + y)
|
| 178 |
+
x = x * x_mask
|
| 179 |
+
return x
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class MultiHeadAttention(nn.Module):
|
| 183 |
+
def __init__(
|
| 184 |
+
self,
|
| 185 |
+
channels,
|
| 186 |
+
out_channels,
|
| 187 |
+
n_heads,
|
| 188 |
+
p_dropout=0.0,
|
| 189 |
+
window_size=None,
|
| 190 |
+
heads_share=True,
|
| 191 |
+
block_length=None,
|
| 192 |
+
proximal_bias=False,
|
| 193 |
+
proximal_init=False,
|
| 194 |
+
):
|
| 195 |
+
super().__init__()
|
| 196 |
+
assert channels % n_heads == 0
|
| 197 |
+
|
| 198 |
+
self.channels = channels
|
| 199 |
+
self.out_channels = out_channels
|
| 200 |
+
self.n_heads = n_heads
|
| 201 |
+
self.p_dropout = p_dropout
|
| 202 |
+
self.window_size = window_size
|
| 203 |
+
self.heads_share = heads_share
|
| 204 |
+
self.block_length = block_length
|
| 205 |
+
self.proximal_bias = proximal_bias
|
| 206 |
+
self.proximal_init = proximal_init
|
| 207 |
+
self.attn = None
|
| 208 |
+
|
| 209 |
+
self.k_channels = channels // n_heads
|
| 210 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
| 211 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
| 212 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
| 213 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
| 214 |
+
self.drop = nn.Dropout(p_dropout)
|
| 215 |
+
|
| 216 |
+
if window_size is not None:
|
| 217 |
+
n_heads_rel = 1 if heads_share else n_heads
|
| 218 |
+
rel_stddev = self.k_channels**-0.5
|
| 219 |
+
self.emb_rel_k = nn.Parameter(
|
| 220 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 221 |
+
* rel_stddev
|
| 222 |
+
)
|
| 223 |
+
self.emb_rel_v = nn.Parameter(
|
| 224 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 225 |
+
* rel_stddev
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
| 229 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
| 230 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
| 231 |
+
if proximal_init:
|
| 232 |
+
with torch.no_grad():
|
| 233 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
| 234 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
| 235 |
+
|
| 236 |
+
def forward(self, x, c, attn_mask=None):
|
| 237 |
+
q = self.conv_q(x)
|
| 238 |
+
k = self.conv_k(c)
|
| 239 |
+
v = self.conv_v(c)
|
| 240 |
+
|
| 241 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
| 242 |
+
|
| 243 |
+
x = self.conv_o(x)
|
| 244 |
+
return x
|
| 245 |
+
|
| 246 |
+
def attention(self, query, key, value, mask=None):
|
| 247 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
| 248 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
| 249 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
| 250 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 251 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 252 |
+
|
| 253 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
| 254 |
+
if self.window_size is not None:
|
| 255 |
+
assert (
|
| 256 |
+
t_s == t_t
|
| 257 |
+
), "Relative attention is only available for self-attention."
|
| 258 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
| 259 |
+
rel_logits = self._matmul_with_relative_keys(
|
| 260 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
| 261 |
+
)
|
| 262 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
| 263 |
+
scores = scores + scores_local
|
| 264 |
+
if self.proximal_bias:
|
| 265 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
| 266 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
| 267 |
+
device=scores.device, dtype=scores.dtype
|
| 268 |
+
)
|
| 269 |
+
if mask is not None:
|
| 270 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
| 271 |
+
if self.block_length is not None:
|
| 272 |
+
assert (
|
| 273 |
+
t_s == t_t
|
| 274 |
+
), "Local attention is only available for self-attention."
|
| 275 |
+
block_mask = (
|
| 276 |
+
torch.ones_like(scores)
|
| 277 |
+
.triu(-self.block_length)
|
| 278 |
+
.tril(self.block_length)
|
| 279 |
+
)
|
| 280 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
| 281 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
| 282 |
+
p_attn = self.drop(p_attn)
|
| 283 |
+
output = torch.matmul(p_attn, value)
|
| 284 |
+
if self.window_size is not None:
|
| 285 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
| 286 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
| 287 |
+
self.emb_rel_v, t_s
|
| 288 |
+
)
|
| 289 |
+
output = output + self._matmul_with_relative_values(
|
| 290 |
+
relative_weights, value_relative_embeddings
|
| 291 |
+
)
|
| 292 |
+
output = (
|
| 293 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
| 294 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
| 295 |
+
return output, p_attn
|
| 296 |
+
|
| 297 |
+
def _matmul_with_relative_values(self, x, y):
|
| 298 |
+
"""
|
| 299 |
+
x: [b, h, l, m]
|
| 300 |
+
y: [h or 1, m, d]
|
| 301 |
+
ret: [b, h, l, d]
|
| 302 |
+
"""
|
| 303 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
| 304 |
+
return ret
|
| 305 |
+
|
| 306 |
+
def _matmul_with_relative_keys(self, x, y):
|
| 307 |
+
"""
|
| 308 |
+
x: [b, h, l, d]
|
| 309 |
+
y: [h or 1, m, d]
|
| 310 |
+
ret: [b, h, l, m]
|
| 311 |
+
"""
|
| 312 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
| 313 |
+
return ret
|
| 314 |
+
|
| 315 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
| 316 |
+
max_relative_position = 2 * self.window_size + 1
|
| 317 |
+
# Pad first before slice to avoid using cond ops.
|
| 318 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
| 319 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
| 320 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
| 321 |
+
if pad_length > 0:
|
| 322 |
+
padded_relative_embeddings = F.pad(
|
| 323 |
+
relative_embeddings,
|
| 324 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
| 325 |
+
)
|
| 326 |
+
else:
|
| 327 |
+
padded_relative_embeddings = relative_embeddings
|
| 328 |
+
used_relative_embeddings = padded_relative_embeddings[
|
| 329 |
+
:, slice_start_position:slice_end_position
|
| 330 |
+
]
|
| 331 |
+
return used_relative_embeddings
|
| 332 |
+
|
| 333 |
+
def _relative_position_to_absolute_position(self, x):
|
| 334 |
+
"""
|
| 335 |
+
x: [b, h, l, 2*l-1]
|
| 336 |
+
ret: [b, h, l, l]
|
| 337 |
+
"""
|
| 338 |
+
batch, heads, length, _ = x.size()
|
| 339 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
| 340 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
| 341 |
+
|
| 342 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
| 343 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
| 344 |
+
x_flat = F.pad(
|
| 345 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
# Reshape and slice out the padded elements.
|
| 349 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
| 350 |
+
:, :, :length, length - 1 :
|
| 351 |
+
]
|
| 352 |
+
return x_final
|
| 353 |
+
|
| 354 |
+
def _absolute_position_to_relative_position(self, x):
|
| 355 |
+
"""
|
| 356 |
+
x: [b, h, l, l]
|
| 357 |
+
ret: [b, h, l, 2*l-1]
|
| 358 |
+
"""
|
| 359 |
+
batch, heads, length, _ = x.size()
|
| 360 |
+
# padd along column
|
| 361 |
+
x = F.pad(
|
| 362 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
| 363 |
+
)
|
| 364 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
| 365 |
+
# add 0's in the beginning that will skew the elements after reshape
|
| 366 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
| 367 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
| 368 |
+
return x_final
|
| 369 |
+
|
| 370 |
+
def _attention_bias_proximal(self, length):
|
| 371 |
+
"""Bias for self-attention to encourage attention to close positions.
|
| 372 |
+
Args:
|
| 373 |
+
length: an integer scalar.
|
| 374 |
+
Returns:
|
| 375 |
+
a Tensor with shape [1, 1, length, length]
|
| 376 |
+
"""
|
| 377 |
+
r = torch.arange(length, dtype=torch.float32)
|
| 378 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
| 379 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
class FFN(nn.Module):
|
| 383 |
+
def __init__(
|
| 384 |
+
self,
|
| 385 |
+
in_channels,
|
| 386 |
+
out_channels,
|
| 387 |
+
filter_channels,
|
| 388 |
+
kernel_size,
|
| 389 |
+
p_dropout=0.0,
|
| 390 |
+
activation=None,
|
| 391 |
+
causal=False,
|
| 392 |
+
):
|
| 393 |
+
super().__init__()
|
| 394 |
+
self.in_channels = in_channels
|
| 395 |
+
self.out_channels = out_channels
|
| 396 |
+
self.filter_channels = filter_channels
|
| 397 |
+
self.kernel_size = kernel_size
|
| 398 |
+
self.p_dropout = p_dropout
|
| 399 |
+
self.activation = activation
|
| 400 |
+
self.causal = causal
|
| 401 |
+
|
| 402 |
+
if causal:
|
| 403 |
+
self.padding = self._causal_padding
|
| 404 |
+
else:
|
| 405 |
+
self.padding = self._same_padding
|
| 406 |
+
|
| 407 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
| 408 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
| 409 |
+
self.drop = nn.Dropout(p_dropout)
|
| 410 |
+
|
| 411 |
+
def forward(self, x, x_mask):
|
| 412 |
+
x = self.conv_1(self.padding(x * x_mask))
|
| 413 |
+
if self.activation == "gelu":
|
| 414 |
+
x = x * torch.sigmoid(1.702 * x)
|
| 415 |
+
else:
|
| 416 |
+
x = torch.relu(x)
|
| 417 |
+
x = self.drop(x)
|
| 418 |
+
x = self.conv_2(self.padding(x * x_mask))
|
| 419 |
+
return x * x_mask
|
| 420 |
+
|
| 421 |
+
def _causal_padding(self, x):
|
| 422 |
+
if self.kernel_size == 1:
|
| 423 |
+
return x
|
| 424 |
+
pad_l = self.kernel_size - 1
|
| 425 |
+
pad_r = 0
|
| 426 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 427 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 428 |
+
return x
|
| 429 |
+
|
| 430 |
+
def _same_padding(self, x):
|
| 431 |
+
if self.kernel_size == 1:
|
| 432 |
+
return x
|
| 433 |
+
pad_l = (self.kernel_size - 1) // 2
|
| 434 |
+
pad_r = self.kernel_size // 2
|
| 435 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 436 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 437 |
+
return x
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
class Depthwise_Separable_Conv1D(nn.Module):
|
| 441 |
+
def __init__(
|
| 442 |
+
self,
|
| 443 |
+
in_channels,
|
| 444 |
+
out_channels,
|
| 445 |
+
kernel_size,
|
| 446 |
+
stride=1,
|
| 447 |
+
padding=0,
|
| 448 |
+
dilation=1,
|
| 449 |
+
bias=True,
|
| 450 |
+
padding_mode="zeros", # TODO: refine this type
|
| 451 |
+
device=None,
|
| 452 |
+
dtype=None,
|
| 453 |
+
):
|
| 454 |
+
super().__init__()
|
| 455 |
+
self.depth_conv = nn.Conv1d(
|
| 456 |
+
in_channels=in_channels,
|
| 457 |
+
out_channels=in_channels,
|
| 458 |
+
kernel_size=kernel_size,
|
| 459 |
+
groups=in_channels,
|
| 460 |
+
stride=stride,
|
| 461 |
+
padding=padding,
|
| 462 |
+
dilation=dilation,
|
| 463 |
+
bias=bias,
|
| 464 |
+
padding_mode=padding_mode,
|
| 465 |
+
device=device,
|
| 466 |
+
dtype=dtype,
|
| 467 |
+
)
|
| 468 |
+
self.point_conv = nn.Conv1d(
|
| 469 |
+
in_channels=in_channels,
|
| 470 |
+
out_channels=out_channels,
|
| 471 |
+
kernel_size=1,
|
| 472 |
+
bias=bias,
|
| 473 |
+
device=device,
|
| 474 |
+
dtype=dtype,
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
def forward(self, input):
|
| 478 |
+
return self.point_conv(self.depth_conv(input))
|
| 479 |
+
|
| 480 |
+
def weight_norm(self):
|
| 481 |
+
self.depth_conv = weight_norm(self.depth_conv, name="weight")
|
| 482 |
+
self.point_conv = weight_norm(self.point_conv, name="weight")
|
| 483 |
+
|
| 484 |
+
def remove_weight_norm(self):
|
| 485 |
+
self.depth_conv = remove_weight_norm(self.depth_conv, name="weight")
|
| 486 |
+
self.point_conv = remove_weight_norm(self.point_conv, name="weight")
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
class Depthwise_Separable_TransposeConv1D(nn.Module):
|
| 490 |
+
def __init__(
|
| 491 |
+
self,
|
| 492 |
+
in_channels,
|
| 493 |
+
out_channels,
|
| 494 |
+
kernel_size,
|
| 495 |
+
stride=1,
|
| 496 |
+
padding=0,
|
| 497 |
+
output_padding=0,
|
| 498 |
+
bias=True,
|
| 499 |
+
dilation=1,
|
| 500 |
+
padding_mode="zeros", # TODO: refine this type
|
| 501 |
+
device=None,
|
| 502 |
+
dtype=None,
|
| 503 |
+
):
|
| 504 |
+
super().__init__()
|
| 505 |
+
self.depth_conv = nn.ConvTranspose1d(
|
| 506 |
+
in_channels=in_channels,
|
| 507 |
+
out_channels=in_channels,
|
| 508 |
+
kernel_size=kernel_size,
|
| 509 |
+
groups=in_channels,
|
| 510 |
+
stride=stride,
|
| 511 |
+
output_padding=output_padding,
|
| 512 |
+
padding=padding,
|
| 513 |
+
dilation=dilation,
|
| 514 |
+
bias=bias,
|
| 515 |
+
padding_mode=padding_mode,
|
| 516 |
+
device=device,
|
| 517 |
+
dtype=dtype,
|
| 518 |
+
)
|
| 519 |
+
self.point_conv = nn.Conv1d(
|
| 520 |
+
in_channels=in_channels,
|
| 521 |
+
out_channels=out_channels,
|
| 522 |
+
kernel_size=1,
|
| 523 |
+
bias=bias,
|
| 524 |
+
device=device,
|
| 525 |
+
dtype=dtype,
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
def forward(self, input):
|
| 529 |
+
return self.point_conv(self.depth_conv(input))
|
| 530 |
+
|
| 531 |
+
def weight_norm(self):
|
| 532 |
+
self.depth_conv = weight_norm(self.depth_conv, name="weight")
|
| 533 |
+
self.point_conv = weight_norm(self.point_conv, name="weight")
|
| 534 |
+
|
| 535 |
+
def remove_weight_norm(self):
|
| 536 |
+
remove_weight_norm(self.depth_conv, name="weight")
|
| 537 |
+
remove_weight_norm(self.point_conv, name="weight")
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
def weight_norm_modules(module, name="weight", dim=0):
|
| 541 |
+
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(
|
| 542 |
+
module, Depthwise_Separable_TransposeConv1D
|
| 543 |
+
):
|
| 544 |
+
module.weight_norm()
|
| 545 |
+
return module
|
| 546 |
+
else:
|
| 547 |
+
return weight_norm(module, name, dim)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
def remove_weight_norm_modules(module, name="weight"):
|
| 551 |
+
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(
|
| 552 |
+
module, Depthwise_Separable_TransposeConv1D
|
| 553 |
+
):
|
| 554 |
+
module.remove_weight_norm()
|
| 555 |
+
else:
|
| 556 |
+
remove_weight_norm(module, name)
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
class FFT(nn.Module):
|
| 560 |
+
def __init__(
|
| 561 |
+
self,
|
| 562 |
+
hidden_channels,
|
| 563 |
+
filter_channels,
|
| 564 |
+
n_heads,
|
| 565 |
+
n_layers=1,
|
| 566 |
+
kernel_size=1,
|
| 567 |
+
p_dropout=0.0,
|
| 568 |
+
proximal_bias=False,
|
| 569 |
+
proximal_init=True,
|
| 570 |
+
isflow=False,
|
| 571 |
+
**kwargs
|
| 572 |
+
):
|
| 573 |
+
super().__init__()
|
| 574 |
+
self.hidden_channels = hidden_channels
|
| 575 |
+
self.filter_channels = filter_channels
|
| 576 |
+
self.n_heads = n_heads
|
| 577 |
+
self.n_layers = n_layers
|
| 578 |
+
self.kernel_size = kernel_size
|
| 579 |
+
self.p_dropout = p_dropout
|
| 580 |
+
self.proximal_bias = proximal_bias
|
| 581 |
+
self.proximal_init = proximal_init
|
| 582 |
+
if isflow and "gin_channels" in kwargs and kwargs["gin_channels"] > 0:
|
| 583 |
+
cond_layer = torch.nn.Conv1d(
|
| 584 |
+
kwargs["gin_channels"], 2 * hidden_channels * n_layers, 1
|
| 585 |
+
)
|
| 586 |
+
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, 1)
|
| 587 |
+
self.cond_layer = weight_norm_modules(cond_layer, name="weight")
|
| 588 |
+
self.gin_channels = kwargs["gin_channels"]
|
| 589 |
+
self.drop = nn.Dropout(p_dropout)
|
| 590 |
+
self.self_attn_layers = nn.ModuleList()
|
| 591 |
+
self.norm_layers_0 = nn.ModuleList()
|
| 592 |
+
self.ffn_layers = nn.ModuleList()
|
| 593 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 594 |
+
for i in range(self.n_layers):
|
| 595 |
+
self.self_attn_layers.append(
|
| 596 |
+
MultiHeadAttention(
|
| 597 |
+
hidden_channels,
|
| 598 |
+
hidden_channels,
|
| 599 |
+
n_heads,
|
| 600 |
+
p_dropout=p_dropout,
|
| 601 |
+
proximal_bias=proximal_bias,
|
| 602 |
+
proximal_init=proximal_init,
|
| 603 |
+
)
|
| 604 |
+
)
|
| 605 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
| 606 |
+
self.ffn_layers.append(
|
| 607 |
+
FFN(
|
| 608 |
+
hidden_channels,
|
| 609 |
+
hidden_channels,
|
| 610 |
+
filter_channels,
|
| 611 |
+
kernel_size,
|
| 612 |
+
p_dropout=p_dropout,
|
| 613 |
+
causal=True,
|
| 614 |
+
)
|
| 615 |
+
)
|
| 616 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 617 |
+
|
| 618 |
+
def forward(self, x, x_mask, g=None):
|
| 619 |
+
"""
|
| 620 |
+
x: decoder input
|
| 621 |
+
h: encoder output
|
| 622 |
+
"""
|
| 623 |
+
if g is not None:
|
| 624 |
+
g = self.cond_layer(g)
|
| 625 |
+
|
| 626 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
| 627 |
+
device=x.device, dtype=x.dtype
|
| 628 |
+
)
|
| 629 |
+
x = x * x_mask
|
| 630 |
+
for i in range(self.n_layers):
|
| 631 |
+
if g is not None:
|
| 632 |
+
x = self.cond_pre(x)
|
| 633 |
+
cond_offset = i * 2 * self.hidden_channels
|
| 634 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
| 635 |
+
x = commons.fused_add_tanh_sigmoid_multiply(
|
| 636 |
+
x, g_l, torch.IntTensor([self.hidden_channels])
|
| 637 |
+
)
|
| 638 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
| 639 |
+
y = self.drop(y)
|
| 640 |
+
x = self.norm_layers_0[i](x + y)
|
| 641 |
+
|
| 642 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 643 |
+
y = self.drop(y)
|
| 644 |
+
x = self.norm_layers_1[i](x + y)
|
| 645 |
+
x = x * x_mask
|
| 646 |
+
return x
|
commons.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 9 |
+
classname = m.__class__.__name__
|
| 10 |
+
if classname.find("Conv") != -1:
|
| 11 |
+
m.weight.data.normal_(mean, std)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_padding(kernel_size, dilation=1):
|
| 15 |
+
return int((kernel_size * dilation - dilation) / 2)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def convert_pad_shape(pad_shape):
|
| 19 |
+
l = pad_shape[::-1]
|
| 20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 21 |
+
return pad_shape
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def intersperse(lst, item):
|
| 25 |
+
result = [item] * (len(lst) * 2 + 1)
|
| 26 |
+
result[1::2] = lst
|
| 27 |
+
return result
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
| 31 |
+
"""KL(P||Q)"""
|
| 32 |
+
kl = (logs_q - logs_p) - 0.5
|
| 33 |
+
kl += (
|
| 34 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
| 35 |
+
)
|
| 36 |
+
return kl
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def rand_gumbel(shape):
|
| 40 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
| 41 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
| 42 |
+
return -torch.log(-torch.log(uniform_samples))
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def rand_gumbel_like(x):
|
| 46 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
| 47 |
+
return g
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def slice_segments(x, ids_str, segment_size=4):
|
| 51 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
| 52 |
+
for i in range(x.size(0)):
|
| 53 |
+
idx_str = ids_str[i]
|
| 54 |
+
idx_end = idx_str + segment_size
|
| 55 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
| 56 |
+
return ret
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
| 60 |
+
b, d, t = x.size()
|
| 61 |
+
if x_lengths is None:
|
| 62 |
+
x_lengths = t
|
| 63 |
+
ids_str_max = x_lengths - segment_size + 1
|
| 64 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
| 65 |
+
ret = slice_segments(x, ids_str, segment_size)
|
| 66 |
+
return ret, ids_str
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
| 70 |
+
position = torch.arange(length, dtype=torch.float)
|
| 71 |
+
num_timescales = channels // 2
|
| 72 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
| 73 |
+
num_timescales - 1
|
| 74 |
+
)
|
| 75 |
+
inv_timescales = min_timescale * torch.exp(
|
| 76 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
| 77 |
+
)
|
| 78 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
| 79 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
| 80 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
| 81 |
+
signal = signal.view(1, channels, length)
|
| 82 |
+
return signal
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
| 86 |
+
b, channels, length = x.size()
|
| 87 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 88 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
| 92 |
+
b, channels, length = x.size()
|
| 93 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 94 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def subsequent_mask(length):
|
| 98 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
| 99 |
+
return mask
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@torch.jit.script
|
| 103 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
| 104 |
+
n_channels_int = n_channels[0]
|
| 105 |
+
in_act = input_a + input_b
|
| 106 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
| 107 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
| 108 |
+
acts = t_act * s_act
|
| 109 |
+
return acts
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def convert_pad_shape(pad_shape):
|
| 113 |
+
l = pad_shape[::-1]
|
| 114 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 115 |
+
return pad_shape
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def shift_1d(x):
|
| 119 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
| 120 |
+
return x
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def sequence_mask(length, max_length=None):
|
| 124 |
+
if max_length is None:
|
| 125 |
+
max_length = length.max()
|
| 126 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
| 127 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def generate_path(duration, mask):
|
| 131 |
+
"""
|
| 132 |
+
duration: [b, 1, t_x]
|
| 133 |
+
mask: [b, 1, t_y, t_x]
|
| 134 |
+
"""
|
| 135 |
+
device = duration.device
|
| 136 |
+
|
| 137 |
+
b, _, t_y, t_x = mask.shape
|
| 138 |
+
cum_duration = torch.cumsum(duration, -1)
|
| 139 |
+
|
| 140 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
| 141 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
| 142 |
+
path = path.view(b, t_x, t_y)
|
| 143 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
| 144 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
| 145 |
+
return path
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
| 149 |
+
if isinstance(parameters, torch.Tensor):
|
| 150 |
+
parameters = [parameters]
|
| 151 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
| 152 |
+
norm_type = float(norm_type)
|
| 153 |
+
if clip_value is not None:
|
| 154 |
+
clip_value = float(clip_value)
|
| 155 |
+
|
| 156 |
+
total_norm = 0
|
| 157 |
+
for p in parameters:
|
| 158 |
+
param_norm = p.grad.data.norm(norm_type)
|
| 159 |
+
total_norm += param_norm.item() ** norm_type
|
| 160 |
+
if clip_value is not None:
|
| 161 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
| 162 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
| 163 |
+
return total_norm
|
configs/config.json
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 10,
|
| 4 |
+
"eval_interval": 100,
|
| 5 |
+
"seed": 1234,
|
| 6 |
+
"epochs": 1000,
|
| 7 |
+
"learning_rate": 0.0002,
|
| 8 |
+
"betas": [0.8, 0.99],
|
| 9 |
+
"eps": 1e-9,
|
| 10 |
+
"batch_size": 12,
|
| 11 |
+
"fp16_run": false,
|
| 12 |
+
"lr_decay": 0.999875,
|
| 13 |
+
"segment_size": 8192,
|
| 14 |
+
"init_lr_ratio": 1,
|
| 15 |
+
"warmup_epochs": 0,
|
| 16 |
+
"c_mel": 45,
|
| 17 |
+
"c_kl": 1.0
|
| 18 |
+
},
|
| 19 |
+
"data": {
|
| 20 |
+
"use_mel_posterior_encoder": true,
|
| 21 |
+
"training_files":"filelists/final_annotation_train.txt",
|
| 22 |
+
"validation_files":"filelists/final_annotation_val.txt",
|
| 23 |
+
"text_cleaners":["chinese_cleaners"],
|
| 24 |
+
"max_wav_value": 32768.0,
|
| 25 |
+
"sampling_rate": 22050,
|
| 26 |
+
"filter_length": 1024,
|
| 27 |
+
"hop_length": 256,
|
| 28 |
+
"win_length": 1024,
|
| 29 |
+
"n_mel_channels": 80,
|
| 30 |
+
"mel_fmin": 0.0,
|
| 31 |
+
"mel_fmax": null,
|
| 32 |
+
"add_blank": false,
|
| 33 |
+
"n_speakers": 0,
|
| 34 |
+
"cleaned_text": true
|
| 35 |
+
},
|
| 36 |
+
"model": {
|
| 37 |
+
"use_mel_posterior_encoder": true,
|
| 38 |
+
"use_transformer_flows": true,
|
| 39 |
+
"transformer_flow_type": "pre_conv",
|
| 40 |
+
"use_spk_conditioned_encoder": false,
|
| 41 |
+
"use_noise_scaled_mas": true,
|
| 42 |
+
"use_duration_discriminator": true,
|
| 43 |
+
"inter_channels": 192,
|
| 44 |
+
"hidden_channels": 192,
|
| 45 |
+
"filter_channels": 768,
|
| 46 |
+
"n_heads": 2,
|
| 47 |
+
"n_layers": 6,
|
| 48 |
+
"kernel_size": 3,
|
| 49 |
+
"p_dropout": 0.1,
|
| 50 |
+
"resblock": "1",
|
| 51 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 52 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 53 |
+
"upsample_rates": [8,8,2,2],
|
| 54 |
+
"upsample_initial_channel": 512,
|
| 55 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
| 56 |
+
"n_layers_q": 3,
|
| 57 |
+
"use_spectral_norm": false
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
|
configs/finetune_speaker.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"eval_interval": 1000,
|
| 5 |
+
"seed": 1234,
|
| 6 |
+
"epochs": 10000,
|
| 7 |
+
"learning_rate": 2e-4,
|
| 8 |
+
"betas": [0.8, 0.99],
|
| 9 |
+
"eps": 1e-9,
|
| 10 |
+
"batch_size": 64,
|
| 11 |
+
"fp16_run": true,
|
| 12 |
+
"lr_decay": 0.999875,
|
| 13 |
+
"segment_size": 8192,
|
| 14 |
+
"init_lr_ratio": 1,
|
| 15 |
+
"warmup_epochs": 0,
|
| 16 |
+
"c_mel": 45,
|
| 17 |
+
"c_kl": 1.0
|
| 18 |
+
},
|
| 19 |
+
"data": {
|
| 20 |
+
"training_files":"filelists/uma_genshin_genshinjp_bh3_train.txt.cleaned",
|
| 21 |
+
"validation_files":"filelists/uma_genshin_genshinjp_bh3_val.txt.cleaned",
|
| 22 |
+
"text_cleaners":["chinese_cleaners"],
|
| 23 |
+
"max_wav_value": 32768.0,
|
| 24 |
+
"sampling_rate": 22050,
|
| 25 |
+
"filter_length": 1024,
|
| 26 |
+
"hop_length": 256,
|
| 27 |
+
"win_length": 1024,
|
| 28 |
+
"n_mel_channels": 80,
|
| 29 |
+
"mel_fmin": 0.0,
|
| 30 |
+
"mel_fmax": null,
|
| 31 |
+
"add_blank": true,
|
| 32 |
+
"n_speakers": 804,
|
| 33 |
+
"cleaned_text": true
|
| 34 |
+
},
|
| 35 |
+
"model": {
|
| 36 |
+
"inter_channels": 192,
|
| 37 |
+
"hidden_channels": 192,
|
| 38 |
+
"filter_channels": 768,
|
| 39 |
+
"n_heads": 2,
|
| 40 |
+
"n_layers": 6,
|
| 41 |
+
"kernel_size": 3,
|
| 42 |
+
"p_dropout": 0.1,
|
| 43 |
+
"resblock": "1",
|
| 44 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 46 |
+
"upsample_rates": [8,8,2,2],
|
| 47 |
+
"upsample_initial_channel": 512,
|
| 48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
| 49 |
+
"n_layers_q": 3,
|
| 50 |
+
"use_spectral_norm": false,
|
| 51 |
+
"gin_channels": 256
|
| 52 |
+
},
|
| 53 |
+
"speakers": ["\u7279\u522b\u5468", "\u65e0\u58f0\u94c3\u9e7f", "\u4e1c\u6d77\u5e1d\u7687\uff08\u5e1d\u5b9d\uff0c\u5e1d\u738b\uff09", "\u4e38\u5584\u65af\u57fa", "\u5bcc\u58eb\u5947\u8ff9", "\u5c0f\u6817\u5e3d", "\u9ec4\u91d1\u8239", "\u4f0f\u7279\u52a0", "\u5927\u548c\u8d64\u9aa5", "\u5927\u6811\u5feb\u8f66", "\u8349\u4e0a\u98de", "\u83f1\u4e9a\u9a6c\u900a", "\u76ee\u767d\u9ea6\u6606", "\u795e\u9e70", "\u597d\u6b4c\u5267", "\u6210\u7530\u767d\u4ec1", "\u9c81\u9053\u592b\u8c61\u5f81\uff08\u7687\u5e1d\uff09", "\u6c14\u69fd", "\u7231\u4e3d\u6570\u7801", "\u661f\u4e91\u5929\u7a7a", "\u7389\u85fb\u5341\u5b57", "\u7f8e\u5999\u59ff\u52bf", "\u7435\u7436\u6668\u5149", "\u6469\u8036\u91cd\u70ae", "\u66fc\u57ce\u8336\u5ea7", "\u7f8e\u6d66\u6ce2\u65c1", "\u76ee\u767d\u8d56\u6069", "\u83f1\u66d9", "\u96ea\u4e2d\u7f8e\u4eba", "\u7c73\u6d74", "\u827e\u5c3c\u65af\u98ce\u795e", "\u7231\u4e3d\u901f\u5b50\uff08\u7231\u4e3d\u5feb\u5b50\uff09", "\u7231\u6155\u7ec7\u59ec", "\u7a3b\u8377\u4e00", "\u80dc\u5229\u5956\u5238", "\u7a7a\u4e2d\u795e\u5bab", "\u8363\u8fdb\u95ea\u8000", "\u771f\u673a\u4f36", "\u5ddd\u4e0a\u516c\u4e3b", "\u9ec4\u91d1\u57ce\uff08\u9ec4\u91d1\u57ce\u5e02\uff09", "\u6a31\u82b1\u8fdb\u738b", "\u91c7\u73e0", "\u65b0\u5149\u98ce", "\u4e1c\u5546\u53d8\u9769", "\u8d85\u7ea7\u5c0f\u6d77\u6e7e", "\u9192\u76ee\u98de\u9e70\uff08\u5bc4\u5bc4\u5b50\uff09", "\u8352\u6f20\u82f1\u96c4", "\u4e1c\u701b\u4f50\u6566", "\u4e2d\u5c71\u5e86\u5178", "\u6210\u7530\u5927\u8fdb", "\u897f\u91ce\u82b1", "\u6625\u4e3d\uff08\u4e4c\u62c9\u62c9\uff09", "\u9752\u7af9\u56de\u5fc6", "\u5fae\u5149\u98de\u9a79", "\u7f8e\u4e3d\u5468\u65e5", "\u5f85\u517c\u798f\u6765", "mr cb\uff08cb\u5148\u751f\uff09", "\u540d\u5c06\u6012\u6d9b\uff08\u540d\u5c06\u6237\u4ec1\uff09", "\u76ee\u767d\u591a\u4f2f", "\u4f18\u79c0\u7d20\u8d28", "\u5e1d\u738b\u5149\u8f89", "\u5f85\u517c\u8bd7\u6b4c\u5267", "\u751f\u91ce\u72c4\u675c\u65af", "\u76ee\u767d\u5584\u4fe1", "\u5927\u62d3\u592a\u9633\u795e", "\u53cc\u6da1\u8f6e\uff08\u4e24\u7acb\u76f4\uff0c\u4e24\u55b7\u5c04\uff0c\u4e8c\u9505\u5934\uff0c\u9006\u55b7\u5c04\uff09", "\u91cc\u89c1\u5149\u94bb\uff08\u8428\u6258\u8bfa\u91d1\u521a\u77f3\uff09", "\u5317\u90e8\u7384\u9a79", "\u6a31\u82b1\u5343\u4ee3\u738b", "\u5929\u72fc\u661f\u8c61\u5f81", "\u76ee\u767d\u963f\u5c14\u4e39", "\u516b\u91cd\u65e0\u654c", "\u9e64\u4e38\u521a\u5fd7", "\u76ee\u767d\u5149\u660e", "\u6210\u7530\u62dc\u4ec1\uff08\u6210\u7530\u8def\uff09", "\u4e5f\u6587\u6444\u8f89", "\u5c0f\u6797\u5386\u5947", "\u5317\u6e2f\u706b\u5c71", "\u5947\u9510\u9a8f", "\u82e6\u6da9\u7cd6\u971c", "\u5c0f\u5c0f\u8695\u8327", "\u9a8f\u5ddd\u624b\u7eb2\uff08\u7eff\u5e3d\u6076\u9b54\uff09", "\u79cb\u5ddd\u5f25\u751f\uff08\u5c0f\u5c0f\u7406\u4e8b\u957f\uff09", "\u4e59\u540d\u53f2\u60a6\u5b50\uff08\u4e59\u540d\u8bb0\u8005\uff09", "\u6850\u751f\u9662\u8475", "\u5b89\u5fc3\u6cfd\u523a\u523a\u7f8e", "\u6a2b\u672c\u7406\u5b50", "\u795e\u91cc\u7eeb\u534e\uff08\u9f9f\u9f9f\uff09", "\u7434", "\u7a7a\uff08\u7a7a\u54e5\uff09", "\u4e3d\u838e", "\u8367\uff08\u8367\u59b9\uff09", "\u82ad\u82ad\u62c9", "\u51ef\u4e9a", "\u8fea\u5362\u514b", "\u96f7\u6cfd", "\u5b89\u67cf", "\u6e29\u8fea", "\u9999\u83f1", "\u5317\u6597", "\u884c\u79cb", "\u9b48", "\u51dd\u5149", "\u53ef\u8389", "\u949f\u79bb", "\u83f2\u8c22\u5c14\uff08\u7687\u5973\uff09", "\u73ed\u5c3c\u7279", "\u8fbe\u8fbe\u5229\u4e9a\uff08\u516c\u5b50\uff09", "\u8bfa\u827e\u5c14\uff08\u5973\u4ec6\uff09", "\u4e03\u4e03", "\u91cd\u4e91", "\u7518\u96e8\uff08\u6930\u7f8a\uff09", "\u963f\u8d1d\u591a", "\u8fea\u5965\u5a1c\uff08\u732b\u732b\uff09", "\u83ab\u5a1c", "\u523b\u6674", "\u7802\u7cd6", "\u8f9b\u7131", "\u7f57\u838e\u8389\u4e9a", "\u80e1\u6843", "\u67ab\u539f\u4e07\u53f6\uff08\u4e07\u53f6\uff09", "\u70df\u7eef", "\u5bb5\u5bab", "\u6258\u9a6c", "\u4f18\u83c8", "\u96f7\u7535\u5c06\u519b\uff08\u96f7\u795e\uff09", "\u65e9\u67da", "\u73ca\u745a\u5bab\u5fc3\u6d77\uff08\u5fc3\u6d77\uff0c\u6263\u6263\u7c73\uff09", "\u4e94\u90ce", "\u4e5d\u6761\u88df\u7f57", "\u8352\u6cf7\u4e00\u6597\uff08\u4e00\u6597\uff09", "\u57c3\u6d1b\u4f0a", "\u7533\u9e64", "\u516b\u91cd\u795e\u5b50\uff08\u795e\u5b50\uff09", "\u795e\u91cc\u7eeb\u4eba\uff08\u7eeb\u4eba\uff09", "\u591c\u5170", "\u4e45\u5c90\u5fcd", "\u9e7f\u91ce\u82d1\u5e73\u85cf", "\u63d0\u7eb3\u91cc", "\u67ef\u83b1", "\u591a\u8389", "\u4e91\u5807", "\u7eb3\u897f\u59b2\uff08\u8349\u795e\uff09", "\u6df1\u6e0a\u4f7f\u5f92", "\u59ae\u9732", "\u8d5b\u8bfa", "\u503a\u52a1\u5904\u7406\u4eba", "\u574e\u8482\u4e1d", "\u771f\u5f13\u5feb\u8f66", "\u79cb\u4eba", "\u671b\u65cf", "\u827e\u5c14\u83f2", "\u827e\u8389\u4e1d", "\u827e\u4f26", "\u963f\u6d1b\u74e6", "\u5929\u91ce", "\u5929\u76ee\u5341\u4e94", "\u611a\u4eba\u4f17-\u5b89\u5fb7\u70c8", "\u5b89\u987a", "\u5b89\u897f", "\u8475", "\u9752\u6728", "\u8352\u5ddd\u5e78\u6b21", "\u8352\u8c37", "\u6709\u6cfd", "\u6d45\u5ddd", "\u9ebb\u7f8e", "\u51dd\u5149\u52a9\u624b", "\u963f\u6258", "\u7afa\u5b50", "\u767e\u8bc6", "\u767e\u95fb", "\u767e\u6653", "\u767d\u672f", "\u8d1d\u96c5\u7279\u4e3d\u5947", "\u4e3d\u5854", "\u5931\u843d\u8ff7\u8fed", "\u7f2d\u4e71\u661f\u68d8", "\u4f0a\u7538", "\u4f0f\u7279\u52a0\u5973\u5b69", "\u72c2\u70ed\u84dd\u8c03", "\u8389\u8389\u5a05", "\u841d\u838e\u8389\u5a05", "\u516b\u91cd\u6a31", "\u516b\u91cd\u971e", "\u5361\u83b2", "\u7b2c\u516d\u591c\u60f3\u66f2", "\u5361\u841d\u5c14", "\u59ec\u5b50", "\u6781\u5730\u6218\u5203", "\u5e03\u6d1b\u59ae\u5a05", "\u6b21\u751f\u94f6\u7ffc", "\u7406\u4e4b\u5f8b\u8005%26\u5e0c\u513f", "\u7406\u4e4b\u5f8b\u8005", "\u8ff7\u57ce\u9a87\u5154", "\u5e0c\u513f", "\u9b47\u591c\u661f\u6e0a", "\u9ed1\u5e0c\u513f", "\u5e15\u6735\u83f2\u8389\u4e1d", "\u4e0d\u706d\u661f\u951a", "\u5929\u5143\u9a91\u82f1", "\u5e7d\u5170\u9edb\u5c14", "\u6d3e\u8499bh3", "\u7231\u9171", "\u7eef\u7389\u4e38", "\u5fb7\u4e3d\u838e", "\u6708\u4e0b\u521d\u62e5", "\u6714\u591c\u89c2\u661f", "\u66ae\u5149\u9a91\u58eb", "\u683c\u857e\u4fee", "\u7559\u4e91\u501f\u98ce\u771f\u541b", "\u6885\u6bd4\u4e4c\u65af", "\u4eff\u72b9\u5927", "\u514b\u83b1\u56e0", "\u5723\u5251\u5e7d\u5170\u9edb\u5c14", "\u5996\u7cbe\u7231\u8389", "\u7279\u65af\u62c9zero", "\u82cd\u7384", "\u82e5\u6c34", "\u897f\u7433", "\u6234\u56e0\u65af\u96f7\u5e03", "\u8d1d\u62c9", "\u8d64\u9e22", "\u9547\u9b42\u6b4c", "\u6e21\u9e26", "\u4eba\u4e4b\u5f8b\u8005", "\u7231\u8389\u5e0c\u96c5", "\u5929\u7a79\u6e38\u4fa0", "\u742a\u4e9a\u5a1c", "\u7a7a\u4e4b\u5f8b\u8005", "\u85aa\u708e\u4e4b\u5f8b\u8005", "\u4e91\u58a8\u4e39\u5fc3", "\u7b26\u534e", "\u8bc6\u4e4b\u5f8b\u8005", "\u7279\u74e6\u6797", "\u7ef4\u5c14\u8587", "\u82bd\u8863", "\u96f7\u4e4b\u5f8b\u8005", "\u65ad\u7f6a\u5f71\u821e", "\u963f\u6ce2\u5c3c\u4e9a", "\u698e\u672c", "\u5384\u5c3c\u65af\u7279", "\u6076\u9f99", "\u8303\u4e8c\u7237", "\u6cd5\u62c9", "\u611a\u4eba\u4f17\u58eb\u5175", "\u611a\u4eba\u4f17\u58eb\u5175a", "\u611a\u4eba\u4f17\u58eb\u5175b", "\u611a\u4eba\u4f17\u58eb\u5175c", "\u611a\u4eba\u4f17a", "\u611a\u4eba\u4f17b", "\u98de\u98de", "\u83f2\u5229\u514b\u65af", "\u5973\u6027\u8ddf\u968f\u8005", "\u9022\u5ca9", "\u6446\u6e21\u4eba", "\u72c2\u8e81\u7684\u7537\u4eba", "\u5965\u5179", "\u8299\u841d\u62c9", "\u8ddf\u968f\u8005", "\u871c\u6c41\u751f\u7269", "\u9ec4\u9ebb\u5b50", "\u6e0a\u4e0a", "\u85e4\u6728", "\u6df1\u89c1", "\u798f\u672c", "\u8299\u84c9", "\u53e4\u6cfd", "\u53e4\u7530", "\u53e4\u5c71", "\u53e4\u8c37\u6607", "\u5085\u4e09\u513f", "\u9ad8\u8001\u516d", "\u77ff\u5de5\u5192", "\u5143\u592a", "\u5fb7\u5b89\u516c", "\u8302\u624d\u516c", "\u6770\u62c9\u5fb7", "\u845b\u7f57\u4e3d", "\u91d1\u5ffd\u5f8b", "\u516c\u4fca", "\u9505\u5df4", "\u6b4c\u5fb7", "\u963f\u8c6a", "\u72d7\u4e09\u513f", "\u845b\u745e\u4e1d", "\u82e5\u5fc3", "\u963f\u5c71\u5a46", "\u602a\u9e1f", "\u5e7f\u7af9", "\u89c2\u6d77", "\u5173\u5b8f", "\u871c\u6c41\u536b\u5175", "\u5b88\u536b1", "\u50b2\u6162\u7684\u5b88\u536b", "\u5bb3\u6015\u7684\u5b88\u536b", "\u8d35\u5b89", "\u76d6\u4f0a", "\u963f\u521b", "\u54c8\u592b\u4e39", "\u65e5\u8bed\u963f\u8d1d\u591a\uff08\u91ce\u5c9b\u5065\u513f\uff09", "\u65e5\u8bed\u57c3\u6d1b\u4f0a\uff08\u9ad8\u57a3\u5f69\u9633\uff09", "\u65e5\u8bed\u5b89\u67cf\uff08\u77f3\u89c1\u821e\u83dc\u9999\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u534e\uff08\u65e9\u89c1\u6c99\u7ec7\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u4eba\uff08\u77f3\u7530\u5f70\uff09", "\u65e5\u8bed\u767d\u672f\uff08\u6e38\u4f50\u6d69\u4e8c\uff09", "\u65e5\u8bed\u82ad\u82ad\u62c9\uff08\u9b3c\u5934\u660e\u91cc\uff09", "\u65e5\u8bed\u5317\u6597\uff08\u5c0f\u6e05\u6c34\u4e9a\u7f8e\uff09", "\u65e5\u8bed\u73ed\u5c3c\u7279\uff08\u9022\u5742\u826f\u592a\uff09", "\u65e5\u8bed\u574e\u8482\u4e1d\uff08\u67da\u6728\u51c9\u9999\uff09", "\u65e5\u8bed\u91cd\u4e91\uff08\u9f50\u85e4\u58ee\u9a6c\uff09", "\u65e5\u8bed\u67ef\u83b1\uff08\u524d\u5ddd\u51c9\u5b50\uff09", "\u65e5\u8bed\u8d5b\u8bfa\uff08\u5165\u91ce\u81ea\u7531\uff09", "\u65e5\u8bed\u6234\u56e0\u65af\u96f7\u5e03\uff08\u6d25\u7530\u5065\u6b21\u90ce\uff09", "\u65e5\u8bed\u8fea\u5362\u514b\uff08\u5c0f\u91ce\u8d24\u7ae0\uff09", "\u65e5\u8bed\u8fea\u5965\u5a1c\uff08\u4e95\u6cfd\u8bd7\u7ec7\uff09", "\u65e5\u8bed\u591a\u8389\uff08\u91d1\u7530\u670b\u5b50\uff09", "\u65e5\u8bed\u4f18\u83c8\uff08\u4f50\u85e4\u5229\u5948\uff09", "\u65e5\u8bed\u83f2\u8c22\u5c14\uff08\u5185\u7530\u771f\u793c\uff09", "\u65e5\u8bed\u7518\u96e8\uff08\u4e0a\u7530\u4e3d\u5948\uff09", "\u65e5\u8bed\uff08\u7560\u4e2d\u7950\uff09", "\u65e5\u8bed\u9e7f\u91ce\u9662\u5e73\u85cf\uff08\u4e95\u53e3\u7950\u4e00\uff09", "\u65e5\u8bed\u7a7a\uff08\u5800\u6c5f\u77ac\uff09", "\u65e5\u8bed\u8367\uff08\u60a0\u6728\u78a7\uff09", "\u65e5\u8bed\u80e1\u6843\uff08\u9ad8\u6865\u674e\u4f9d\uff09", "\u65e5\u8bed\u4e00\u6597\uff08\u897f\u5ddd\u8d35\u6559\uff09", "\u65e5\u8bed\u51ef\u4e9a\uff08\u9e1f\u6d77\u6d69\u8f85\uff09", "\u65e5\u8bed\u4e07\u53f6\uff08\u5c9b\u5d0e\u4fe1\u957f\uff09", "\u65e5\u8bed\u523b\u6674\uff08\u559c\u591a\u6751\u82f1\u68a8\uff09", "\u65e5\u8bed\u53ef\u8389\uff08\u4e45\u91ce\u7f8e\u54b2\uff09", "\u65e5\u8bed\u5fc3\u6d77\uff08\u4e09\u68ee\u94c3\u5b50\uff09", "\u65e5\u8bed\u4e5d\u6761\u88df\u7f57\uff08\u6fd1\u6237\u9ebb\u6c99\u7f8e\uff09", "\u65e5\u8bed\u4e3d\u838e\uff08\u7530\u4e2d\u7406\u60e0\uff09", "\u65e5\u8bed\u83ab\u5a1c\uff08\u5c0f\u539f\u597d\u7f8e\uff09", "\u65e5\u8bed\u7eb3\u897f\u59b2\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u59ae\u9732\uff08\u91d1\u5143\u5bff\u5b50\uff09", "\u65e5\u8bed\u51dd\u5149\uff08\u5927\u539f\u6c99\u8036\u9999\uff09", "\u65e5\u8bed\u8bfa\u827e\u5c14\uff08\u9ad8\u5c3e\u594f\u97f3\uff09", "\u65e5\u8bed\u5965\u5179\uff08\u589e\u8c37\u5eb7\u7eaa\uff09", "\u65e5\u8bed\u6d3e\u8499\uff08\u53e4\u8d3a\u8475\uff09", "\u65e5\u8bed\u7434\uff08\u658b\u85e4\u5343\u548c\uff09", "\u65e5\u8bed\u4e03\u4e03\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u96f7\u7535\u5c06\u519b\uff08\u6cfd\u57ce\u7f8e\u96ea\uff09", "\u65e5\u8bed\u96f7\u6cfd\uff08\u5185\u5c71\u6602\u8f89\uff09", "\u65e5\u8bed\u7f57\u838e\u8389\u4e9a\uff08\u52a0\u9688\u4e9a\u8863\uff09", "\u65e5\u8bed\u65e9\u67da\uff08\u6d32\u5d0e\u7eeb\uff09", "\u65e5\u8bed\u6563\u5175\uff08\u67ff\u539f\u5f7b\u4e5f\uff09", "\u65e5\u8bed\u7533\u9e64\uff08\u5ddd\u6f84\u7eeb\u5b50\uff09", "\u65e5\u8bed\u4e45\u5c90\u5fcd\uff08\u6c34\u6865\u9999\u7ec7\uff09", "\u65e5\u8bed\u5973\u58eb\uff08\u5e84\u5b50\u88d5\u8863\uff09", "\u65e5\u8bed\u7802\u7cd6\uff08\u85e4\u7530\u831c\uff09", "\u65e5\u8bed\u8fbe\u8fbe\u5229\u4e9a\uff08\u6728\u6751\u826f\u5e73\uff09", "\u65e5\u8bed\u6258\u9a6c\uff08\u68ee\u7530\u6210\u4e00\uff09", "\u65e5\u8bed\u63d0\u7eb3\u91cc\uff08\u5c0f\u6797\u6c99\u82d7\uff09", "\u65e5\u8bed\u6e29\u8fea\uff08\u6751\u6fd1\u6b65\uff09", "\u65e5\u8bed\u9999\u83f1\uff08\u5c0f\u6cfd\u4e9a\u674e\uff09", "\u65e5\u8bed\u9b48\uff08\u677e\u5188\u796f\u4e1e\uff09", "\u65e5\u8bed\u884c\u79cb\uff08\u7686\u5ddd\u7eaf\u5b50\uff09", "\u65e5\u8bed\u8f9b\u7131\uff08\u9ad8\u6865\u667a\u79cb\uff09", "\u65e5\u8bed\u516b\u91cd\u795e\u5b50\uff08\u4f50\u4ed3\u7eeb\u97f3\uff09", "\u65e5\u8bed\u70df\u7eef\uff08\u82b1\u5b88\u7531\u7f8e\u91cc\uff09", "\u65e5\u8bed\u591c\u5170\uff08\u8fdc\u85e4\u7eeb\uff09", "\u65e5\u8bed\u5bb5\u5bab\uff08\u690d\u7530\u4f73\u5948\uff09", "\u65e5\u8bed\u4e91\u5807\uff08\u5c0f\u5ca9\u4e95\u5c0f\u9e1f\uff09", "\u65e5\u8bed\u949f\u79bb\uff08\u524d\u91ce\u667a\u662d\uff09", "\u6770\u514b", "\u963f\u5409", "\u6c5f\u821f", "\u9274\u79cb", "\u5609\u4e49", "\u7eaa\u82b3", "\u666f\u6f84", "\u7ecf\u7eb6", "\u666f\u660e", "\u664b\u4f18", "\u963f\u9e20", "\u9152\u5ba2", "\u4e54\u5c14", "\u4e54\u745f\u592b", "\u7ea6\u987f", "\u4e54\u4f0a\u65af", "\u5c45\u5b89", "\u541b\u541b", "\u987a\u5409", "\u7eaf\u4e5f", "\u91cd\u4f50", "\u5927\u5c9b\u7eaf\u5e73", "\u84b2\u6cfd", "\u52d8\u89e3\u7531\u5c0f\u8def\u5065\u4e09\u90ce", "\u67ab", "\u67ab\u539f\u4e49\u5e86", "\u836b\u5c71", "\u7532\u6590\u7530\u9f8d\u99ac", "\u6d77\u6597", "\u60df\u795e\u6674\u4e4b\u4ecb", "\u9e7f\u91ce\u5948\u5948", "\u5361\u7435\u8389\u4e9a", "\u51ef\u745f\u7433", "\u52a0\u85e4\u4fe1\u609f", "\u52a0\u85e4\u6d0b\u5e73", "\u80dc\u5bb6", "\u8305\u847a\u4e00\u5e86", "\u548c\u662d", "\u4e00\u6b63", "\u4e00\u9053", "\u6842\u4e00", "\u5e86\u6b21\u90ce", "\u963f\u8d24", "\u5065\u53f8", "\u5065\u6b21\u90ce", "\u5065\u4e09\u90ce", "\u5929\u7406", "\u6740\u624ba", "\u6740\u624bb", "\u6728\u5357\u674f\u5948", "\u6728\u6751", "\u56fd\u738b", "\u6728\u4e0b", "\u5317\u6751", "\u6e05\u60e0", "\u6e05\u4eba", "\u514b\u5217\u95e8\u7279", "\u9a91\u58eb", "\u5c0f\u6797", "\u5c0f\u6625", "\u5eb7\u62c9\u5fb7", "\u5927\u8089\u4e38", "\u7434\u7f8e", "\u5b8f\u4e00", "\u5eb7\u4ecb", "\u5e78\u5fb7", "\u9ad8\u5584", "\u68a2", "\u514b\u7f57\u7d22", "\u4e45\u4fdd", "\u4e5d\u6761\u9570\u6cbb", "\u4e45\u6728\u7530", "\u6606\u94a7", "\u83ca\u5730\u541b", "\u4e45\u5229\u987b", "\u9ed1\u7530", "\u9ed1\u6cfd\u4eac\u4e4b\u4ecb", "\u54cd\u592a", "\u5c9a\u59d0", "\u5170\u6eaa", "\u6f9c\u9633", "\u52b3\u4f26\u65af", "\u4e50\u660e", "\u83b1\u8bfa", "\u83b2", "\u826f\u5b50", "\u674e\u5f53", "\u674e\u4e01", "\u5c0f\u4e50", "\u7075", "\u5c0f\u73b2", "\u7433\u7405a", "\u7433\u7405b", "\u5c0f\u5f6c", "\u5c0f\u5fb7", "\u5c0f\u697d", "\u5c0f\u9f99", "\u5c0f\u5434", "\u5c0f\u5434\u7684\u8bb0\u5fc6", "\u7406\u6b63", "\u963f\u9f99", "\u5362\u5361", "\u6d1b\u6210", "\u7f57\u5de7", "\u5317\u98ce\u72fc", "\u5362\u6b63", "\u840d\u59e5\u59e5", "\u524d\u7530", "\u771f\u663c", "\u9ebb\u7eaa", "\u771f", "\u611a\u4eba\u4f17-\u9a6c\u514b\u897f\u59c6", "\u5973\u6027a", "\u5973\u6027b", "\u5973\u6027a\u7684\u8ddf\u968f\u8005", "\u963f\u5b88", "\u739b\u683c\u4e3d\u7279", "\u771f\u7406", "\u739b\u4e54\u4e3d", "\u739b\u6587", "\u6b63\u80dc", "\u660c\u4fe1", "\u5c06\u53f8", "\u6b63\u4eba", "\u8def\u7237", "\u8001\u7ae0", "\u677e\u7530", "\u677e\u672c", "\u677e\u6d66", "\u677e\u5742", "\u8001\u5b5f", "\u5b5f\u4e39", "\u5546\u4eba\u968f\u4ece", "\u4f20\u4ee4\u5175", "\u7c73\u6b47\u5c14", "\u5fa1\u8206\u6e90\u4e00\u90ce", "\u5fa1\u8206\u6e90\u6b21\u90ce", "\u5343\u5ca9\u519b\u6559\u5934", "\u5343\u5ca9\u519b\u58eb\u5175", "\u660e\u535a", "\u660e\u4fca", "\u7f8e\u94c3", "\u7f8e\u548c", "\u963f\u5e78", "\u524a\u6708\u7b51\u9633\u771f\u541b", "\u94b1\u773c\u513f", "\u68ee\u5f66", "\u5143\u52a9", "\u7406\u6c34\u53e0\u5c71\u771f\u541b", "\u7406\u6c34\u758a\u5c71\u771f\u541b", "\u6731\u8001\u677f", "\u6728\u6728", "\u6751\u4e0a", "\u6751\u7530", "\u6c38\u91ce", "\u957f\u91ce\u539f\u9f99\u4e4b\u4ecb", "\u957f\u6fd1", "\u4e2d\u91ce\u5fd7\u4e43", "\u83dc\u83dc\u5b50", "\u6960\u6960", "\u6210\u6fd1", "\u963f\u5185", "\u5b81\u7984", "\u725b\u5fd7", "\u4fe1\u535a", "\u4f38\u592b", "\u91ce\u65b9", "\u8bfa\u62c9", "\u7eaa\u9999", "\u8bfa\u66fc", "\u4fee\u5973", "\u7eaf\u6c34\u7cbe\u7075", "\u5c0f\u5ddd", "\u5c0f\u4ed3\u6faa", "\u5188\u6797", "\u5188\u5d0e\u7ed8\u91cc\u9999", "\u5188\u5d0e\u9646\u6597", "\u5965\u62c9\u592b", "\u8001\u79d1", "\u9b3c\u5a46\u5a46", "\u5c0f\u91ce\u5bfa", "\u5927\u6cb3\u539f\u4e94\u53f3\u536b\u95e8", "\u5927\u4e45\u4fdd\u5927\u4ecb", "\u5927\u68ee", "\u5927\u52a9", "\u5965\u7279", "\u6d3e\u8499", "\u6d3e\u84992", "\u75c5\u4ebaa", "\u75c5\u4ebab", "\u5df4\u987f", "\u6d3e\u6069", "\u670b\u4e49", "\u56f4\u89c2\u7fa4\u4f17", "\u56f4\u89c2\u7fa4\u4f17a", "\u56f4\u89c2\u7fa4\u4f17b", "\u56f4\u89c2\u7fa4\u4f17c", "\u56f4\u89c2\u7fa4\u4f17d", "\u56f4\u89c2\u7fa4\u4f17e", "\u94dc\u96c0", "\u963f\u80a5", "\u5174\u53d4", "\u8001\u5468\u53d4", "\u516c\u4e3b", "\u5f7c\u5f97", "\u4e7e\u5b50", "\u828a\u828a", "\u4e7e\u73ae", "\u7eee\u547d", "\u675e\u5e73", "\u79cb\u6708", "\u6606\u6069", "\u96f7\u7535\u5f71", "\u5170\u9053\u5c14", "\u96f7\u8499\u5fb7", "\u5192\u5931\u7684\u5e15\u62c9\u5fb7", "\u4f36\u4e00", "\u73b2\u82b1", "\u963f\u4ec1", "\u5bb6\u81e3\u4eec", "\u68a8\u7ed8", "\u8363\u6c5f", "\u620e\u4e16", "\u6d6a\u4eba", "\u7f57\u4f0a\u65af", "\u5982\u610f", "\u51c9\u5b50", "\u5f69\u9999", "\u9152\u4e95", "\u5742\u672c", "\u6714\u6b21\u90ce", "\u6b66\u58eba", "\u6b66\u58ebb", "\u6b66\u58ebc", "\u6b66\u58ebd", "\u73ca\u745a", "\u4e09\u7530", "\u838e\u62c9", "\u7b39\u91ce", "\u806a\u7f8e", "\u806a", "\u5c0f\u767e\u5408", "\u6563\u5175", "\u5bb3\u6015\u7684\u5c0f\u5218", "\u8212\u4f2f\u7279", "\u8212\u8328", "\u6d77\u9f99", "\u4e16\u5b50", "\u8c22\u5c14\u76d6", "\u5bb6\u4e01", "\u5546\u534e", "\u6c99\u5bc5", "\u963f\u5347", "\u67f4\u7530", "\u963f\u8302", "\u5f0f\u5927\u5c06", "\u6e05\u6c34", "\u5fd7\u6751\u52d8\u5175\u536b", "\u65b0\u4e4b\u4e1e", "\u5fd7\u7ec7", "\u77f3\u5934", "\u8bd7\u7fbd", "\u8bd7\u7b60", "\u77f3\u58ee", "\u7fd4\u592a", "\u6b63\u4e8c", "\u5468\u5e73", "\u8212\u6768", "\u9f50\u683c\u8299\u4e3d\u96c5", "\u5973\u58eb", "\u601d\u52e4", "\u516d\u6307\u4e54\u745f", "\u611a\u4eba\u4f17\u5c0f\u5175d", "\u611a\u4eba\u4f17\u5c0f\u5175a", "\u611a\u4eba\u4f17\u5c0f\u5175b", "\u611a\u4eba\u4f17\u5c0f\u5175c", "\u5434\u8001\u4e94", "\u5434\u8001\u4e8c", "\u6ed1\u5934\u9b3c", "\u8a00\u7b11", "\u5434\u8001\u4e03", "\u58eb\u5175h", "\u58eb\u5175i", "\u58eb\u5175a", "\u58eb\u5175b", "\u58eb\u5175c", "\u58eb\u5175d", "\u58eb\u5175e", "\u58eb\u5175f", "\u58eb\u5175g", "\u594f\u592a", "\u65af\u5766\u5229", "\u6387\u661f\u652b\u8fb0\u5929\u541b", "\u5c0f\u5934", "\u5927\u6b66", "\u9676\u4e49\u9686", "\u6749\u672c", "\u82cf\u897f", "\u5acc\u7591\u4ebaa", "\u5acc\u7591\u4ebab", "\u5acc\u7591\u4ebac", "\u5acc\u7591\u4ebad", "\u65af\u4e07", "\u5251\u5ba2a", "\u5251\u5ba2b", "\u963f\u4e8c", "\u5fe0\u80dc", "\u5fe0\u592b", "\u963f\u656c", "\u5b5d\u5229", "\u9e70\u53f8\u8fdb", "\u9ad8\u5c71", "\u4e5d\u6761\u5b5d\u884c", "\u6bc5", "\u7af9\u5185", "\u62d3\u771f", "\u5353\u4e5f", "\u592a\u90ce\u4e38", "\u6cf0\u52d2", "\u624b\u5c9b", "\u54f2\u5e73", "\u54f2\u592b", "\u6258\u514b", "\u5927boss", "\u963f\u5f3a", "\u6258\u5c14\u5fb7\u62c9", "\u65c1\u89c2\u8005", "\u5929\u6210", "\u963f\u5927", "\u8482\u739b\u4e4c\u65af", "\u63d0\u7c73", "\u6237\u7530", "\u963f\u4e09", "\u4e00\u8d77\u7684\u4eba", "\u5fb7\u7530", "\u5fb7\u957f", "\u667a\u6811", "\u5229\u5f66", "\u80d6\u4e4e\u4e4e\u7684\u65c5\u884c\u8005", "\u85cf\u5b9d\u4ebaa", "\u85cf\u5b9d\u4ebab", "\u85cf\u5b9d\u4ebac", "\u85cf\u5b9d\u4ebad", "\u963f\u7947", "\u6052\u96c4", "\u9732\u5b50", "\u8bdd\u5267\u56e2\u56e2\u957f", "\u5185\u6751", "\u4e0a\u91ce", "\u4e0a\u6749", "\u8001\u6234", "\u8001\u9ad8", "\u8001\u8d3e", "\u8001\u58a8", "\u8001\u5b59", "\u5929\u67a2\u661f", "\u8001\u4e91", "\u6709\u4e50\u658b", "\u4e11\u96c4", "\u4e4c\u7ef4", "\u74e6\u4eac", "\u83f2\u5c14\u6208\u9edb\u7279", "\u7ef4\u591a\u5229\u4e9a", "\u8587\u5c14", "\u74e6\u683c\u7eb3", "\u963f\u5916", "\u4f8d\u5973", "\u74e6\u62c9", "\u671b\u96c5", "\u5b9b\u70df", "\u742c\u7389", "\u6218\u58eba", "\u6218\u58ebb", "\u6e21\u8fba", "\u6e21\u90e8", "\u963f\u4f1f", "\u6587\u749f", "\u6587\u6e0a", "\u97e6\u5c14\u7eb3", "\u738b\u6273\u624b", "\u6b66\u6c9b", "\u6653\u98de", "\u8f9b\u7a0b", "\u661f\u706b", "\u661f\u7a00", "\u8f9b\u79c0", "\u79c0\u534e", "\u963f\u65ed", "\u5f90\u5218\u5e08", "\u77e2\u90e8", "\u516b\u6728", "\u5c71\u4e0a", "\u963f\u9633", "\u989c\u7b11", "\u5eb7\u660e", "\u6cf0\u4e45", "\u5b89\u6b66", "\u77e2\u7530\u5e78\u559c", "\u77e2\u7530\u8f9b\u559c", "\u4e49\u575a", "\u83ba\u513f", "\u76c8\u4e30", "\u5b9c\u5e74", "\u94f6\u674f", "\u9038\u8f69", "\u6a2a\u5c71", "\u6c38\u8d35", "\u6c38\u4e1a", "\u5609\u4e45", "\u5409\u5ddd", "\u4e49\u9ad8", "\u7528\u9ad8", "\u9633\u592a", "\u5143\u84c9", "\u73a5\u8f89", "\u6bd3\u534e", "\u6709\u9999", "\u5e78\u4e5f", "\u7531\u771f", "\u7ed3\u83dc", "\u97f5\u5b81", "\u767e\u5408", "\u767e\u5408\u534e", "\u5c24\u82cf\u6ce2\u592b", "\u88d5\u5b50", "\u60a0\u7b56", "\u60a0\u4e5f", "\u4e8e\u5ae3", "\u67da\u5b50", "\u8001\u90d1", "\u6b63\u8302", "\u5fd7\u6210", "\u82b7\u5de7", "\u77e5\u6613", "\u652f\u652f", "\u5468\u826f", "\u73e0\u51fd", "\u795d\u660e", "\u795d\u6d9b"],
|
| 54 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
| 55 |
+
}
|
configs/modified_finetune_speaker.json
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 10,
|
| 4 |
+
"eval_interval": 100,
|
| 5 |
+
"seed": 1234,
|
| 6 |
+
"epochs": 10000,
|
| 7 |
+
"learning_rate": 0.0002,
|
| 8 |
+
"betas": [
|
| 9 |
+
0.8,
|
| 10 |
+
0.99
|
| 11 |
+
],
|
| 12 |
+
"eps": 1e-09,
|
| 13 |
+
"batch_size": 16,
|
| 14 |
+
"fp16_run": true,
|
| 15 |
+
"lr_decay": 0.999875,
|
| 16 |
+
"segment_size": 8192,
|
| 17 |
+
"init_lr_ratio": 1,
|
| 18 |
+
"warmup_epochs": 0,
|
| 19 |
+
"c_mel": 45,
|
| 20 |
+
"c_kl": 1.0
|
| 21 |
+
},
|
| 22 |
+
"data": {
|
| 23 |
+
"training_files": "final_annotation_train.txt",
|
| 24 |
+
"validation_files": "final_annotation_val.txt",
|
| 25 |
+
"text_cleaners": [
|
| 26 |
+
"chinese_cleaners"
|
| 27 |
+
],
|
| 28 |
+
"max_wav_value": 32768.0,
|
| 29 |
+
"sampling_rate": 22050,
|
| 30 |
+
"filter_length": 1024,
|
| 31 |
+
"hop_length": 256,
|
| 32 |
+
"win_length": 1024,
|
| 33 |
+
"n_mel_channels": 80,
|
| 34 |
+
"mel_fmin": 0.0,
|
| 35 |
+
"mel_fmax": null,
|
| 36 |
+
"add_blank": true,
|
| 37 |
+
"n_speakers": 2,
|
| 38 |
+
"cleaned_text": true
|
| 39 |
+
},
|
| 40 |
+
"model": {
|
| 41 |
+
"inter_channels": 192,
|
| 42 |
+
"hidden_channels": 192,
|
| 43 |
+
"filter_channels": 768,
|
| 44 |
+
"n_heads": 2,
|
| 45 |
+
"n_layers": 6,
|
| 46 |
+
"kernel_size": 3,
|
| 47 |
+
"p_dropout": 0.1,
|
| 48 |
+
"resblock": "1",
|
| 49 |
+
"resblock_kernel_sizes": [
|
| 50 |
+
3,
|
| 51 |
+
7,
|
| 52 |
+
11
|
| 53 |
+
],
|
| 54 |
+
"resblock_dilation_sizes": [
|
| 55 |
+
[
|
| 56 |
+
1,
|
| 57 |
+
3,
|
| 58 |
+
5
|
| 59 |
+
],
|
| 60 |
+
[
|
| 61 |
+
1,
|
| 62 |
+
3,
|
| 63 |
+
5
|
| 64 |
+
],
|
| 65 |
+
[
|
| 66 |
+
1,
|
| 67 |
+
3,
|
| 68 |
+
5
|
| 69 |
+
]
|
| 70 |
+
],
|
| 71 |
+
"upsample_rates": [
|
| 72 |
+
8,
|
| 73 |
+
8,
|
| 74 |
+
2,
|
| 75 |
+
2
|
| 76 |
+
],
|
| 77 |
+
"upsample_initial_channel": 512,
|
| 78 |
+
"upsample_kernel_sizes": [
|
| 79 |
+
16,
|
| 80 |
+
16,
|
| 81 |
+
4,
|
| 82 |
+
4
|
| 83 |
+
],
|
| 84 |
+
"n_layers_q": 3,
|
| 85 |
+
"use_spectral_norm": false,
|
| 86 |
+
"gin_channels": 256
|
| 87 |
+
},
|
| 88 |
+
"symbols": [
|
| 89 |
+
"_",
|
| 90 |
+
"\uff1b",
|
| 91 |
+
"\uff1a",
|
| 92 |
+
"\uff0c",
|
| 93 |
+
"\u3002",
|
| 94 |
+
"\uff01",
|
| 95 |
+
"\uff1f",
|
| 96 |
+
"-",
|
| 97 |
+
"\u201c",
|
| 98 |
+
"\u201d",
|
| 99 |
+
"\u300a",
|
| 100 |
+
"\u300b",
|
| 101 |
+
"\u3001",
|
| 102 |
+
"\uff08",
|
| 103 |
+
"\uff09",
|
| 104 |
+
"\u2026",
|
| 105 |
+
"\u2014",
|
| 106 |
+
" ",
|
| 107 |
+
"A",
|
| 108 |
+
"B",
|
| 109 |
+
"C",
|
| 110 |
+
"D",
|
| 111 |
+
"E",
|
| 112 |
+
"F",
|
| 113 |
+
"G",
|
| 114 |
+
"H",
|
| 115 |
+
"I",
|
| 116 |
+
"J",
|
| 117 |
+
"K",
|
| 118 |
+
"L",
|
| 119 |
+
"M",
|
| 120 |
+
"N",
|
| 121 |
+
"O",
|
| 122 |
+
"P",
|
| 123 |
+
"Q",
|
| 124 |
+
"R",
|
| 125 |
+
"S",
|
| 126 |
+
"T",
|
| 127 |
+
"U",
|
| 128 |
+
"V",
|
| 129 |
+
"W",
|
| 130 |
+
"X",
|
| 131 |
+
"Y",
|
| 132 |
+
"Z",
|
| 133 |
+
"a",
|
| 134 |
+
"b",
|
| 135 |
+
"c",
|
| 136 |
+
"d",
|
| 137 |
+
"e",
|
| 138 |
+
"f",
|
| 139 |
+
"g",
|
| 140 |
+
"h",
|
| 141 |
+
"i",
|
| 142 |
+
"j",
|
| 143 |
+
"k",
|
| 144 |
+
"l",
|
| 145 |
+
"m",
|
| 146 |
+
"n",
|
| 147 |
+
"o",
|
| 148 |
+
"p",
|
| 149 |
+
"q",
|
| 150 |
+
"r",
|
| 151 |
+
"s",
|
| 152 |
+
"t",
|
| 153 |
+
"u",
|
| 154 |
+
"v",
|
| 155 |
+
"w",
|
| 156 |
+
"x",
|
| 157 |
+
"y",
|
| 158 |
+
"z",
|
| 159 |
+
"1",
|
| 160 |
+
"2",
|
| 161 |
+
"3",
|
| 162 |
+
"4",
|
| 163 |
+
"5",
|
| 164 |
+
"0",
|
| 165 |
+
"\uff22",
|
| 166 |
+
"\uff30"
|
| 167 |
+
],
|
| 168 |
+
"speakers": {
|
| 169 |
+
"dingzhen": 0,
|
| 170 |
+
"taffy": 1
|
| 171 |
+
}
|
| 172 |
+
}
|
custom_character_voice/22050.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
data_utils.py
ADDED
|
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.utils.data
|
| 7 |
+
|
| 8 |
+
import commons
|
| 9 |
+
from mel_processing import spectrogram_torch, mel_spectrogram_torch, spec_to_mel_torch
|
| 10 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
| 11 |
+
from text import text_to_sequence, cleaned_text_to_sequence
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class TextAudioLoader(torch.utils.data.Dataset):
|
| 15 |
+
"""
|
| 16 |
+
1) loads audio, text pairs
|
| 17 |
+
2) normalizes text and converts them to sequences of integers
|
| 18 |
+
3) computes spectrograms from audio files.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, audiopaths_and_text, hparams):
|
| 22 |
+
self.hparams = hparams
|
| 23 |
+
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
| 24 |
+
self.text_cleaners = hparams.text_cleaners
|
| 25 |
+
self.max_wav_value = hparams.max_wav_value
|
| 26 |
+
self.sampling_rate = hparams.sampling_rate
|
| 27 |
+
self.filter_length = hparams.filter_length
|
| 28 |
+
self.hop_length = hparams.hop_length
|
| 29 |
+
self.win_length = hparams.win_length
|
| 30 |
+
self.sampling_rate = hparams.sampling_rate
|
| 31 |
+
|
| 32 |
+
self.use_mel_spec_posterior = getattr(
|
| 33 |
+
hparams, "use_mel_posterior_encoder", False
|
| 34 |
+
)
|
| 35 |
+
if self.use_mel_spec_posterior:
|
| 36 |
+
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
| 37 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
| 38 |
+
|
| 39 |
+
self.add_blank = hparams.add_blank
|
| 40 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
| 41 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
| 42 |
+
|
| 43 |
+
random.seed(1234)
|
| 44 |
+
random.shuffle(self.audiopaths_and_text)
|
| 45 |
+
self._filter()
|
| 46 |
+
|
| 47 |
+
def _filter(self):
|
| 48 |
+
"""
|
| 49 |
+
Filter text & store spec lengths
|
| 50 |
+
"""
|
| 51 |
+
# Store spectrogram lengths for Bucketing
|
| 52 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
| 53 |
+
# spec_length = wav_length // hop_length
|
| 54 |
+
|
| 55 |
+
audiopaths_and_text_new = []
|
| 56 |
+
lengths = []
|
| 57 |
+
for audiopath, text in self.audiopaths_and_text:
|
| 58 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 59 |
+
audiopaths_and_text_new.append([audiopath, text])
|
| 60 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
| 61 |
+
self.audiopaths_and_text = audiopaths_and_text_new
|
| 62 |
+
self.lengths = lengths
|
| 63 |
+
|
| 64 |
+
def get_audio_text_pair(self, audiopath_and_text):
|
| 65 |
+
# separate filename and text
|
| 66 |
+
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
| 67 |
+
text = self.get_text(text)
|
| 68 |
+
spec, wav = self.get_audio(audiopath)
|
| 69 |
+
return (text, spec, wav)
|
| 70 |
+
|
| 71 |
+
def get_audio(self, filename):
|
| 72 |
+
# TODO : if linear spec exists convert to mel from existing linear spec
|
| 73 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
| 74 |
+
if sampling_rate != self.sampling_rate:
|
| 75 |
+
raise ValueError(
|
| 76 |
+
"{} {} SR doesn't match target {} SR".format(
|
| 77 |
+
sampling_rate, self.sampling_rate
|
| 78 |
+
)
|
| 79 |
+
)
|
| 80 |
+
audio_norm = audio / self.max_wav_value
|
| 81 |
+
audio_norm = audio_norm.unsqueeze(0)
|
| 82 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
| 83 |
+
if self.use_mel_spec_posterior:
|
| 84 |
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
| 85 |
+
if os.path.exists(spec_filename):
|
| 86 |
+
spec = torch.load(spec_filename)
|
| 87 |
+
else:
|
| 88 |
+
if self.use_mel_spec_posterior:
|
| 89 |
+
"""TODO : (need verification)
|
| 90 |
+
if linear spec exists convert to
|
| 91 |
+
mel from existing linear spec (uncomment below lines)"""
|
| 92 |
+
# if os.path.exists(filename.replace(".wav", ".spec.pt")):
|
| 93 |
+
# # spec, n_fft, num_mels, sampling_rate, fmin, fmax
|
| 94 |
+
# spec = spec_to_mel_torch(
|
| 95 |
+
# torch.load(filename.replace(".wav", ".spec.pt")),
|
| 96 |
+
# self.filter_length, self.n_mel_channels, self.sampling_rate,
|
| 97 |
+
# self.hparams.mel_fmin, self.hparams.mel_fmax)
|
| 98 |
+
spec = mel_spectrogram_torch(
|
| 99 |
+
audio_norm,
|
| 100 |
+
self.filter_length,
|
| 101 |
+
self.n_mel_channels,
|
| 102 |
+
self.sampling_rate,
|
| 103 |
+
self.hop_length,
|
| 104 |
+
self.win_length,
|
| 105 |
+
self.hparams.mel_fmin,
|
| 106 |
+
self.hparams.mel_fmax,
|
| 107 |
+
center=False,
|
| 108 |
+
)
|
| 109 |
+
else:
|
| 110 |
+
spec = spectrogram_torch(
|
| 111 |
+
audio_norm,
|
| 112 |
+
self.filter_length,
|
| 113 |
+
self.sampling_rate,
|
| 114 |
+
self.hop_length,
|
| 115 |
+
self.win_length,
|
| 116 |
+
center=False,
|
| 117 |
+
)
|
| 118 |
+
spec = torch.squeeze(spec, 0)
|
| 119 |
+
torch.save(spec, spec_filename)
|
| 120 |
+
return spec, audio_norm
|
| 121 |
+
|
| 122 |
+
def get_text(self, text):
|
| 123 |
+
if self.cleaned_text:
|
| 124 |
+
text_norm = cleaned_text_to_sequence(text)
|
| 125 |
+
else:
|
| 126 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
| 127 |
+
if self.add_blank:
|
| 128 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 129 |
+
text_norm = torch.LongTensor(text_norm)
|
| 130 |
+
return text_norm
|
| 131 |
+
|
| 132 |
+
def __getitem__(self, index):
|
| 133 |
+
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
| 134 |
+
|
| 135 |
+
def __len__(self):
|
| 136 |
+
return len(self.audiopaths_and_text)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class TextAudioCollate:
|
| 140 |
+
"""Zero-pads model inputs and targets"""
|
| 141 |
+
|
| 142 |
+
def __init__(self, return_ids=False):
|
| 143 |
+
self.return_ids = return_ids
|
| 144 |
+
|
| 145 |
+
def __call__(self, batch):
|
| 146 |
+
"""Collate's training batch from normalized text and aduio
|
| 147 |
+
PARAMS
|
| 148 |
+
------
|
| 149 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
| 150 |
+
"""
|
| 151 |
+
# Right zero-pad all one-hot text sequences to max input length
|
| 152 |
+
_, ids_sorted_decreasing = torch.sort(
|
| 153 |
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
max_text_len = max([len(x[0]) for x in batch])
|
| 157 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
| 158 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
| 159 |
+
|
| 160 |
+
text_lengths = torch.LongTensor(len(batch))
|
| 161 |
+
spec_lengths = torch.LongTensor(len(batch))
|
| 162 |
+
wav_lengths = torch.LongTensor(len(batch))
|
| 163 |
+
|
| 164 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
| 165 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
| 166 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
| 167 |
+
text_padded.zero_()
|
| 168 |
+
spec_padded.zero_()
|
| 169 |
+
wav_padded.zero_()
|
| 170 |
+
for i in range(len(ids_sorted_decreasing)):
|
| 171 |
+
row = batch[ids_sorted_decreasing[i]]
|
| 172 |
+
|
| 173 |
+
text = row[0]
|
| 174 |
+
text_padded[i, : text.size(0)] = text
|
| 175 |
+
text_lengths[i] = text.size(0)
|
| 176 |
+
|
| 177 |
+
spec = row[1]
|
| 178 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
| 179 |
+
spec_lengths[i] = spec.size(1)
|
| 180 |
+
|
| 181 |
+
wav = row[2]
|
| 182 |
+
wav_padded[i, :, : wav.size(1)] = wav
|
| 183 |
+
wav_lengths[i] = wav.size(1)
|
| 184 |
+
|
| 185 |
+
if self.return_ids:
|
| 186 |
+
return (
|
| 187 |
+
text_padded,
|
| 188 |
+
text_lengths,
|
| 189 |
+
spec_padded,
|
| 190 |
+
spec_lengths,
|
| 191 |
+
wav_padded,
|
| 192 |
+
wav_lengths,
|
| 193 |
+
ids_sorted_decreasing,
|
| 194 |
+
)
|
| 195 |
+
return (
|
| 196 |
+
text_padded,
|
| 197 |
+
text_lengths,
|
| 198 |
+
spec_padded,
|
| 199 |
+
spec_lengths,
|
| 200 |
+
wav_padded,
|
| 201 |
+
wav_lengths,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
"""Multi speaker version"""
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
| 209 |
+
"""
|
| 210 |
+
1) loads audio, speaker_id, text pairs
|
| 211 |
+
2) normalizes text and converts them to sequences of integers
|
| 212 |
+
3) computes spectrograms from audio files.
|
| 213 |
+
"""
|
| 214 |
+
|
| 215 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
| 216 |
+
self.hparams = hparams
|
| 217 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
| 218 |
+
self.text_cleaners = hparams.text_cleaners
|
| 219 |
+
self.max_wav_value = hparams.max_wav_value
|
| 220 |
+
self.sampling_rate = hparams.sampling_rate
|
| 221 |
+
self.filter_length = hparams.filter_length
|
| 222 |
+
self.hop_length = hparams.hop_length
|
| 223 |
+
self.win_length = hparams.win_length
|
| 224 |
+
self.sampling_rate = hparams.sampling_rate
|
| 225 |
+
|
| 226 |
+
self.use_mel_spec_posterior = getattr(
|
| 227 |
+
hparams, "use_mel_posterior_encoder", False
|
| 228 |
+
)
|
| 229 |
+
if self.use_mel_spec_posterior:
|
| 230 |
+
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
| 231 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
| 232 |
+
|
| 233 |
+
self.add_blank = hparams.add_blank
|
| 234 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
| 235 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
| 236 |
+
|
| 237 |
+
random.seed(1234)
|
| 238 |
+
random.shuffle(self.audiopaths_sid_text)
|
| 239 |
+
self._filter()
|
| 240 |
+
|
| 241 |
+
def _filter(self):
|
| 242 |
+
"""
|
| 243 |
+
Filter text & store spec lengths
|
| 244 |
+
"""
|
| 245 |
+
# Store spectrogram lengths for Bucketing
|
| 246 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
| 247 |
+
# spec_length = wav_length // hop_length
|
| 248 |
+
|
| 249 |
+
audiopaths_sid_text_new = []
|
| 250 |
+
lengths = []
|
| 251 |
+
for audiopath, sid, text in self.audiopaths_sid_text:
|
| 252 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 253 |
+
audiopaths_sid_text_new.append([audiopath, sid, text])
|
| 254 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
| 255 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
| 256 |
+
self.lengths = lengths
|
| 257 |
+
|
| 258 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
| 259 |
+
# separate filename, speaker_id and text
|
| 260 |
+
audiopath, sid, text = (
|
| 261 |
+
audiopath_sid_text[0],
|
| 262 |
+
audiopath_sid_text[1],
|
| 263 |
+
audiopath_sid_text[2],
|
| 264 |
+
)
|
| 265 |
+
text = self.get_text(text)
|
| 266 |
+
spec, wav = self.get_audio(audiopath)
|
| 267 |
+
sid = self.get_sid(sid)
|
| 268 |
+
return (text, spec, wav, sid)
|
| 269 |
+
|
| 270 |
+
def get_audio(self, filename):
|
| 271 |
+
# TODO : if linear spec exists convert to mel from existing linear spec
|
| 272 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
| 273 |
+
if sampling_rate != self.sampling_rate:
|
| 274 |
+
raise ValueError(
|
| 275 |
+
"{} {} SR doesn't match target {} SR".format(
|
| 276 |
+
sampling_rate, self.sampling_rate
|
| 277 |
+
)
|
| 278 |
+
)
|
| 279 |
+
audio_norm = audio / self.max_wav_value
|
| 280 |
+
audio_norm = audio_norm.unsqueeze(0)
|
| 281 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
| 282 |
+
if self.use_mel_spec_posterior:
|
| 283 |
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
| 284 |
+
if os.path.exists(spec_filename):
|
| 285 |
+
spec = torch.load(spec_filename)
|
| 286 |
+
else:
|
| 287 |
+
if self.use_mel_spec_posterior:
|
| 288 |
+
"""TODO : (need verification)
|
| 289 |
+
if linear spec exists convert to
|
| 290 |
+
mel from existing linear spec (uncomment below lines)"""
|
| 291 |
+
# if os.path.exists(filename.replace(".wav", ".spec.pt")):
|
| 292 |
+
# # spec, n_fft, num_mels, sampling_rate, fmin, fmax
|
| 293 |
+
# spec = spec_to_mel_torch(
|
| 294 |
+
# torch.load(filename.replace(".wav", ".spec.pt")),
|
| 295 |
+
# self.filter_length, self.n_mel_channels, self.sampling_rate,
|
| 296 |
+
# self.hparams.mel_fmin, self.hparams.mel_fmax)
|
| 297 |
+
spec = mel_spectrogram_torch(
|
| 298 |
+
audio_norm,
|
| 299 |
+
self.filter_length,
|
| 300 |
+
self.n_mel_channels,
|
| 301 |
+
self.sampling_rate,
|
| 302 |
+
self.hop_length,
|
| 303 |
+
self.win_length,
|
| 304 |
+
self.hparams.mel_fmin,
|
| 305 |
+
self.hparams.mel_fmax,
|
| 306 |
+
center=False,
|
| 307 |
+
)
|
| 308 |
+
else:
|
| 309 |
+
spec = spectrogram_torch(
|
| 310 |
+
audio_norm,
|
| 311 |
+
self.filter_length,
|
| 312 |
+
self.sampling_rate,
|
| 313 |
+
self.hop_length,
|
| 314 |
+
self.win_length,
|
| 315 |
+
center=False,
|
| 316 |
+
)
|
| 317 |
+
spec = torch.squeeze(spec, 0)
|
| 318 |
+
torch.save(spec, spec_filename)
|
| 319 |
+
return spec, audio_norm
|
| 320 |
+
|
| 321 |
+
def get_text(self, text):
|
| 322 |
+
if self.cleaned_text:
|
| 323 |
+
text_norm = cleaned_text_to_sequence(text)
|
| 324 |
+
else:
|
| 325 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
| 326 |
+
if self.add_blank:
|
| 327 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 328 |
+
text_norm = torch.LongTensor(text_norm)
|
| 329 |
+
return text_norm
|
| 330 |
+
|
| 331 |
+
def get_sid(self, sid):
|
| 332 |
+
sid = torch.LongTensor([int(sid)])
|
| 333 |
+
return sid
|
| 334 |
+
|
| 335 |
+
def __getitem__(self, index):
|
| 336 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
| 337 |
+
|
| 338 |
+
def __len__(self):
|
| 339 |
+
return len(self.audiopaths_sid_text)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
class TextAudioSpeakerCollate:
|
| 343 |
+
"""Zero-pads model inputs and targets"""
|
| 344 |
+
|
| 345 |
+
def __init__(self, return_ids=False):
|
| 346 |
+
self.return_ids = return_ids
|
| 347 |
+
|
| 348 |
+
def __call__(self, batch):
|
| 349 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
| 350 |
+
PARAMS
|
| 351 |
+
------
|
| 352 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
| 353 |
+
"""
|
| 354 |
+
# Right zero-pad all one-hot text sequences to max input length
|
| 355 |
+
_, ids_sorted_decreasing = torch.sort(
|
| 356 |
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
max_text_len = max([len(x[0]) for x in batch])
|
| 360 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
| 361 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
| 362 |
+
|
| 363 |
+
text_lengths = torch.LongTensor(len(batch))
|
| 364 |
+
spec_lengths = torch.LongTensor(len(batch))
|
| 365 |
+
wav_lengths = torch.LongTensor(len(batch))
|
| 366 |
+
sid = torch.LongTensor(len(batch))
|
| 367 |
+
|
| 368 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
| 369 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
| 370 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
| 371 |
+
text_padded.zero_()
|
| 372 |
+
spec_padded.zero_()
|
| 373 |
+
wav_padded.zero_()
|
| 374 |
+
for i in range(len(ids_sorted_decreasing)):
|
| 375 |
+
row = batch[ids_sorted_decreasing[i]]
|
| 376 |
+
|
| 377 |
+
text = row[0]
|
| 378 |
+
text_padded[i, : text.size(0)] = text
|
| 379 |
+
text_lengths[i] = text.size(0)
|
| 380 |
+
|
| 381 |
+
spec = row[1]
|
| 382 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
| 383 |
+
spec_lengths[i] = spec.size(1)
|
| 384 |
+
|
| 385 |
+
wav = row[2]
|
| 386 |
+
wav_padded[i, :, : wav.size(1)] = wav
|
| 387 |
+
wav_lengths[i] = wav.size(1)
|
| 388 |
+
|
| 389 |
+
sid[i] = row[3]
|
| 390 |
+
|
| 391 |
+
if self.return_ids:
|
| 392 |
+
return (
|
| 393 |
+
text_padded,
|
| 394 |
+
text_lengths,
|
| 395 |
+
spec_padded,
|
| 396 |
+
spec_lengths,
|
| 397 |
+
wav_padded,
|
| 398 |
+
wav_lengths,
|
| 399 |
+
sid,
|
| 400 |
+
ids_sorted_decreasing,
|
| 401 |
+
)
|
| 402 |
+
return (
|
| 403 |
+
text_padded,
|
| 404 |
+
text_lengths,
|
| 405 |
+
spec_padded,
|
| 406 |
+
spec_lengths,
|
| 407 |
+
wav_padded,
|
| 408 |
+
wav_lengths,
|
| 409 |
+
sid,
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
| 414 |
+
"""
|
| 415 |
+
Maintain similar input lengths in a batch.
|
| 416 |
+
Length groups are specified by boundaries.
|
| 417 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
| 418 |
+
|
| 419 |
+
It removes samples which are not included in the boundaries.
|
| 420 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
| 421 |
+
"""
|
| 422 |
+
|
| 423 |
+
def __init__(
|
| 424 |
+
self,
|
| 425 |
+
dataset,
|
| 426 |
+
batch_size,
|
| 427 |
+
boundaries,
|
| 428 |
+
num_replicas=None,
|
| 429 |
+
rank=None,
|
| 430 |
+
shuffle=True,
|
| 431 |
+
):
|
| 432 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
| 433 |
+
self.lengths = dataset.lengths
|
| 434 |
+
self.batch_size = batch_size
|
| 435 |
+
self.boundaries = boundaries
|
| 436 |
+
|
| 437 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
| 438 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
| 439 |
+
self.num_samples = self.total_size // self.num_replicas
|
| 440 |
+
|
| 441 |
+
def _create_buckets(self):
|
| 442 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
| 443 |
+
for i in range(len(self.lengths)):
|
| 444 |
+
length = self.lengths[i]
|
| 445 |
+
idx_bucket = self._bisect(length)
|
| 446 |
+
if idx_bucket != -1:
|
| 447 |
+
buckets[idx_bucket].append(i)
|
| 448 |
+
|
| 449 |
+
for i in range(len(buckets) - 1, 0, -1):
|
| 450 |
+
if len(buckets[i]) == 0:
|
| 451 |
+
buckets.pop(i)
|
| 452 |
+
self.boundaries.pop(i + 1)
|
| 453 |
+
|
| 454 |
+
num_samples_per_bucket = []
|
| 455 |
+
for i in range(len(buckets)):
|
| 456 |
+
len_bucket = len(buckets[i])
|
| 457 |
+
total_batch_size = self.num_replicas * self.batch_size
|
| 458 |
+
rem = (
|
| 459 |
+
total_batch_size - (len_bucket % total_batch_size)
|
| 460 |
+
) % total_batch_size
|
| 461 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
| 462 |
+
return buckets, num_samples_per_bucket
|
| 463 |
+
|
| 464 |
+
def __iter__(self):
|
| 465 |
+
# deterministically shuffle based on epoch
|
| 466 |
+
g = torch.Generator()
|
| 467 |
+
g.manual_seed(self.epoch)
|
| 468 |
+
|
| 469 |
+
indices = []
|
| 470 |
+
if self.shuffle:
|
| 471 |
+
for bucket in self.buckets:
|
| 472 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
| 473 |
+
else:
|
| 474 |
+
for bucket in self.buckets:
|
| 475 |
+
indices.append(list(range(len(bucket))))
|
| 476 |
+
|
| 477 |
+
batches = []
|
| 478 |
+
for i in range(len(self.buckets)):
|
| 479 |
+
bucket = self.buckets[i]
|
| 480 |
+
len_bucket = len(bucket)
|
| 481 |
+
ids_bucket = indices[i]
|
| 482 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
| 483 |
+
|
| 484 |
+
# add extra samples to make it evenly divisible
|
| 485 |
+
rem = num_samples_bucket - len_bucket
|
| 486 |
+
ids_bucket = (
|
| 487 |
+
ids_bucket
|
| 488 |
+
+ ids_bucket * (rem // len_bucket)
|
| 489 |
+
+ ids_bucket[: (rem % len_bucket)]
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
# subsample
|
| 493 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
| 494 |
+
|
| 495 |
+
# batching
|
| 496 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
| 497 |
+
batch = [
|
| 498 |
+
bucket[idx]
|
| 499 |
+
for idx in ids_bucket[
|
| 500 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
| 501 |
+
]
|
| 502 |
+
]
|
| 503 |
+
batches.append(batch)
|
| 504 |
+
|
| 505 |
+
if self.shuffle:
|
| 506 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
| 507 |
+
batches = [batches[i] for i in batch_ids]
|
| 508 |
+
self.batches = batches
|
| 509 |
+
|
| 510 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
| 511 |
+
return iter(self.batches)
|
| 512 |
+
|
| 513 |
+
def _bisect(self, x, lo=0, hi=None):
|
| 514 |
+
if hi is None:
|
| 515 |
+
hi = len(self.boundaries) - 1
|
| 516 |
+
|
| 517 |
+
if hi > lo:
|
| 518 |
+
mid = (hi + lo) // 2
|
| 519 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
| 520 |
+
return mid
|
| 521 |
+
elif x <= self.boundaries[mid]:
|
| 522 |
+
return self._bisect(x, lo, mid)
|
| 523 |
+
else:
|
| 524 |
+
return self._bisect(x, mid + 1, hi)
|
| 525 |
+
else:
|
| 526 |
+
return -1
|
| 527 |
+
|
| 528 |
+
def __len__(self):
|
| 529 |
+
return self.num_samples // self.batch_size
|
export_onnx.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
import utils
|
| 8 |
+
from models import SynthesizerTrn
|
| 9 |
+
from text.symbols import symbols
|
| 10 |
+
|
| 11 |
+
OPSET_VERSION = 15
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def main() -> None:
|
| 15 |
+
torch.manual_seed(1234)
|
| 16 |
+
|
| 17 |
+
parser = argparse.ArgumentParser()
|
| 18 |
+
parser.add_argument(
|
| 19 |
+
"--model-path", required=True, help="Path to model weights (.pth)"
|
| 20 |
+
)
|
| 21 |
+
parser.add_argument(
|
| 22 |
+
"--config-path", required=True, help="Path to model config (.json)"
|
| 23 |
+
)
|
| 24 |
+
parser.add_argument("--output", required=True, help="Path to output model (.onnx)")
|
| 25 |
+
|
| 26 |
+
args = parser.parse_args()
|
| 27 |
+
|
| 28 |
+
args.model_path = Path(args.model_path)
|
| 29 |
+
args.config_path = Path(args.config_path)
|
| 30 |
+
args.output = Path(args.output)
|
| 31 |
+
args.output.parent.mkdir(parents=True, exist_ok=True)
|
| 32 |
+
|
| 33 |
+
hps = utils.get_hparams_from_file(args.config_path)
|
| 34 |
+
|
| 35 |
+
if (
|
| 36 |
+
"use_mel_posterior_encoder" in hps.model.keys()
|
| 37 |
+
and hps.model.use_mel_posterior_encoder == True
|
| 38 |
+
):
|
| 39 |
+
print("Using mel posterior encoder for VITS2")
|
| 40 |
+
posterior_channels = 80 # vits2
|
| 41 |
+
hps.data.use_mel_posterior_encoder = True
|
| 42 |
+
else:
|
| 43 |
+
print("Using lin posterior encoder for VITS1")
|
| 44 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
| 45 |
+
hps.data.use_mel_posterior_encoder = False
|
| 46 |
+
|
| 47 |
+
model_g = SynthesizerTrn(
|
| 48 |
+
len(symbols),
|
| 49 |
+
posterior_channels,
|
| 50 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 51 |
+
n_speakers=hps.data.n_speakers,
|
| 52 |
+
**hps.model,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
_ = model_g.eval()
|
| 56 |
+
|
| 57 |
+
_ = utils.load_checkpoint(args.model_path, model_g, None)
|
| 58 |
+
|
| 59 |
+
def infer_forward(text, text_lengths, scales, sid=None):
|
| 60 |
+
noise_scale = scales[0]
|
| 61 |
+
length_scale = scales[1]
|
| 62 |
+
noise_scale_w = scales[2]
|
| 63 |
+
audio = model_g.infer(
|
| 64 |
+
text,
|
| 65 |
+
text_lengths,
|
| 66 |
+
noise_scale=noise_scale,
|
| 67 |
+
length_scale=length_scale,
|
| 68 |
+
noise_scale_w=noise_scale_w,
|
| 69 |
+
sid=sid,
|
| 70 |
+
)[0]
|
| 71 |
+
|
| 72 |
+
return audio
|
| 73 |
+
|
| 74 |
+
model_g.forward = infer_forward
|
| 75 |
+
|
| 76 |
+
dummy_input_length = 50
|
| 77 |
+
sequences = torch.randint(
|
| 78 |
+
low=0, high=len(symbols), size=(1, dummy_input_length), dtype=torch.long
|
| 79 |
+
)
|
| 80 |
+
sequence_lengths = torch.LongTensor([sequences.size(1)])
|
| 81 |
+
|
| 82 |
+
sid: Optional[torch.LongTensor] = None
|
| 83 |
+
if hps.data.n_speakers > 1:
|
| 84 |
+
sid = torch.LongTensor([0])
|
| 85 |
+
|
| 86 |
+
# noise, length, noise_w
|
| 87 |
+
scales = torch.FloatTensor([0.667, 1.0, 0.8])
|
| 88 |
+
dummy_input = (sequences, sequence_lengths, scales, sid)
|
| 89 |
+
|
| 90 |
+
# Export
|
| 91 |
+
torch.onnx.export(
|
| 92 |
+
model=model_g,
|
| 93 |
+
args=dummy_input,
|
| 94 |
+
f=str(args.output),
|
| 95 |
+
verbose=False,
|
| 96 |
+
opset_version=OPSET_VERSION,
|
| 97 |
+
input_names=["input", "input_lengths", "scales", "sid"],
|
| 98 |
+
output_names=["output"],
|
| 99 |
+
dynamic_axes={
|
| 100 |
+
"input": {0: "batch_size", 1: "phonemes"},
|
| 101 |
+
"input_lengths": {0: "batch_size"},
|
| 102 |
+
"output": {0: "batch_size", 1: "time1", 2: "time2"},
|
| 103 |
+
},
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
print(f"Exported model to {args.output}")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
main()
|
filelists/final_annotation_train.txt
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
./custom_character_voice/linghua/processed_0.wav|ㄉㄠˋㄑㄧˉ ㄕㄣˊㄌㄧˇ ㄌㄧㄡˊㄊㄞˋ ㄉㄠˉㄕㄨˋ ㄐㄧㄝˉ ㄔㄨㄢˊㄕㄣˊ ㄌㄧˇㄌㄧㄥˊㄏㄨㄚˊ ㄘㄢˉㄕㄤˋ。
|
| 2 |
+
./custom_character_voice/linghua/processed_1.wav|ㄑㄧㄥˇ ㄉㄨㄛˉ ㄓˇㄐㄧㄠˋ ㄚ˙。
|
| 3 |
+
./custom_character_voice/linghua/processed_2.wav|ㄓㄜˋㄧㄤˋ ㄧㄡˉㄒㄧㄢˊㄢˉㄨㄣˇ ㄉㄜ˙ ㄕˊㄍㄨㄤˉ, ㄖㄨˊㄍㄨㄛˇ ㄗㄞˋ ㄉㄨㄛˉ ㄧˉㄉㄧㄢˇ ㄐㄧㄡˋ ㄏㄠˇ ㄌㄜ˙。
|
| 4 |
+
./custom_character_voice/linghua/processed_3.wav|ㄨㄛˇ ㄓㄣˉ ㄊㄢˉㄒㄧㄣˉ ㄚ˙。
|
| 5 |
+
./custom_character_voice/linghua/processed_4.wav|ㄐㄧㄡˋ ㄏㄜˊ ㄔㄚˊ ㄧˉㄧㄤˋ, ㄒㄧˋㄒㄧˋㄆㄧㄣˇㄨㄟˋ, ㄘㄞˊㄋㄥˊ ㄌㄧˇㄐㄧㄝˇ ㄑㄧˊㄓㄨㄥˉ ㄈㄥˉㄧㄚˇ。
|
| 6 |
+
./custom_character_voice/linghua/processed_5.wav|ㄉㄡˉ ㄕˋ ㄌㄩˇㄒㄧㄥˊㄓㄜˇ ㄆㄧㄥˊㄖˋ ㄌㄧˇ ㄉㄜ˙ ㄕㄥˉㄏㄨㄛˊ ㄇㄚ˙?
|
| 7 |
+
./custom_character_voice/linghua/processed_6.wav|ㄍㄢˇㄐㄩㄝˊ ㄧㄡˋ ㄉㄨㄛˉ ㄌㄧㄠˇㄐㄧㄝˇ ㄌㄜ˙ ㄋㄧˇ ㄧˉㄒㄧㄝˉ。
|
| 8 |
+
./custom_character_voice/linghua/processed_7.wav|ㄐㄧㄢˋ ㄅㄠˋㄧㄝˋㄇㄧㄥˊ ㄍㄨㄥˉㄏㄨㄞˊ ㄅㄠˇ。
|
| 9 |
+
./custom_character_voice/linghua/processed_8.wav|ㄙㄨㄟˊ ㄨㄛˇ ㄧˉㄊㄨㄥˊ ㄅㄧˋㄩˇ ㄅㄚ˙。
|
| 10 |
+
./custom_character_voice/linghua/processed_9.wav|ㄙㄨㄛˇ ㄉㄚˋㄖㄣˊ, ㄕˋ ㄗㄞˋ ㄙㄨˋㄕㄨㄛˉ ㄕㄣˊㄇㄜ˙ ㄇㄚ˙?
|
| 11 |
+
./custom_character_voice/linghua/processed_10.wav|ㄐㄧˋㄧㄣˊㄓㄨㄤˉㄙㄨˋ, ㄐㄩˊㄍㄠˉㄧㄥˋ ㄑㄩㄥˊㄓˉ。
|
| 12 |
+
./custom_character_voice/linghua/processed_11.wav|ㄣˊ…… ㄇㄟˇㄐㄧㄥˇ ㄉㄤˉㄑㄧㄢˊ, ㄓˇㄔㄚˋ ㄧˉㄏㄨˊ ㄔㄚˊ ㄩˇ ㄓˉ ㄒㄧㄤˉㄔㄣˋ ㄋㄜ˙。
|
| 13 |
+
./custom_character_voice/linghua/processed_12.wav|ㄧㄠˋ ㄑㄩˋ ㄋㄚˇㄅㄧㄢˉ ㄗㄡˇㄗㄡˇ ㄇㄚ˙?
|
| 14 |
+
./custom_character_voice/linghua/processed_13.wav|ㄧㄢˇㄐㄧㄥˉ, ㄒㄧㄤˋ ㄓㄨˋㄈㄥˉ ㄔㄨㄟˉ ㄌㄞˊ ㄉㄜ˙ ㄈㄤˉㄒㄧㄤˋ。
|
| 15 |
+
./custom_character_voice/linghua/processed_14.wav|ㄞˉㄧㄚˉ, ㄏㄣˇ ㄕㄨˉㄈㄨˊ ㄅㄚ˙。
|
| 16 |
+
./custom_character_voice/linghua/processed_15.wav|ㄌㄩˇㄒㄧㄥˊㄓㄜˇ。
|
| 17 |
+
./custom_character_voice/linghua/processed_16.wav|ㄓㄜˋㄧㄤˋ ㄗㄞˋ ㄑㄧㄥˉㄔㄣˊ ㄐㄧㄢˋ ㄋㄧˇ ㄧˊㄇㄧㄢˋ, ㄨㄛˇㄏㄨㄟˋ ㄖㄣˇㄅㄨˊㄓㄨˋ ㄐㄩㄝˊㄉㄜˊ, ㄐㄧㄝˉㄒㄧㄚˋ ㄌㄞˊㄐㄧㄤˉ ㄕˋ ㄕㄨㄣˋㄌㄧˋ ㄉㄜ˙ ㄧˉㄊㄧㄢˉ。
|
| 18 |
+
./custom_character_voice/linghua/processed_18.wav|ㄔㄚˊㄈㄢˋ ㄓˉㄏㄡˋ, ㄋㄢˊㄇㄧㄢˇ ㄌㄩㄝˋㄧㄡˇ ㄎㄨㄣˋㄐㄩㄢˋ ㄕˋㄈㄡˇ ㄧㄡˇ ㄒㄧㄥˋㄓˋ ㄒㄧㄚˋㄆㄢˊ ㄑㄧˊ ㄊㄧˊㄕㄣˊ ㄋㄜ˙?
|
| 19 |
+
./custom_character_voice/linghua/processed_20.wav|ㄏㄨㄟˋ ㄕˋ ㄧˊㄍㄜˋ ㄌㄧㄤˊㄒㄧㄠˉ ㄋㄜ˙。
|
| 20 |
+
./custom_character_voice/linghua/processed_21.wav|ㄓˉㄕˋ ㄇㄥˋ ㄏㄜˊㄒㄩˉ ㄒㄧㄥˇ。
|
| 21 |
+
./custom_character_voice/linghua/processed_22.wav|ㄅㄨˋㄅㄧˇㄓㄣˉ ㄖㄨˊ, ㄧˉㄒㄧㄤˉㄏㄨㄟˋ。
|
| 22 |
+
./custom_character_voice/linghua/processed_23.wav|ㄉㄠˋㄑㄧˉ ㄇㄨˋㄈㄨˇ ㄕㄜˋ ㄈㄥˋㄒㄧㄥˊ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ, ㄨㄟˋ ㄩˊ ㄉㄠˋㄑㄧˉ ㄇㄧㄥˊㄇㄣˊ ㄓㄨㄥˉ ㄉㄜ˙ ㄅㄧˇㄊㄡˊ ㄓˉ ㄍㄜˊㄨㄟˋ。
|
| 23 |
+
./custom_character_voice/linghua/processed_24.wav|ㄗㄨㄛˋㄨㄟˊ ㄙㄢˉ ㄈㄥˋㄒㄧㄥˊ ㄓˉㄧˉ, ㄓㄤˇㄍㄨㄢˇ ㄐㄧˋㄙˋ ㄏㄨㄛˊㄉㄨㄥˋ ㄩˇ ㄖㄣˊㄨㄣˊ ㄧˋㄕㄨˋ。
|
| 24 |
+
./custom_character_voice/linghua/processed_25.wav|ㄕㄨㄤˉㄑㄧㄣˉ ㄍㄨㄛˋㄕˋ ㄓˉㄏㄡˋ, ㄗㄨˊ ㄋㄟˋ ㄉㄜ˙ ㄉㄚˋㄒㄧㄠˇ ㄕˋㄨˋ ㄅㄧㄢˋ ㄧㄡˊ ㄒㄩㄥˉㄓㄤˇ ㄏㄜˊ ㄨㄛˇ ㄔㄥˊㄉㄢˉ ㄌㄜ˙。
|
| 25 |
+
./custom_character_voice/linghua/processed_26.wav|ㄏㄣˇㄉㄨㄛˉ ㄖㄣˊㄧㄣˉ ㄨㄟˋ ㄨㄛˇ ㄕˋ ㄅㄞˊㄌㄨˋ ㄍㄨㄥˉㄓㄨˇ, ㄕˋ ㄕㄜˋ ㄈㄥˋㄒㄧㄥˊ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ ㄉㄜ˙ ㄉㄚˋ ㄒㄧㄠˇㄐㄧㄝˇ, ㄦˊ ㄐㄧㄥˋㄓㄨㄥˋ ㄨㄛˇ。
|
| 26 |
+
./custom_character_voice/linghua/processed_27.wav|ㄊㄚˉㄇㄣ˙ ㄙㄨㄛˇ ㄐㄧㄥˋㄓㄨㄥˋ ㄉㄜ˙, ㄓˇㄕˋ ㄨㄛˇ ㄙㄨㄛˇ ㄕㄣˉㄔㄨˋ ㄉㄜ˙ ㄉㄧˋㄨㄟˋ, ㄩˇㄌㄧㄥˊㄏㄨㄚˊ ㄨㄛˇ ㄕˋ ㄗㄣˇㄧㄤˋ ㄉㄜ˙ ㄖㄣˊ ㄅㄧㄥˋ ㄨˊ ㄍㄨㄢˉㄒㄧˋ。
|
| 27 |
+
./custom_character_voice/linghua/processed_28.wav|ㄨㄛˇ ㄒㄧㄤˇ, ㄋㄥˊ ㄓㄣˉㄓㄥˋ ㄗㄡˇㄐㄧㄣˋ ㄨㄛˇ ㄉㄜ˙, ㄏㄨㄛˋㄒㄩˇ ㄓˇㄧㄡˇ, ㄖㄨˊㄐㄧㄣˉ ㄉㄜ˙ ㄨㄛˇ。
|
| 28 |
+
./custom_character_voice/linghua/processed_29.wav|ㄧˉㄐㄧㄡˋ ㄒㄧㄤˇ ㄔㄥˊㄨㄟˋ ㄓˊㄉㄜ˙ ㄉㄚˋㄐㄧㄚˉ ㄒㄧㄣˋㄖㄣˋ ㄉㄜ˙ ㄖㄣˊ。
|
| 29 |
+
./custom_character_voice/linghua/processed_30.wav|ㄍㄨˇㄨˇ ㄨㄛˇ ㄉㄜ˙ ㄩㄢˊㄧㄣˉ, ㄧˇ ㄅㄨˋㄗㄞˋ ㄕˋ ㄐㄧㄢˉㄕㄤˋ ㄉㄜ˙ ㄗㄜˊㄖㄣˋ, ㄏㄨㄛˋ ㄊㄚˉㄖㄣˊ ㄉㄜ˙ ㄑㄧˉㄉㄞˋ。
|
| 30 |
+
./custom_character_voice/linghua/processed_31.wav|ㄕˋ ㄧㄣˉㄨㄟˋ…… ㄋㄧˇ ㄧㄝˇ ㄕˋ ㄓㄜˋㄧㄤˋ ㄉㄜ˙ ㄖㄣˊ ㄚ˙。
|
| 31 |
+
./custom_character_voice/linghua/processed_32.wav|ㄖㄨˊㄍㄨㄛˇ ㄋㄧㄣˊ ㄧㄡˇㄎㄨㄥˋ, ㄨㄛˇㄇㄣ˙ ㄧˉㄅㄨˋ ㄇㄨˋㄌㄨˋ ㄔㄚˊㄕˋ ㄖㄨˊㄏㄜˊ?
|
| 32 |
+
./custom_character_voice/linghua/processed_33.wav|ㄗㄞˋ ㄓㄜˋㄧㄤˋ ㄊㄧㄢˊㄐㄧㄥˋ ㄉㄜ˙ ㄖˋㄗ˙, ㄌㄩㄝˋㄐㄧㄚˉ ㄐㄧㄠˉㄌㄧㄡˊ ㄔㄚˊㄧˋ ㄒㄧㄣˉㄉㄜˊ, ㄒㄧㄤˇㄌㄞˊ ㄕˋ ㄆㄛˇㄐㄩˋ ㄧㄚˇㄑㄩˋ ㄉㄜ˙。
|
| 33 |
+
./custom_character_voice/linghua/processed_34.wav|ㄖㄨˊㄍㄨㄛˇ ㄧㄡˇ ㄐㄧˉㄏㄨㄟˋ ㄉㄜ˙ㄏㄨㄚˋ, ㄨㄛˇㄒㄧㄤˇㄕˋ ㄓㄜ˙ ㄏㄜˊ ㄋㄧˇ ㄍㄨㄥˋㄉㄨˋ ㄧˋㄍㄨㄛˊ ㄉㄜ˙ ㄐㄧㄝˊㄖˋ。
|
| 34 |
+
./custom_character_voice/linghua/processed_35.wav|ㄗㄨㄣˉㄒㄩㄣˊ ㄉㄜ˙ ㄉㄤˉㄉㄧˋ ㄈㄥˉㄙㄨˊ, ㄌㄧˇㄧˊ ㄍㄨㄟˉㄈㄢˋ, ㄏㄞˊㄧㄡˇ ㄅㄢˋㄕㄡˇ ㄌㄧˇ ㄉㄜ˙ ㄊㄨㄟˉㄐㄧㄢˋ。
|
| 35 |
+
./custom_character_voice/linghua/processed_36.wav|ㄎㄜˇㄧˇ ㄇㄚˊㄈㄢˊ ㄋㄧˇ… ㄧˉㄧˉ ㄓˇㄉㄠˇ ㄨㄛˇ ㄇㄚ˙?
|
| 36 |
+
./custom_character_voice/linghua/processed_37.wav|ㄕㄣˊㄓˉㄧㄢˇ, ㄐㄧˊ ㄕˋ ㄒㄩㄥˉㄏㄨㄞˊㄉㄚˋㄓˋ ㄓˉㄖㄣˊ ㄙㄨㄛˇ ㄏㄨㄛˋ ㄉㄜ˙ ㄧㄥˉㄕㄡˋ。
|
| 37 |
+
./custom_character_voice/linghua/processed_38.wav|ㄖㄨˊㄍㄨㄛˇ ㄨㄣˋ ㄨㄛˇ ㄧㄡˇ ㄕㄣˊㄇㄜ˙ ㄓˋㄒㄧㄤˋ ㄉㄜ˙ㄏㄨㄚˋ。
|
| 38 |
+
./custom_character_voice/linghua/processed_39.wav|ㄓㄜˋㄍㄜˋ ㄏㄞˊㄕˋ ㄅㄠˇㄇㄧˋ ㄅㄚ˙。
|
| 39 |
+
./custom_character_voice/linghua/processed_40.wav|ㄓˇㄕˋ ㄧˊㄍㄜˋ ㄨㄟˉㄅㄨˋㄗㄨˊㄉㄠˋ ㄉㄜ˙ ㄇㄥˋㄒㄧㄤˇ ㄅㄚˋㄌㄜ˙。
|
| 40 |
+
./custom_character_voice/linghua/processed_41.wav|ㄔㄤˊㄕㄨㄛˉ ㄔㄢˊ ㄔㄚˊ ㄧˉㄨㄟˋ。
|
| 41 |
+
./custom_character_voice/linghua/processed_42.wav|ㄐㄧㄢˋ ㄔㄢˊ ㄧˋ ㄖㄨˊ。
|
| 42 |
+
./custom_character_voice/linghua/processed_43.wav|ㄋㄚˋㄇㄜ˙ ㄐㄧㄢˋ ㄏㄜˊ ㄔㄚˊ, ㄧㄡˋ ㄕˋ ㄕㄣˊㄇㄜ˙ ㄍㄨㄢˉㄒㄧˋ ㄋㄜ˙?
|
| 43 |
+
./custom_character_voice/linghua/processed_44.wav|ㄋㄧˇ ㄗㄞˋ ㄔㄥˊㄓㄨㄥˉ, ㄐㄧㄢˋㄍㄨㄛˋ ㄎㄨˉㄨㄟˇ ㄉㄜ˙ ㄧㄥˉㄏㄨㄚˉㄕㄨˋ ㄇㄚ˙?
|
| 44 |
+
./custom_character_voice/linghua/processed_45.wav|ㄎㄨˉㄓˉ ㄇㄟˇ ㄖㄤˋ ㄨㄛˇ ㄒㄧㄤˇㄉㄠˋ ㄔㄨㄣˉㄊㄧㄢˉ ㄕㄥˋㄎㄞˉ ㄓˉㄐㄧㄥˇ。
|
| 45 |
+
./custom_character_voice/linghua/processed_46.wav|ㄅㄨˋㄍㄨㄛˋ, ㄅㄧㄝˊㄖㄣˊ ㄙˋㄏㄨˉ ㄅㄧㄥˋ ㄅㄨˋ ㄓㄜˋㄇㄜ˙ ㄒㄧㄤˇ。
|
| 46 |
+
./custom_character_voice/linghua/processed_47.wav|ㄎㄞˉㄏㄨㄚˉ ㄉㄜ˙ ㄧㄣˉㄕㄨˋㄏㄨㄟˋ ㄅㄟˋ ㄧˊㄗㄡˇ。
|
| 47 |
+
./custom_character_voice/linghua/processed_48.wav|ㄐㄧㄡˋㄙㄨㄢˋ ㄧˉㄘˋ ㄧㄝˇㄏㄠˇ, ㄓㄣˉㄒㄧㄤˇ ㄎㄢˋㄉㄠˋ ㄊㄚˉ ㄗㄞˋㄘˋ ㄎㄞˉㄈㄤˋ。
|
| 48 |
+
./custom_character_voice/linghua/processed_49.wav|ㄕˋ ㄨㄛˇ ㄏㄣˇ ㄓㄨㄥˋㄧㄠˋ ㄉㄜ˙ ㄆㄥˊㄧㄡˇ。
|
| 49 |
+
./custom_character_voice/linghua/processed_50.wav|ㄊㄧㄢˉㄌㄥˇ ㄏㄜˊ ㄧㄤˊㄍㄨㄤˉ, ㄗㄨㄥˇㄕˋ ㄍㄢˇㄖㄢˇ ㄓㄜ˙ ㄨㄛˇ。
|
| 50 |
+
./custom_character_voice/linghua/processed_51.wav|ㄧˋㄧˋ ㄕㄤˋ ㄌㄞˊㄕㄨㄛˉ, ㄊㄚˉ ㄐㄧㄡˋ ㄒㄧㄤˋㄕˋ ㄨㄛˇ ㄉㄜ˙ ㄌㄧㄥˋ ㄧˊㄍㄜˋ ㄒㄩㄥˉㄓㄤˇ ㄧˉㄧㄤˋ。
|
| 51 |
+
./custom_character_voice/linghua/processed_52.wav|ㄔㄥˊㄨㄟˋ ㄌㄜ˙ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄧˉㄩㄢˊ。
|
| 52 |
+
./custom_character_voice/linghua/processed_53.wav|ㄌㄧㄥˇ ㄈㄥˋㄒㄧㄥˊ ㄍㄨㄥˉㄗㄨㄛˋ ㄉㄜ˙ ㄐㄧㄡˇㄊㄧㄠˊ ㄕㄚˉㄌㄨㄛˊ, ㄊㄚˉ ㄗㄨㄥˇㄕˋ ㄧˉㄌㄧㄢˇ ㄧㄢˊㄙㄨˋ。
|
| 53 |
+
./custom_character_voice/linghua/processed_54.wav|ㄊㄚˉ ㄘㄥˊㄐㄧㄥˉ ㄑㄧˇㄍㄨㄛˋ ㄐㄧˇㄘˋ ㄓㄥˉㄉㄨㄢˉ。
|
| 54 |
+
./custom_character_voice/linghua/processed_55.wav|ㄊㄚˉ ㄅㄣˇㄓˋ ㄕˋ ㄓㄨㄥˉㄧˋ ㄓˉㄕˋ, ㄓㄜˋㄉㄧㄢˇ ㄨˊㄎㄜˇㄈㄡˇㄖㄣˋ。
|
| 55 |
+
./custom_character_voice/linghua/processed_56.wav|ㄙㄨˉㄧㄝˇ ㄩㄝˋㄒㄧㄢˉㄕㄥˉ。
|
| 56 |
+
./custom_character_voice/linghua/processed_57.wav|ㄊㄚˉ ㄏㄜˊ ㄐㄧㄡˇㄊㄧㄠˊ ㄒㄧㄠˇㄐㄧㄝˇ ㄧˉㄧㄤˋ, ㄕˋ ㄊㄧㄢˉㄌㄧㄥˇ ㄈㄥˋㄒㄧㄥˊ ㄉㄜ˙ ㄖㄣˊ。
|
| 57 |
+
./custom_character_voice/linghua/processed_58.wav|ㄊㄚˉ…… ㄧㄝˇ ㄕˋ ㄧˊㄍㄜˋ ㄏㄣˇ ㄧㄡˇ ㄩㄢˊㄗㄜˊ ㄉㄜ˙ ㄖㄣˊ。
|
| 58 |
+
./custom_character_voice/linghua/processed_59.wav|ㄓㄜˋㄒㄧㄝˉ ㄩㄢˊㄗㄜˊ ㄉㄜ˙ ㄐㄧㄢˉㄔˊ, ㄕㄣˋㄓˋ ㄅㄧˇ ㄐㄧㄡˇㄊㄧㄠˊ ㄒㄧㄠˇㄐㄧㄝˇ ㄍㄥˋ ㄓˊㄓㄨㄛˊ。
|
| 59 |
+
./custom_character_voice/linghua/processed_60.wav|ㄅㄨˋㄍㄨㄛˋ, ㄕㄣˊㄇㄜ˙ ㄕˋ ㄧㄥˉㄍㄞˉ ㄅㄟˋ ㄙㄨㄢˋ ㄗㄞˋ ㄓㄜˋㄒㄧㄝˉ ㄩㄢˊㄗㄜˊ ㄓˉㄋㄟˋ…… ㄨㄛˇ ㄒㄧㄤˇ, ㄏㄨㄛˋㄒㄩˇ ㄓˇㄧㄡˇ ㄌㄨˋ ㄧㄝˇ ㄩㄢ�� ㄒㄧㄢˉㄕㄥˉ ㄗˋㄐㄧˇ ㄓˉㄉㄠˋ ㄅㄚ˙。
|
| 60 |
+
./custom_character_voice/linghua/processed_61.wav|ㄒㄧㄠˇ ㄧㄡˋㄓˋ ㄏㄞˊㄗ˙, ㄗㄨㄟˋㄐㄧㄣˋ ㄧㄡˇ ㄇㄟˊ ㄧㄡˇㄍㄟˇ ㄋㄧˇ ㄊㄧㄢˉㄕㄣˊㄇㄜ˙ ㄇㄚˊㄈㄢˊ ㄋㄜ˙?
|
| 61 |
+
./custom_character_voice/linghua/processed_62.wav|ㄖㄨˊㄍㄨㄛˇ ㄎㄢˋㄐㄧㄢˋ ㄊㄚˉ ㄊㄡˉ ㄌㄢˇ, ㄎㄜˇㄧˇ ㄓˊㄐㄧㄝˉ ㄍㄠˋㄙㄨˋ ㄨㄛˇ。
|
| 62 |
+
./custom_character_voice/linghua/processed_63.wav|ㄌㄧˇㄙㄨㄛˇ ㄉㄤˉㄖㄢˊ ㄉㄜ˙ ㄎㄢˋㄈㄚˇ ㄇㄚ˙?
|
| 63 |
+
./custom_character_voice/linghua/processed_64.wav|ㄅㄨˋㄍㄞˉ ㄧㄡˊ ㄨㄛˇ ㄉㄥˇ ㄒㄧㄚˋㄕㄨˇ ㄙㄨㄟˊㄧˋ ㄧˋㄌㄨㄣˋ。
|
| 64 |
+
./custom_character_voice/linghua/processed_65.wav|ㄏㄥˉ, ㄐㄧㄤˉㄐㄩㄣˉ ㄉㄚˋㄖㄣˊ ㄊㄚˉ ㄗㄞˋ ㄓㄨㄟˉㄑㄧㄡˊ ㄩㄥˇㄏㄥˊ ㄓˉ ㄌㄨˋㄕㄤˋ, ㄎㄜˇㄋㄥˊ ㄧㄝˇ ㄏㄣˇ ㄍㄨˉㄉㄨˊ ㄅㄚ˙。
|
| 65 |
+
./custom_character_voice/linghua/processed_66.wav|ㄧˉㄉㄠˉ, ㄅㄧㄥˋㄑㄧㄝˇ ㄏㄨㄛˊ ㄌㄜ˙ ㄒㄧㄚˋㄌㄞˊ。 ㄍㄞˉ ㄕㄨㄛˉ ㄕˋ ㄎㄢˉㄔㄥˉ ㄨㄟˇㄧㄝˋ ㄉㄜ˙ ㄐㄧㄥˉㄌㄧˋ ㄌㄜ˙ ㄅㄚ˙。
|
| 66 |
+
./custom_character_voice/linghua/processed_67.wav|ㄙㄨㄟˉㄖㄢˊ ㄉㄨㄟˋ ㄨㄛˇ ㄌㄞˊㄕㄨㄛˉ, ㄊㄚˉ ㄕˋ ㄓㄣˉㄓㄥˋ ㄉㄜ˙ ㄕㄣˊㄇㄧㄥˊ。
|
| 67 |
+
./custom_character_voice/linghua/processed_68.wav|ㄎㄜˇㄧˇ ㄍㄥˉㄍㄞˇ ㄉㄠˋㄑㄧˉ ㄉㄜ˙ ㄇㄧㄥˋㄩㄣˋ。
|
| 68 |
+
./custom_character_voice/linghua/processed_69.wav|ㄉㄢˋㄕˋ ㄖㄨˊㄍㄨㄛˇ ㄕˋ ㄏㄜˊ ㄋㄧˇ ㄑㄧˇ ㄌㄜ˙ ㄔㄨㄥˉㄊㄨˉ ㄉㄜ˙ㄏㄨㄚˋ, ㄨㄛˇ ㄧˊㄉㄧㄥˋ ㄏㄨㄟˋ ㄓㄢˋ ㄗㄞˋ ㄋㄧˇ ㄓㄜˋ ㄧˉㄅㄧㄢˉ ㄉㄜ˙。
|
| 69 |
+
./custom_character_voice/linghua/processed_70.wav|ㄅㄚˉㄓㄨㄥˋ ㄍㄨㄥˉㄙˉ ㄉㄚˋㄖㄣˊ ㄉㄜ˙ ㄏㄜˊㄗㄨㄛˋ ㄒㄧㄤˋㄌㄞˊ ㄏㄣˇ ㄩˊㄎㄨㄞˋ。
|
| 70 |
+
./custom_character_voice/linghua/processed_71.wav|ㄎㄢˋ, ㄘㄠˉㄅㄢˋ ㄐㄧㄝˊㄑㄧㄥˋㄑㄧㄥˋㄉㄧㄢˇ ㄈㄟˉㄔㄤˊ ㄌㄠˊㄕㄣˊㄈㄟˋㄌㄧˋ, ㄧㄥˊㄕㄡˉ ㄉㄨㄛˉㄅㄢˋ ㄧㄝˇ ㄅㄨˋ ㄏㄠˇㄎㄢˋ。
|
| 71 |
+
./custom_character_voice/linghua/processed_72.wav|ㄅㄚˉㄓㄨㄥˋ ㄍㄨㄥˉㄙˉ ㄉㄚˋㄖㄣˊ ㄘㄠˉㄅㄢˋ ㄉㄜ˙ ㄔㄢˇㄧㄝˋ, ㄓㄣˉㄉㄜ˙ ㄐㄧˋ ㄈㄥˉㄧㄚˇ ㄧㄡˋ ㄧㄡˇ ㄕㄡˉㄔㄥˊ。
|
| 72 |
+
./custom_character_voice/linghua/processed_73.wav|ㄗㄨㄛˋㄨㄟˋ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄐㄧㄚˉㄓㄨˇ, ㄒㄩㄥˉㄓㄤˇ ㄆㄧㄥˊㄖˋ ㄒㄩˉㄧㄠˋ ㄔㄨˉㄇㄧㄢˋ ㄓㄨˉㄉㄨㄛˉㄔㄤˇ ㄏㄜˊ。
|
| 73 |
+
./custom_character_voice/linghua/processed_74.wav|ㄨㄛˇ ㄙㄨㄟˉ ㄐㄧㄣˇㄌㄧˋ ㄈㄣˉㄉㄢˉ ㄒㄩㄥˉㄓㄤˇ ㄐㄧㄢˉㄕㄤˋ ㄙㄨㄛˇ ㄈㄨˋㄉㄢˉ ㄉㄜ˙ ㄗㄜˊㄖㄣˋ, ㄑㄩㄝˋ ㄧㄝˇ ㄨˊㄈㄚˇㄏㄨㄢˇ ㄏㄜˊ ㄊㄚˉ ㄔㄤˊㄋㄧㄢˊ ㄐㄧˉㄧㄚˉ ㄗㄞˋ ㄕㄣˉ ㄉㄜ˙ ㄆㄧˊㄐㄩㄢˋ。
|
| 74 |
+
./custom_character_voice/linghua/processed_75.wav|ㄨㄛˇ ㄧㄝˇ ㄕˋ ㄉㄤˉㄕˊ ㄨㄟˋㄌㄜ˙ ㄇㄟˋㄇㄟˋ ㄓㄨㄛˊㄒㄧㄤˇ, ㄒㄧˉㄨㄤˋ ㄋㄧˇ ㄋㄥˊ ㄑㄩㄢˋㄧㄢˊ, ㄖㄤˋ ㄒㄩㄥˉㄓㄤˇ ㄉㄨㄛˉㄉㄨㄛˉ ㄓㄨˋㄧˋ ㄕㄣˉㄊㄧˇ ㄚ˙。
|
| 75 |
+
./custom_character_voice/linghua/processed_76.wav|ㄐㄧㄝˊㄑㄧㄥˋㄑㄧㄥˋㄉㄧㄢˇ ㄕˋ ㄕㄥˋ ㄈㄥˋㄒㄧㄥˊ ㄏㄜˊ ㄨˉㄋㄩˇ ㄓㄨㄥˉ ㄉㄜ˙ ㄗㄜˊㄖㄣˋ。
|
| 76 |
+
./custom_character_voice/linghua/processed_77.wav|ㄗㄨㄛˋㄨㄟˋ ㄧㄢˉㄏㄨㄛˇ ㄓㄨㄢˉㄐㄧㄚˉ, ㄧㄝˇ ㄉㄜ˙ ㄑㄩㄝˋㄋㄥˊ ㄖㄤˋ ㄑㄧˋㄈㄣˉ ㄖㄜˋㄌㄧㄝˋ ㄑㄧˇㄌㄞˊ。
|
| 77 |
+
./custom_character_voice/linghua/processed_78.wav|ㄏㄜˊㄗㄨㄛˋ ㄉㄨㄛˉ ㄌㄜ˙, ㄧㄣˉㄦˊ ㄐㄧㄢˋㄐㄧㄢˋ ㄕㄨˊㄌㄨㄛˋ。
|
| 78 |
+
./custom_character_voice/linghua/processed_79.wav|ㄓˋㄢˉ ㄏㄜˊ ㄒㄧㄠˉㄈㄤˊ ㄨㄣˋㄊㄧˊ ㄇㄚ˙? ㄨㄛˇㄇㄣ˙ ㄧㄝˇ ㄏㄨㄟˋ ㄧˉ ㄅㄧㄥˋ ㄋㄚˋㄖㄨˋ ㄩˋㄒㄧㄢˉ ㄍㄨㄟˉㄏㄨㄚˋ ㄉㄜ˙。
|
| 79 |
+
./custom_character_voice/linghua/processed_80.wav|ㄓㄜˋㄒㄧㄝˉ ㄩㄢˊㄧㄣˉ ㄦˊ ㄎㄢˋㄅㄨˊㄉㄠˋ ㄧㄥˉㄏㄨㄚˉ, ㄘㄞˊ ㄏㄨㄟˋ ㄖㄤˋ ㄖㄣˊㄇㄣ˙ ㄒㄧㄣˉㄓㄨㄥˉ ㄌㄧㄡˊㄒㄧㄚˋ ㄑㄩㄝˉㄏㄢˋ ㄅㄚ˙。
|
| 80 |
+
./custom_character_voice/linghua/processed_81.wav|ㄋㄧˇ ㄉㄜ˙ ㄑㄧㄥˇㄑㄧㄡˊ, ㄉㄨㄟˋ ㄨㄛˇ ㄌㄞˊㄕㄨㄛˉ ㄏㄣˇ ㄊㄜˋㄅㄧㄝˊ ㄋㄜ˙ ㄐㄧˋㄖㄢˊ ㄅㄚˇ ㄋㄧˇ ㄉㄤˋㄗㄨㄛˋ ㄆㄥˊㄧㄡˇ, ㄨㄛˇ ㄧㄝˇ ㄧㄥˉ ㄊㄢˇㄔㄥˊㄧˇㄉㄞˋ。
|
| 81 |
+
./custom_character_voice/linghua/processed_82.wav|ㄅㄨˋㄍㄨㄛˋ, ㄕˋㄍㄨㄢˉ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ ㄉㄜ˙ ㄇㄧˋㄇㄧˋ, ㄏㄞˊ ㄒㄧˉㄨㄤˋ ㄋㄧˇ ㄋㄥˊ ㄕㄡˇㄎㄡˇㄖㄨˊㄆㄧㄥˊ。
|
| 82 |
+
./custom_character_voice/linghua/processed_83.wav|ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉㄧㄣˉ ㄨㄟˋ ㄇㄟˊㄋㄥˊ ㄅㄠˇㄏㄨˋ ㄏㄠˇ ㄍㄨㄛˊㄅ���ˇㄐㄧˊ ㄅㄧㄝˊ ㄉㄜ˙ ㄉㄠˉㄍㄨㄥˉ, ㄗㄠˉㄕㄡˋ ㄌㄜ˙ ㄅㄨˋㄒㄧㄠˇ ㄉㄜ˙ ㄔㄨㄥˉㄐㄧˉ。
|
| 83 |
+
./custom_character_voice/linghua/processed_84.wav|ㄅㄧㄝˊㄖㄣˊ ㄓㄨㄥˉ ㄧㄣˉㄇㄡˊ ㄙㄨㄢˋㄐㄧˋ ㄨㄛˇㄇㄣ˙ ㄕㄜˊㄙㄨㄣˇ ㄌㄜ˙ ㄓㄨˉㄉㄨㄛˉ ㄔㄣˊ ㄒㄧㄚˋ ㄕㄡˋㄉㄠˋ ㄒㄩˇㄉㄨㄛˉ ㄗㄜˊㄈㄚˊ。
|
| 84 |
+
./custom_character_voice/linghua/processed_85.wav|ㄕㄣˋㄓˋ ㄧㄣˉ ㄓˉ ㄗㄠˇㄕㄨㄞˉ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄗㄞˋ ㄇㄨˋㄈㄨˇ ㄓㄨㄥˉ ㄉㄜ˙ ㄉㄧˋㄨㄟˋ ㄧㄝˇ ㄧˉㄌㄨㄛˋㄑㄧㄢˉㄓㄤˋ。
|
| 85 |
+
./custom_character_voice/linghua/processed_86.wav|ㄏㄠˇ ㄗㄞˋ ㄒㄩㄥˉㄓㄤˇ ㄐㄧˋㄖㄣˋㄏㄡˋㄌㄧˋ ㄨㄢˇ ㄎㄨㄤˊㄌㄢˊ。
|
| 86 |
+
./custom_character_voice/linghua/processed_87.wav|ㄐㄧㄚˉㄇㄣˊ ㄙㄨㄟˉ ㄧˇ ㄈㄨˋ ㄒㄧㄥˋ, ㄕㄜˋㄈㄥˉㄒㄧㄥˇ ㄧˉㄒㄧˉ ㄧㄝˇ ㄕㄤˋㄒㄧㄚˋ ㄑㄧˊㄒㄧㄣˉ, ㄉㄢˋ ㄉㄚˋㄕˋ ㄧㄠˋㄕˋ ㄈㄤˉㄇㄧㄢˋ ㄖㄥˊㄎㄠˋ ㄒㄩㄥˉㄓㄤˇ ㄉㄧㄥˋㄉㄨㄛˊ。
|
| 87 |
+
./custom_character_voice/linghua/processed_88.wav|ㄊㄚˉㄇㄣ˙ ㄙㄨㄛˇㄔㄨㄢˊ ㄉㄜ˙ ㄉㄨㄢˋ ㄉㄠˉ ㄓˉㄕㄨˋ, ㄧㄝˇ ㄧㄣˉ ㄒㄧㄥˉㄒㄧㄤˋ, ㄩㄥˋㄊㄨˊ, ㄎㄨㄤˋㄓˊ, ㄌㄨˊㄏㄨㄛˇ ㄏㄨㄢˊㄐㄧㄥˋ, ㄖㄣˊ ㄓˉ ㄒㄧㄥˋㄍㄜˊ, ㄩㄢˊㄙㄨˋ ㄅㄧㄢˋㄏㄨㄚˋ ㄉㄜ˙ ㄅㄨˋㄊㄨㄥˊ ㄦˊ ㄧㄡˇㄙㄨㄛˇ ㄑㄩˉㄈㄣˉ。
|
| 88 |
+
./custom_character_voice/linghua/processed_89.wav|ㄕˋ ㄉㄠˉ ㄍㄨㄥˉ ㄓˉㄐㄧㄢˉ ㄙㄨㄛˇㄕㄨㄛˉ ㄉㄜ˙ ㄌㄟˊㄉㄧㄢˋ ㄨˇㄔㄨㄢˉ。
|
| 89 |
+
./custom_character_voice/linghua/processed_90.wav|ㄘㄤˊㄇㄧㄥˊ ㄉㄠˉ ㄉㄜ˙ ㄉㄠˉㄍㄨㄥˉ, ㄧㄝˇ ㄅㄟˋ ㄙㄨㄢˋㄗㄨㄛˋ ㄕˋ ㄅㄣˇㄌㄧㄥˇ ㄊㄨㄥˉㄕㄣˊ ㄉㄜ˙ ㄕㄣˊㄕˋ ㄒㄧㄤˉㄍㄨㄢˉ ㄖㄣˊㄩㄢˊ, ㄍㄨㄟˉㄕㄨˇ ㄊㄨㄥˇㄔㄡˊ ㄨㄣˊㄏㄨㄚˋ, ㄧˋㄕㄨˋ, ㄐㄧˋㄙˋ ㄉㄜ˙ ㄕㄜˋㄈㄥˋ ㄒㄧㄥˊㄧˋ ㄆㄞˋ ㄍㄨㄢˇㄌㄧˇ。
|
| 90 |
+
./custom_character_voice/linghua/processed_91.wav|ㄔㄨˉㄒㄧㄢˋ ㄌㄜ˙ ㄉㄠˉㄍㄨㄥˉ ㄅㄟˋㄆㄢˋ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ, ㄗˋㄖㄢˊ ㄐㄧㄡˋㄕˋ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ ㄉㄜ˙ ㄉㄨˊㄅㄢˋ ㄅㄨˋㄌㄧˋ ㄌㄜ˙。
|
| 91 |
+
./custom_character_voice/linghua/processed_92.wav|ㄉㄨㄟˋ ㄨㄛˇ ㄌㄞˊ ㄕㄨㄛˉ, ㄇㄨˇㄑㄧㄣˉ ㄕˋ ㄧˋㄧˋ ㄈㄟˉㄈㄢˊ ㄉㄜ˙ ㄘㄨㄣˊㄗㄞˋ。
|
| 92 |
+
./custom_character_voice/linghua/processed_93.wav|ㄈㄨˊㄓㄨㄤˉ, ㄧㄡˉㄧㄚˇ, ㄨˊㄌㄨㄣˋ ㄩˋㄉㄠˋ ㄗㄣˇㄧㄤˋ ㄉㄜ˙ ㄐㄩˊㄇㄧㄢˋ, ㄉㄡˉ ㄏㄨㄟˋ ㄌㄨˋㄔㄨˉ ㄔㄣˊㄐㄧㄣˋ ㄉㄜ˙ ㄒㄧㄠˋㄖㄨㄥˊ, ㄧˇ ㄘㄨㄥˊㄖㄨㄥˊㄅㄨˋㄆㄛˋ ㄉㄜ˙ ㄊㄞˋㄉㄨˋ, ㄘㄠˉㄔˊ ㄓㄜ˙ ㄕㄣˇㄌㄧˇ ㄐㄧㄚˉ ㄉㄚˋㄉㄚˋㄒㄧㄠˇㄒㄧㄠˇ ㄉㄜ˙ ㄕˋㄨˋ。
|
| 93 |
+
./custom_character_voice/linghua/processed_94.wav|ㄍㄢˇㄑㄧㄥˊ ㄕˋ ㄨㄢˊㄇㄟˇ ㄉㄜ˙ ㄏㄨㄚˋㄕㄣˉ ㄧㄝˇ ㄅㄨˋ ㄨㄟˋㄍㄨㄛˋ。
|
| 94 |
+
./custom_character_voice/linghua/processed_95.wav|ㄉㄢˋ ㄗˋㄘㄨㄥˊ ㄊㄚˉ ㄌㄧˊㄕˋ ㄉㄜ˙ ㄋㄚˋ ㄧˉㄎㄜˋㄑㄧˇ, ㄨㄛˇ ㄐㄧㄡˋ ㄕㄣˉㄑㄧㄝˋ ㄉㄧˋ ㄧˋㄕˊ ㄉㄠˋ, ㄨㄛˇ ㄧˇㄐㄧㄥˉ ㄅㄨˊㄕˋ ㄋㄚˋㄍㄜˋ ㄎㄜˇㄧˇ ㄉㄨㄛˇ ㄗㄞˋ ㄇㄨˇㄑㄧㄣˉ ㄕㄣˉㄏㄡˋ ㄉㄜ˙ ㄒㄧㄠˇㄌㄧㄥˊㄏㄨㄚˉ ㄌㄜ˙。
|
| 95 |
+
./custom_character_voice/linghua/processed_96.wav|ㄩㄢˊㄌㄞˊ ㄧㄠˋㄕㄨㄛˉ ㄉㄜ˙ㄏㄨㄚˋ, ㄎㄜˇㄋㄥˊ ㄅㄨˋㄊㄞˋ ㄈㄨˊㄏㄜˊ ㄉㄠˋㄑㄧㄝˋ ㄇㄨˋㄈㄨˇ ㄕㄜˋ ㄈㄥˉㄒㄧㄥˊ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄕㄣˉㄈㄣˋ。
|
| 96 |
+
./custom_character_voice/linghua/processed_97.wav|ㄅㄨˋㄍㄨㄛˋ, ㄐㄧㄡˋ ㄨㄛˇ ㄉㄜ˙ ㄆㄢˋㄉㄨㄢˋ, ㄋㄧˇ ㄧㄥˉㄍㄞˉ ㄋㄥˊ ㄖㄨㄥˊㄒㄩˇ ㄨㄛˇ ㄒㄧㄠˇㄒㄧㄠˇㄉㄜ˙ ㄖㄣˋㄒㄧㄥˋ ㄅㄚ˙。
|
| 97 |
+
./custom_character_voice/linghua/processed_98.wav|ㄕㄠˉㄨㄟˉ ㄧㄡˇㄉㄧㄢˇㄌㄟˋ ㄌㄜ˙ ㄎㄜˇㄧˇ ㄖㄤˋ ㄨㄛˇ ㄎㄠˋ ㄧˉㄒㄧㄚˋ ㄋㄧˇ ㄉㄜ˙ ㄐㄧㄢˉㄅㄤˇ ㄇㄚ˙?
|
| 98 |
+
./custom_character_voice/linghua/processed_99.wav|ㄐㄧㄡˋㄐㄧㄡˋ。
|
| 99 |
+
./custom_character_voice/linghua/processed_100.wav|ㄨㄛˇ ㄉㄡˉ ㄏㄣˇ ㄒㄧˇㄏㄨㄢˉ ㄧㄚˇㄩㄝˋ ㄕˉㄘˊ ㄑㄧˊㄧˋ ㄩˇ ㄨˇㄉㄠˇ ㄋㄧˇ ㄧㄝˇ ㄍㄢˇㄒㄧㄥˋㄑㄩˋ ㄇㄚ˙?
|
| 100 |
+
./custom_character_voice/linghua/processed_102.wav|…… ㄕˋ ㄚ˙, ㄓˇㄧㄠˋ ㄕㄥˉㄏㄨㄛˊ ㄗㄞˋ ㄓㄜˋㄍㄜˋ ㄕˋㄐㄧㄝˋ ㄕㄤˋ, ㄐㄧㄡˋ ㄋㄢˊㄇㄧㄢˇ ㄩˋㄉㄠˋ ㄓㄨㄥˇㄓㄨㄥˇ ㄅㄨˋㄖㄨˊㄧˋ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ。
|
| 101 |
+
./custom_character_voice/linghua/processed_103.wav|ㄉㄢˋ ㄖㄨˊㄍㄨㄛˇ ㄕˋ ㄧㄣˉㄨㄟˋ ㄗˋㄐㄧˇ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ, ㄐㄧㄡˋ ㄖㄤˋ ㄓㄡˉㄗㄠˉ ㄉㄜ˙ ㄖㄣˊ ㄉㄢˉㄒㄧㄣˉ ㄉㄜ�� ㄏㄨㄚˋ……
|
| 102 |
+
./custom_character_voice/linghua/processed_104.wav|ㄍㄨㄛˇㄖㄢˊ, ㄨㄛˇ ㄏㄞˊㄕˋ ㄅㄨˋㄋㄥˊ ㄕㄨㄛˉ。
|
| 103 |
+
./custom_character_voice/linghua/processed_105.wav|ㄋㄢˊㄕㄨㄞˋ, ㄓㄣˉㄉㄜ˙ ㄕˋ ㄧˉㄐㄧㄢˋ ㄏㄣˇㄋㄢˊ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ。
|
| 104 |
+
./custom_character_voice/linghua/processed_106.wav|ㄨㄛˇ ㄅㄧˋㄒㄩˉ ㄅㄨˋㄉㄨㄢˋ ㄍㄠˋㄐㄧㄝˋ ㄗˋㄐㄧˇ ㄕˋ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄉㄚˋ ㄒㄧㄠˇㄐㄧㄝˇ ㄗㄞˋ ㄨˊㄕㄨˋㄕㄨㄤˉ ㄧㄢˇㄐㄧㄥˉ, ㄨˊㄕㄨˋ ㄖㄣˊ ㄉㄜ˙ ㄑㄧˉㄆㄢˋ ㄓˉㄒㄧㄚˋ ㄅㄞˇ ㄔㄨˉ ㄨㄢˊㄇㄟˇㄨˊㄑㄩㄝˉ ㄉㄜ˙ ㄗˉㄊㄞˋ。
|
| 105 |
+
./custom_character_voice/linghua/processed_107.wav|ㄓㄜˋㄧㄤˋ ㄉㄜ˙ ㄨㄛˇ, ㄕˋㄈㄡˇ ㄧㄝˇ ㄍㄞˉ ㄓㄨㄟˉㄑㄧㄡˊ ㄗˋㄐㄧˇ ㄉㄜ˙ ㄩㄢˋㄨㄤˋ ㄋㄜ˙?
|
| 106 |
+
./custom_character_voice/linghua/processed_108.wav|ㄕˋㄈㄡˇ ㄧㄝˇ ㄍㄞˉ… ㄖㄤˋ ㄋㄧˇ ㄌㄧˇㄐㄧㄝˇ ㄨㄛˇ ㄉㄜ˙ ㄒㄧㄣˉㄧˋ ㄋㄜ˙?
|
| 107 |
+
./custom_character_voice/linghua/processed_109.wav|ㄨㄛˇ ㄉㄨㄟˋ ㄧˋㄍㄨㄛˊ ㄌㄧㄠˋㄌㄧˇ ㄏㄣˇ ㄧㄡˇ ㄒㄧㄥˋㄑㄩˋ, ㄙㄨㄟˉㄖㄢˊ ㄏㄣˇㄕㄠˇ ㄧㄡˇ ㄔㄤˊㄕˋ ㄉㄜ˙ ㄐㄧˉㄏㄨㄟˋ。
|
| 108 |
+
./custom_character_voice/linghua/processed_110.wav|ㄖㄨˊㄍㄨㄛˇ ㄕˋ ㄧㄠˋ ㄐㄩˊㄒㄧㄢˋ ㄗㄞˋ ㄉㄠˋㄑㄧˉ ㄌㄧㄠˋㄌㄧˇ ㄋㄟˋ ㄉㄜ˙ ㄏㄨㄚˋ, ㄧㄥˉㄍㄞˉ ㄕˋ ㄔㄚˊ ㄆㄠˋ ㄈㄢˋ ㄅㄚ˙。
|
| 109 |
+
./custom_character_voice/linghua/processed_111.wav|ㄅㄨˋㄋㄥˊ ㄍㄟˇ ㄧˋㄅㄢˉ ㄎㄜˋㄖㄣˊ ㄎㄢˋㄐㄧㄢˋ。
|
| 110 |
+
./custom_character_voice/linghua/processed_112.wav|ㄨㄛˇ ㄧㄝˇ ㄕˋ ㄊㄡˉㄊㄡˉ ㄍㄠˋㄙㄨˋ ㄋㄧˇ ㄉㄜ˙。
|
| 111 |
+
./custom_character_voice/linghua/processed_113.wav|ㄙㄨㄟˉㄖㄢˊ ㄅㄨˊㄕˋ ㄅㄨˋㄋㄥˊ ㄔˉ, ㄉㄢˋ ㄨㄛˇ ㄉㄨㄟˋ ㄉㄨㄥˋㄨˋ ㄓˉㄈㄤˊ ㄏㄨㄛˋ ㄋㄟˋㄗㄤˋ… ㄉㄚˋㄍㄞˋ ㄏㄨㄟˋ ㄧㄡˇㄉㄧㄢˇ…
|
| 112 |
+
./custom_character_voice/linghua/processed_114.wav|ㄑㄧㄥˇ ㄙㄨㄟˊ ㄨㄛˇ ㄌㄞˊ, ㄓˇㄧㄠˋ ㄗㄡˇ ㄧˉㄒㄧㄠˇ ㄉㄨㄢˋㄌㄨˋ, ㄅㄨˊㄏㄨㄟˋ ㄉㄢˉㄍㄜˉ ㄋㄧˇ ㄊㄞˋ ㄓㄤˇㄕˊㄐㄧㄢˉ ㄉㄜ˙。
|
| 113 |
+
./custom_character_voice/linghua/processed_115.wav|ㄉㄚˇㄊㄧㄥˉ ㄉㄠˋ ㄋㄧˇ ㄉㄜ˙ ㄕㄥˉㄖˋ ㄓˉㄏㄡˋ, ㄨㄛˇ ㄐㄧㄡˋ ㄊㄧˊㄑㄧㄢˊ ㄌㄜ˙ ㄧˉㄉㄨㄢˋㄕˊㄐㄧㄢˉ ㄎㄞˉㄕˇ ㄔㄡˊㄅㄟˋ。
|
| 114 |
+
./custom_character_voice/linghua/processed_116.wav|ㄅㄧˇㄑㄧˇ ㄇㄧㄥˊㄍㄨㄟˋ ㄉㄜ˙ ㄌㄧˇㄨˋ ㄨㄛˇ ㄨㄤˋㄗˋ ㄘㄞˉㄘㄜˋ ㄏㄨㄛˋㄒㄩˇ ㄓㄜˋㄧㄤˋ ㄉㄜ˙ ㄌㄧˇㄨˋ ㄏㄨㄟˋ ㄍㄥˋㄏㄜˊ ㄨㄛˇㄇㄣ˙ ㄉㄜ˙ ㄑㄧㄥˊㄧˋ?
|
| 115 |
+
./custom_character_voice/linghua/processed_117.wav|ㄘˇㄘˋ, ㄐㄧㄡˋ ㄑㄧㄥˇ ㄖㄤˋ ㄨㄛˇ ㄧˇㄕㄢˋ ㄨˊㄨㄟˋㄌㄧˇ ㄅㄚ˙。
|
| 116 |
+
./custom_character_voice/linghua/processed_118.wav|ㄕˉㄌㄧˇ ㄌㄜ˙。
|
| 117 |
+
./custom_character_voice/linghua/processed_119.wav|ㄍㄢˇㄒㄧㄝˋ, ㄩˇ ㄋㄧˇ ㄑㄧㄝˉㄘㄨㄛˉ ㄕˇ ㄨㄛˇ ㄕㄡˉㄧˋ ㄌㄧㄤˊㄉㄨㄛˉ, ㄒㄧㄤˉㄒㄧㄣˋ ㄗㄞˋ ㄐㄧㄢˋㄕㄨˋ ㄕㄤˋ ㄧㄝˇ ㄋㄥˊ ㄍㄥˋ ㄐㄧㄣˋ ㄧˉㄅㄨˋ。
|
| 118 |
+
./custom_character_voice/linghua/processed_120.wav|ㄉㄨㄛˉㄎㄨㄟˉ ㄋㄧˇ ㄉㄜ˙ ㄉㄧㄢˇㄅㄛˉ。
|
| 119 |
+
./custom_character_voice/linghua/processed_121.wav|ㄨㄛˇ ㄉㄨㄟˋ ㄗˋㄐㄧˇ ㄉㄜ˙ ㄋㄥˊㄌㄧˋ ㄧㄝˇ ㄌㄧˇㄐㄧㄝˇ ㄉㄜˊ ㄍㄥˋ ㄊㄡˋㄔㄜˋ ㄌㄜ˙。
|
| 120 |
+
./custom_character_voice/linghua/processed_122.wav|ㄍㄥˋㄐㄧㄚˉ ㄧㄡˊㄖㄣˋㄧㄡˇㄩˊ ㄌㄜ˙。
|
| 121 |
+
./custom_character_voice/linghua/processed_123.wav|ㄕㄡˉ ㄈㄥˋㄒㄧㄥˊ ㄕˋㄨˋ ㄓˉㄩˊ, ㄕㄣˋㄓˋ ㄧㄡˇㄎㄨㄥˋ ㄔㄤˊㄕˋ ㄧˉㄒㄧㄝˉ ㄒㄧㄣˉ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ。
|
| 122 |
+
./custom_character_voice/linghua/processed_124.wav|ㄒㄧㄤˇㄧㄠˋ ㄌㄞˊ ㄕˋㄕˋ ㄗˋㄐㄧˇ ㄒㄩㄝˊㄗㄨㄛˋ ㄉㄜ˙ ㄉㄧㄢˇㄒㄧㄣˉ ㄇㄚ˙?
|
| 123 |
+
./custom_character_voice/linghua/processed_125.wav|ㄒㄧㄣˉ ㄧㄡˇㄙㄨㄛˇㄙˉ, ㄙˉㄕˋ ㄖㄨˊㄆㄢˋ。
|
| 124 |
+
./custom_character_voice/linghua/processed_126.wav|ㄊㄨˊㄌㄧㄠˋ ㄈㄨˊㄕˋ ㄕˋ, ㄌㄧㄡˊㄓㄨˋ ㄋㄢˊ。
|
| 125 |
+
./custom_character_voice/linghua/processed_127.wav|ㄅㄠˋㄑㄧㄢˋ, ㄇㄧㄥˊㄇㄧㄥˊ ㄕˋ ㄓˊㄉㄜ˙ ㄍㄠˉㄒㄧㄥˋ ㄉㄜ˙ ㄕˊㄏㄡˋ, ㄨㄛˇ ㄑㄩㄝˋ ㄒㄧㄤˇㄑㄧˇ ㄌㄜ˙ ㄋㄚˋㄇㄜ˙ ㄅㄟˉㄕㄤˉ ㄉㄜ˙ ㄕˊㄎㄜˋ……
|
| 126 |
+
./custom_character_voice/linghua/processed_128.wav|ㄒㄧㄤˉㄔㄨˋ ㄉㄜ˙ ㄕˊㄐㄧㄢˉㄍㄨㄛˋ ㄩˊ ㄔㄤˋㄏㄨㄢˇ ㄐㄧㄥˋㄖㄢˊ ㄖㄤˋ ㄨㄛˇ ㄏㄞˋㄆㄚˋ ㄗㄞˋㄘˋ ㄕˉㄑㄩˋ。
|
| 127 |
+
./custom_character_voice/linghua/processed_129.wav|ㄕˉ… ㄕˉㄊㄞˋ ㄌㄜ˙ ㄧㄚ˙。
|
| 128 |
+
./custom_character_voice/linghua/processed_130.wav|ㄅㄧˇㄨˇ ㄅㄚ˙ ㄕˉㄌㄧˇ ㄌㄜ˙。
|
| 129 |
+
./custom_character_voice/linghua/processed_132.wav|ㄕㄣˊㄌㄧˇㄌㄧㄡˊ ㄕㄨㄤˉㄇㄧㄝˋ。
|
| 130 |
+
./custom_character_voice/linghua/processed_133.wav|ㄓㄜˋ ㄇㄧˋ ㄑㄧˊ, ㄧㄝˇ ㄙㄨㄢˋ ㄉㄜˊ ㄧˉㄓㄨㄥˇ ㄧㄚˇㄑㄩˋ。
|
| 131 |
+
./custom_character_voice/linghua/processed_134.wav|ㄐㄧㄣˉㄖˋ ㄩㄣˋㄕˋ ㄅㄨˋㄘㄨㄛˋ, ㄨㄛˇㄏㄨㄟˋ ㄓㄣˉㄒㄧˉ ㄓㄜˋ ㄧˉㄈㄣˋ ㄒㄧㄥˋㄩㄣˋ, ㄅㄨˋㄖㄨㄥˊ ㄒㄧㄠˇㄑㄩˋ ㄋㄜ˙。
|
| 132 |
+
./custom_character_voice/linghua/processed_135.wav|ㄨㄛˇ ㄉㄜ˙ ㄉㄨㄟˋㄕㄡˇ, ㄍㄞˉ ㄐㄩㄝˊㄉㄨㄢˋ ㄌㄜ˙。
|
| 133 |
+
./custom_character_voice/linghua/processed_136.wav|ㄕˉㄊㄞˋ ㄌㄜ˙ ㄨㄛˇ ㄏㄞˊㄧㄡˇ ㄨㄟˋㄐㄧㄣˇ ㄓˉㄕˋ ㄖㄤˋ ㄐㄧㄚˉㄗㄨˊ ㄇㄥˊㄒㄧㄡˉ ㄌㄜ˙。
|
| 134 |
+
./custom_character_voice/linghua/processed_137.wav|ㄉㄜ˙ ㄐㄧㄚˉㄏㄨㄛ˙… ㄗㄣˇㄇㄜ˙ ㄏㄨㄟˋ…
|
| 135 |
+
./custom_character_voice/linghua/processed_138.wav|ㄕㄣˊㄌㄧˇㄌㄧㄥˊㄏㄨㄚˊ。
|
| 136 |
+
./custom_character_voice/linghua/processed_140.wav|ㄑㄧㄥˇ ㄘˋㄐㄧㄠˋ。
|
| 137 |
+
./custom_character_voice/linghua/processed_141.wav|ㄑㄧㄥˇ ㄉㄨㄛˉ ㄍㄨㄢˉㄓㄠˋ。
|
filelists/final_annotation_val.txt
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
./custom_character_voice/linghua/processed_0.wav|ㄉㄠˋㄑㄧˉ ㄕㄣˊㄌㄧˇ ㄌㄧㄡˊㄊㄞˋ ㄉㄠˉㄕㄨˋ ㄐㄧㄝˉ ㄔㄨㄢˊㄕㄣˊ ㄌㄧˇㄌㄧㄥˊㄏㄨㄚˊ ㄘㄢˉㄕㄤˋ。
|
| 2 |
+
./custom_character_voice/linghua/processed_1.wav|ㄑㄧㄥˇ ㄉㄨㄛˉ ㄓˇㄐㄧㄠˋ ㄚ˙。
|
| 3 |
+
./custom_character_voice/linghua/processed_2.wav|ㄓㄜˋㄧㄤˋ ㄧㄡˉㄒㄧㄢˊㄢˉㄨㄣˇ ㄉㄜ˙ ㄕˊㄍㄨㄤˉ, ㄖㄨˊㄍㄨㄛˇ ㄗㄞˋ ㄉㄨㄛˉ ㄧˉㄉㄧㄢˇ ㄐㄧㄡˋ ㄏㄠˇ ㄌㄜ˙。
|
| 4 |
+
./custom_character_voice/linghua/processed_3.wav|ㄨㄛˇ ㄓㄣˉ ㄊㄢˉㄒㄧㄣˉ ㄚ˙。
|
| 5 |
+
./custom_character_voice/linghua/processed_4.wav|ㄐㄧㄡˋ ㄏㄜˊ ㄔㄚˊ ㄧˉㄧㄤˋ, ㄒㄧˋㄒㄧˋㄆㄧㄣˇㄨㄟˋ, ㄘㄞˊㄋㄥˊ ㄌㄧˇㄐㄧㄝˇ ㄑㄧˊㄓㄨㄥˉ ㄈㄥˉㄧㄚˇ。
|
| 6 |
+
./custom_character_voice/linghua/processed_5.wav|ㄉㄡˉ ㄕˋ ㄌㄩˇㄒㄧㄥˊㄓㄜˇ ㄆㄧㄥˊㄖˋ ㄌㄧˇ ㄉㄜ˙ ㄕㄥˉㄏㄨㄛˊ ㄇㄚ˙?
|
| 7 |
+
./custom_character_voice/linghua/processed_6.wav|ㄍㄢˇㄐㄩㄝˊ ㄧㄡˋ ㄉㄨㄛˉ ㄌㄧㄠˇㄐㄧㄝˇ ㄌㄜ˙ ㄋㄧˇ ㄧˉㄒㄧㄝˉ。
|
| 8 |
+
./custom_character_voice/linghua/processed_7.wav|ㄐㄧㄢˋ ㄅㄠˋㄧㄝˋㄇㄧㄥˊ ㄍㄨㄥˉㄏㄨㄞˊ ㄅㄠˇ。
|
| 9 |
+
./custom_character_voice/linghua/processed_8.wav|ㄙㄨㄟˊ ㄨㄛˇ ㄧˉㄊㄨㄥˊ ㄅㄧˋㄩˇ ㄅㄚ˙。
|
| 10 |
+
./custom_character_voice/linghua/processed_9.wav|ㄙㄨㄛˇ ㄉㄚˋㄖㄣˊ, ㄕˋ ㄗㄞˋ ㄙㄨˋㄕㄨㄛˉ ㄕㄣˊㄇㄜ˙ ㄇㄚ˙?
|
| 11 |
+
./custom_character_voice/linghua/processed_10.wav|ㄐㄧˋㄧㄣˊㄓㄨㄤˉㄙㄨˋ, ㄐㄩˊㄍㄠˉㄧㄥˋ ㄑㄩㄥˊㄓˉ。
|
| 12 |
+
./custom_character_voice/linghua/processed_11.wav|ㄣˊ…… ㄇㄟˇㄐㄧㄥˇ ㄉㄤˉㄑㄧㄢˊ, ㄓˇㄔㄚˋ ㄧˉㄏㄨˊ ㄔㄚˊ ㄩˇ ㄓˉ ㄒㄧㄤˉㄔㄣˋ ㄋㄜ˙。
|
| 13 |
+
./custom_character_voice/linghua/processed_12.wav|ㄧㄠˋ ㄑㄩˋ ㄋㄚˇㄅㄧㄢˉ ㄗㄡˇㄗㄡˇ ㄇㄚ˙?
|
| 14 |
+
./custom_character_voice/linghua/processed_13.wav|ㄧㄢˇㄐㄧㄥˉ, ㄒㄧㄤˋ ㄓㄨˋㄈㄥˉ ㄔㄨㄟˉ ㄌㄞˊ ㄉㄜ˙ ㄈㄤˉㄒㄧㄤˋ。
|
| 15 |
+
./custom_character_voice/linghua/processed_14.wav|ㄞˉㄧㄚˉ, ㄏㄣˇ ㄕㄨˉㄈㄨˊ ㄅㄚ˙。
|
| 16 |
+
./custom_character_voice/linghua/processed_15.wav|ㄌㄩˇㄒㄧㄥˊㄓㄜˇ。
|
| 17 |
+
./custom_character_voice/linghua/processed_16.wav|ㄓㄜˋㄧㄤˋ ㄗㄞˋ ㄑㄧㄥˉㄔㄣˊ ㄐㄧㄢˋ ㄋㄧˇ ㄧˊㄇㄧㄢˋ, ㄨㄛˇㄏㄨㄟˋ ㄖㄣˇㄅㄨˊㄓㄨˋ ㄐㄩㄝˊㄉㄜˊ, ㄐㄧㄝˉㄒㄧㄚˋ ㄌㄞˊㄐㄧㄤˉ ㄕˋ ㄕㄨㄣˋㄌㄧˋ ㄉㄜ˙ ㄧˉㄊㄧㄢˉ。
|
| 18 |
+
./custom_character_voice/linghua/processed_18.wav|ㄔㄚˊㄈㄢˋ ㄓˉㄏㄡˋ, ㄋㄢˊㄇㄧㄢˇ ㄌㄩㄝˋㄧㄡˇ ㄎㄨㄣˋㄐㄩㄢˋ ㄕˋㄈㄡˇ ㄧㄡˇ ㄒㄧㄥˋㄓˋ ㄒㄧㄚˋㄆㄢˊ ㄑㄧˊ ㄊㄧˊㄕㄣˊ ㄋㄜ˙?
|
| 19 |
+
./custom_character_voice/linghua/processed_20.wav|ㄏㄨㄟˋ ㄕˋ ㄧˊㄍㄜˋ ㄌㄧㄤˊㄒㄧㄠˉ ㄋㄜ˙。
|
| 20 |
+
./custom_character_voice/linghua/processed_21.wav|ㄓˉㄕˋ ㄇㄥˋ ㄏㄜˊㄒㄩˉ ㄒㄧㄥˇ。
|
| 21 |
+
./custom_character_voice/linghua/processed_22.wav|ㄅㄨˋㄅㄧˇㄓㄣˉ ㄖㄨˊ, ㄧˉㄒㄧㄤˉㄏㄨㄟˋ。
|
| 22 |
+
./custom_character_voice/linghua/processed_23.wav|ㄉㄠˋㄑㄧˉ ㄇㄨˋㄈㄨˇ ㄕㄜˋ ㄈㄥˋㄒㄧㄥˊ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ, ㄨㄟˋ ㄩˊ ㄉㄠˋㄑㄧˉ ㄇㄧㄥˊㄇㄣˊ ㄓㄨㄥˉ ㄉㄜ˙ ㄅㄧˇㄊㄡˊ ㄓˉ ㄍㄜˊㄨㄟˋ。
|
| 23 |
+
./custom_character_voice/linghua/processed_24.wav|ㄗㄨㄛˋㄨㄟˊ ㄙㄢˉ ㄈㄥˋㄒㄧㄥˊ ㄓˉㄧˉ, ㄓㄤˇㄍㄨㄢˇ ㄐㄧˋㄙˋ ㄏㄨㄛˊㄉㄨㄥˋ ㄩˇ ㄖㄣˊㄨㄣˊ ㄧˋㄕㄨˋ。
|
| 24 |
+
./custom_character_voice/linghua/processed_25.wav|ㄕㄨㄤˉㄑㄧㄣˉ ㄍㄨㄛˋㄕˋ ㄓˉㄏㄡˋ, ㄗㄨˊ ㄋㄟˋ ㄉㄜ˙ ㄉㄚˋㄒㄧㄠˇ ㄕˋㄨˋ ㄅㄧㄢˋ ㄧㄡˊ ㄒㄩㄥˉㄓㄤˇ ㄏㄜˊ ㄨㄛˇ ㄔㄥˊㄉㄢˉ ㄌㄜ˙。
|
| 25 |
+
./custom_character_voice/linghua/processed_26.wav|ㄏㄣˇㄉㄨㄛˉ ㄖㄣˊㄧㄣˉ ㄨㄟˋ ㄨㄛˇ ㄕˋ ㄅㄞˊㄌㄨˋ ㄍㄨㄥˉㄓㄨˇ, ㄕˋ ㄕㄜˋ ㄈㄥˋㄒㄧㄥˊ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ ㄉㄜ˙ ㄉㄚˋ ㄒㄧㄠˇㄐㄧㄝˇ, ㄦˊ ㄐㄧㄥˋㄓㄨㄥˋ ㄨㄛˇ。
|
| 26 |
+
./custom_character_voice/linghua/processed_27.wav|ㄊㄚˉㄇㄣ˙ ㄙㄨㄛˇ ㄐㄧㄥˋㄓㄨㄥˋ ㄉㄜ˙, ㄓˇㄕˋ ㄨㄛˇ ㄙㄨㄛˇ ㄕㄣˉㄔㄨˋ ㄉㄜ˙ ㄉㄧˋㄨㄟˋ, ㄩˇㄌㄧㄥˊㄏㄨㄚˊ ㄨㄛˇ ㄕˋ ㄗㄣˇㄧㄤˋ ㄉㄜ˙ ㄖㄣˊ ㄅㄧㄥˋ ㄨˊ ㄍㄨㄢˉㄒㄧˋ。
|
| 27 |
+
./custom_character_voice/linghua/processed_28.wav|ㄨㄛˇ ㄒㄧㄤˇ, ㄋㄥˊ ㄓㄣˉㄓㄥˋ ㄗㄡˇㄐㄧㄣˋ ㄨㄛˇ ㄉㄜ˙, ㄏㄨㄛˋㄒㄩˇ ㄓˇㄧㄡˇ, ㄖㄨˊㄐㄧㄣˉ ㄉㄜ˙ ㄨㄛˇ。
|
| 28 |
+
./custom_character_voice/linghua/processed_29.wav|ㄧˉㄐㄧㄡˋ ㄒㄧㄤˇ ㄔㄥˊㄨㄟˋ ㄓˊㄉㄜ˙ ㄉㄚˋㄐㄧㄚˉ ㄒㄧㄣˋㄖㄣˋ ㄉㄜ˙ ㄖㄣˊ。
|
| 29 |
+
./custom_character_voice/linghua/processed_30.wav|ㄍㄨˇㄨˇ ㄨㄛˇ ㄉㄜ˙ ㄩㄢˊㄧㄣˉ, ㄧˇ ㄅㄨˋㄗㄞˋ ㄕˋ ㄐㄧㄢˉㄕㄤˋ ㄉㄜ˙ ㄗㄜˊㄖㄣˋ, ㄏㄨㄛˋ ㄊㄚˉㄖㄣˊ ㄉㄜ˙ ㄑㄧˉㄉㄞˋ。
|
| 30 |
+
./custom_character_voice/linghua/processed_31.wav|ㄕˋ ㄧㄣˉㄨㄟˋ…… ㄋㄧˇ ㄧㄝˇ ㄕˋ ㄓㄜˋㄧㄤˋ ㄉㄜ˙ ㄖㄣˊ ㄚ˙。
|
| 31 |
+
./custom_character_voice/linghua/processed_32.wav|ㄖㄨˊㄍㄨㄛˇ ㄋㄧㄣˊ ㄧㄡˇㄎㄨㄥˋ, ㄨㄛˇㄇㄣ˙ ㄧˉㄅㄨˋ ㄇㄨˋㄌㄨˋ ㄔㄚˊㄕˋ ㄖㄨˊㄏㄜˊ?
|
| 32 |
+
./custom_character_voice/linghua/processed_33.wav|ㄗㄞˋ ㄓㄜˋㄧㄤˋ ㄊㄧㄢˊㄐㄧㄥˋ ㄉㄜ˙ ㄖˋㄗ˙, ㄌㄩㄝˋㄐㄧㄚˉ ㄐㄧㄠˉㄌㄧㄡˊ ㄔㄚˊㄧˋ ㄒㄧㄣˉㄉㄜˊ, ㄒㄧㄤˇㄌㄞˊ ㄕˋ ㄆㄛˇㄐㄩˋ ㄧㄚˇㄑㄩˋ ㄉㄜ˙。
|
| 33 |
+
./custom_character_voice/linghua/processed_34.wav|ㄖㄨˊㄍㄨㄛˇ ㄧㄡˇ ㄐㄧˉㄏㄨㄟˋ ㄉㄜ˙ㄏㄨㄚˋ, ㄨㄛˇㄒㄧㄤˇㄕˋ ㄓㄜ˙ ㄏㄜˊ ㄋㄧˇ ㄍㄨㄥˋㄉㄨˋ ㄧˋㄍㄨㄛˊ ㄉㄜ˙ ㄐㄧㄝˊㄖˋ。
|
| 34 |
+
./custom_character_voice/linghua/processed_35.wav|ㄗㄨㄣˉㄒㄩㄣˊ ㄉㄜ˙ ㄉㄤˉㄉㄧˋ ㄈㄥˉㄙㄨˊ, ㄌㄧˇㄧˊ ㄍㄨㄟˉㄈㄢˋ, ㄏㄞˊㄧㄡˇ ㄅㄢˋㄕㄡˇ ㄌㄧˇ ㄉㄜ˙ ㄊㄨㄟˉㄐㄧㄢˋ。
|
| 35 |
+
./custom_character_voice/linghua/processed_36.wav|ㄎㄜˇㄧˇ ㄇㄚˊㄈㄢˊ ㄋㄧˇ… ㄧˉㄧˉ ㄓˇㄉㄠˇ ㄨㄛˇ ㄇㄚ˙?
|
| 36 |
+
./custom_character_voice/linghua/processed_37.wav|ㄕㄣˊㄓˉㄧㄢˇ, ㄐㄧˊ ㄕˋ ㄒㄩㄥˉㄏㄨㄞˊㄉㄚˋㄓˋ ㄓˉㄖㄣˊ ㄙㄨㄛˇ ㄏㄨㄛˋ ㄉㄜ˙ ㄧㄥˉㄕㄡˋ。
|
| 37 |
+
./custom_character_voice/linghua/processed_38.wav|ㄖㄨˊㄍㄨㄛˇ ㄨㄣˋ ㄨㄛˇ ㄧㄡˇ ㄕㄣˊㄇㄜ˙ ㄓˋㄒㄧㄤˋ ㄉㄜ˙ㄏㄨㄚˋ。
|
| 38 |
+
./custom_character_voice/linghua/processed_39.wav|ㄓㄜˋㄍㄜˋ ㄏㄞˊㄕˋ ㄅㄠˇㄇㄧˋ ㄅㄚ˙。
|
| 39 |
+
./custom_character_voice/linghua/processed_40.wav|ㄓˇㄕˋ ㄧˊㄍㄜˋ ㄨㄟˉㄅㄨˋㄗㄨˊㄉㄠˋ ㄉㄜ˙ ㄇㄥˋㄒㄧㄤˇ ㄅㄚˋㄌㄜ˙。
|
| 40 |
+
./custom_character_voice/linghua/processed_41.wav|ㄔㄤˊㄕㄨㄛˉ ㄔㄢˊ ㄔㄚˊ ㄧˉㄨㄟˋ。
|
| 41 |
+
./custom_character_voice/linghua/processed_42.wav|ㄐㄧㄢˋ ㄔㄢˊ ㄧˋ ㄖㄨˊ。
|
| 42 |
+
./custom_character_voice/linghua/processed_43.wav|ㄋㄚˋㄇㄜ˙ ㄐㄧㄢˋ ㄏㄜˊ ㄔㄚˊ, ㄧㄡˋ ㄕˋ ㄕㄣˊㄇㄜ˙ ㄍㄨㄢˉㄒㄧˋ ㄋㄜ˙?
|
| 43 |
+
./custom_character_voice/linghua/processed_44.wav|ㄋㄧˇ ㄗㄞˋ ㄔㄥˊㄓㄨㄥˉ, ㄐㄧㄢˋㄍㄨㄛˋ ㄎㄨˉㄨㄟˇ ㄉㄜ˙ ㄧㄥˉㄏㄨㄚˉㄕㄨˋ ㄇㄚ˙?
|
| 44 |
+
./custom_character_voice/linghua/processed_45.wav|ㄎㄨˉㄓˉ ㄇㄟˇ ㄖㄤˋ ㄨㄛˇ ㄒㄧㄤˇㄉㄠˋ ㄔㄨㄣˉㄊㄧㄢˉ ㄕㄥˋㄎㄞˉ ㄓˉㄐㄧㄥˇ。
|
| 45 |
+
./custom_character_voice/linghua/processed_46.wav|ㄅㄨˋㄍㄨㄛˋ, ㄅㄧㄝˊㄖㄣˊ ㄙˋㄏㄨˉ ㄅㄧㄥˋ ㄅㄨˋ ㄓㄜˋㄇㄜ˙ ㄒㄧㄤˇ。
|
| 46 |
+
./custom_character_voice/linghua/processed_47.wav|ㄎㄞˉㄏㄨㄚˉ ㄉㄜ˙ ㄧㄣˉㄕㄨˋㄏㄨㄟˋ ㄅㄟˋ ㄧˊㄗㄡˇ。
|
| 47 |
+
./custom_character_voice/linghua/processed_48.wav|ㄐㄧㄡˋㄙㄨㄢˋ ㄧˉㄘˋ ㄧㄝˇㄏㄠˇ, ㄓㄣˉㄒㄧㄤˇ ㄎㄢˋㄉㄠˋ ㄊㄚˉ ㄗㄞˋㄘˋ ㄎㄞˉㄈㄤˋ。
|
| 48 |
+
./custom_character_voice/linghua/processed_49.wav|ㄕˋ ㄨㄛˇ ㄏㄣˇ ㄓㄨㄥˋㄧㄠˋ ㄉㄜ˙ ㄆㄥˊㄧㄡˇ。
|
| 49 |
+
./custom_character_voice/linghua/processed_50.wav|ㄊㄧㄢˉㄌㄥˇ ㄏㄜˊ ㄧㄤˊㄍㄨㄤˉ, ㄗㄨㄥˇㄕˋ ㄍㄢˇㄖㄢˇ ㄓㄜ˙ ㄨㄛˇ。
|
| 50 |
+
./custom_character_voice/linghua/processed_51.wav|ㄧˋㄧˋ ㄕㄤˋ ㄌㄞˊㄕㄨㄛˉ, ㄊㄚˉ ㄐㄧㄡˋ ㄒㄧㄤˋㄕˋ ㄨㄛˇ ㄉㄜ˙ ㄌㄧㄥˋ ㄧˊㄍㄜˋ ㄒㄩㄥˉㄓㄤˇ ㄧˉㄧㄤˋ。
|
| 51 |
+
./custom_character_voice/linghua/processed_52.wav|ㄔㄥˊㄨㄟˋ ㄌㄜ˙ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄧˉㄩㄢˊ。
|
| 52 |
+
./custom_character_voice/linghua/processed_53.wav|ㄌㄧㄥˇ ㄈㄥˋㄒㄧㄥˊ ㄍㄨㄥˉㄗㄨㄛˋ ㄉㄜ˙ ㄐㄧㄡˇㄊㄧㄠˊ ㄕㄚˉㄌㄨㄛˊ, ㄊㄚˉ ㄗㄨㄥˇㄕˋ ㄧˉㄌㄧㄢˇ ㄧㄢˊㄙㄨˋ。
|
| 53 |
+
./custom_character_voice/linghua/processed_54.wav|ㄊㄚˉ ㄘㄥˊㄐㄧㄥˉ ㄑㄧˇㄍㄨㄛˋ ㄐㄧˇㄘˋ ㄓㄥˉㄉㄨㄢˉ。
|
| 54 |
+
./custom_character_voice/linghua/processed_55.wav|ㄊㄚˉ ㄅㄣˇㄓˋ ㄕˋ ㄓㄨㄥˉㄧˋ ㄓˉㄕˋ, ㄓㄜˋㄉㄧㄢˇ ㄨˊㄎㄜˇㄈㄡˇㄖㄣˋ。
|
| 55 |
+
./custom_character_voice/linghua/processed_56.wav|ㄙㄨˉㄧㄝˇ ㄩㄝˋㄒㄧㄢˉㄕㄥˉ。
|
| 56 |
+
./custom_character_voice/linghua/processed_57.wav|ㄊㄚˉ ㄏㄜˊ ㄐㄧㄡˇㄊㄧㄠˊ ㄒㄧㄠˇㄐㄧㄝˇ ㄧˉㄧㄤˋ, ㄕˋ ㄊㄧㄢˉㄌㄧㄥˇ ㄈㄥˋㄒㄧㄥˊ ㄉㄜ˙ ㄖㄣˊ。
|
| 57 |
+
./custom_character_voice/linghua/processed_58.wav|ㄊㄚˉ…… ㄧㄝˇ ㄕˋ ㄧˊㄍㄜˋ ㄏㄣˇ ㄧㄡˇ ㄩㄢˊㄗㄜˊ ㄉㄜ˙ ㄖㄣˊ。
|
| 58 |
+
./custom_character_voice/linghua/processed_59.wav|ㄓㄜˋㄒㄧㄝˉ ㄩㄢˊㄗㄜˊ ㄉㄜ˙ ㄐㄧㄢˉㄔˊ, ㄕㄣˋㄓˋ ㄅㄧˇ ㄐㄧㄡˇㄊㄧㄠˊ ㄒㄧㄠˇㄐㄧㄝˇ ㄍㄥˋ ㄓˊㄓㄨㄛˊ。
|
| 59 |
+
./custom_character_voice/linghua/processed_60.wav|ㄅㄨˋㄍㄨㄛˋ, ㄕㄣˊㄇㄜ˙ ㄕˋ ㄧㄥˉㄍㄞˉ ㄅㄟˋ ㄙㄨㄢˋ ㄗㄞˋ ㄓㄜˋㄒㄧㄝˉ ㄩㄢˊㄗㄜˊ ㄓˉㄋㄟˋ…… ㄨㄛˇ ㄒㄧㄤˇ, ㄏㄨㄛˋㄒㄩˇ ㄓˇㄧㄡˇ ㄌㄨˋ ㄧㄝˇ ㄩㄢ�� ㄒㄧㄢˉㄕㄥˉ ㄗˋㄐㄧˇ ㄓˉㄉㄠˋ ㄅㄚ˙。
|
| 60 |
+
./custom_character_voice/linghua/processed_61.wav|ㄒㄧㄠˇ ㄧㄡˋㄓˋ ㄏㄞˊㄗ˙, ㄗㄨㄟˋㄐㄧㄣˋ ㄧㄡˇ ㄇㄟˊ ㄧㄡˇㄍㄟˇ ㄋㄧˇ ㄊㄧㄢˉㄕㄣˊㄇㄜ˙ ㄇㄚˊㄈㄢˊ ㄋㄜ˙?
|
| 61 |
+
./custom_character_voice/linghua/processed_62.wav|ㄖㄨˊㄍㄨㄛˇ ㄎㄢˋㄐㄧㄢˋ ㄊㄚˉ ㄊㄡˉ ㄌㄢˇ, ㄎㄜˇㄧˇ ㄓˊㄐㄧㄝˉ ㄍㄠˋㄙㄨˋ ㄨㄛˇ。
|
| 62 |
+
./custom_character_voice/linghua/processed_63.wav|ㄌㄧˇㄙㄨㄛˇ ㄉㄤˉㄖㄢˊ ㄉㄜ˙ ㄎㄢˋㄈㄚˇ ㄇㄚ˙?
|
| 63 |
+
./custom_character_voice/linghua/processed_64.wav|ㄅㄨˋㄍㄞˉ ㄧㄡˊ ㄨㄛˇ ㄉㄥˇ ㄒㄧㄚˋㄕㄨˇ ㄙㄨㄟˊㄧˋ ㄧˋㄌㄨㄣˋ。
|
| 64 |
+
./custom_character_voice/linghua/processed_65.wav|ㄏㄥˉ, ㄐㄧㄤˉㄐㄩㄣˉ ㄉㄚˋㄖㄣˊ ㄊㄚˉ ㄗㄞˋ ㄓㄨㄟˉㄑㄧㄡˊ ㄩㄥˇㄏㄥˊ ㄓˉ ㄌㄨˋㄕㄤˋ, ㄎㄜˇㄋㄥˊ ㄧㄝˇ ㄏㄣˇ ㄍㄨˉㄉㄨˊ ㄅㄚ˙。
|
| 65 |
+
./custom_character_voice/linghua/processed_66.wav|ㄧˉㄉㄠˉ, ㄅㄧㄥˋㄑㄧㄝˇ ㄏㄨㄛˊ ㄌㄜ˙ ㄒㄧㄚˋㄌㄞˊ。 ㄍㄞˉ ㄕㄨㄛˉ ㄕˋ ㄎㄢˉㄔㄥˉ ㄨㄟˇㄧㄝˋ ㄉㄜ˙ ㄐㄧㄥˉㄌㄧˋ ㄌㄜ˙ ㄅㄚ˙。
|
| 66 |
+
./custom_character_voice/linghua/processed_67.wav|ㄙㄨㄟˉㄖㄢˊ ㄉㄨㄟˋ ㄨㄛˇ ㄌㄞˊㄕㄨㄛˉ, ㄊㄚˉ ㄕˋ ㄓㄣˉㄓㄥˋ ㄉㄜ˙ ㄕㄣˊㄇㄧㄥˊ。
|
| 67 |
+
./custom_character_voice/linghua/processed_68.wav|ㄎㄜˇㄧˇ ㄍㄥˉㄍㄞˇ ㄉㄠˋㄑㄧˉ ㄉㄜ˙ ㄇㄧㄥˋㄩㄣˋ。
|
| 68 |
+
./custom_character_voice/linghua/processed_69.wav|ㄉㄢˋㄕˋ ㄖㄨˊㄍㄨㄛˇ ㄕˋ ㄏㄜˊ ㄋㄧˇ ㄑㄧˇ ㄌㄜ˙ ㄔㄨㄥˉㄊㄨˉ ㄉㄜ˙ㄏㄨㄚˋ, ㄨㄛˇ ㄧˊㄉㄧㄥˋ ㄏㄨㄟˋ ㄓㄢˋ ㄗㄞˋ ㄋㄧˇ ㄓㄜˋ ㄧˉㄅㄧㄢˉ ㄉㄜ˙。
|
| 69 |
+
./custom_character_voice/linghua/processed_70.wav|ㄅㄚˉㄓㄨㄥˋ ㄍㄨㄥˉㄙˉ ㄉㄚˋㄖㄣˊ ㄉㄜ˙ ㄏㄜˊㄗㄨㄛˋ ㄒㄧㄤˋㄌㄞˊ ㄏㄣˇ ㄩˊㄎㄨㄞˋ。
|
| 70 |
+
./custom_character_voice/linghua/processed_71.wav|ㄎㄢˋ, ㄘㄠˉㄅㄢˋ ㄐㄧㄝˊㄑㄧㄥˋㄑㄧㄥˋㄉㄧㄢˇ ㄈㄟˉㄔㄤˊ ㄌㄠˊㄕㄣˊㄈㄟˋㄌㄧˋ, ㄧㄥˊㄕㄡˉ ㄉㄨㄛˉㄅㄢˋ ㄧㄝˇ ㄅㄨˋ ㄏㄠˇㄎㄢˋ。
|
| 71 |
+
./custom_character_voice/linghua/processed_72.wav|ㄅㄚˉㄓㄨㄥˋ ㄍㄨㄥˉㄙˉ ㄉㄚˋㄖㄣˊ ㄘㄠˉㄅㄢˋ ㄉㄜ˙ ㄔㄢˇㄧㄝˋ, ㄓㄣˉㄉㄜ˙ ㄐㄧˋ ㄈㄥˉㄧㄚˇ ㄧㄡˋ ㄧㄡˇ ㄕㄡˉㄔㄥˊ。
|
| 72 |
+
./custom_character_voice/linghua/processed_73.wav|ㄗㄨㄛˋㄨㄟˋ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄐㄧㄚˉㄓㄨˇ, ㄒㄩㄥˉㄓㄤˇ ㄆㄧㄥˊㄖˋ ㄒㄩˉㄧㄠˋ ㄔㄨˉㄇㄧㄢˋ ㄓㄨˉㄉㄨㄛˉㄔㄤˇ ㄏㄜˊ。
|
| 73 |
+
./custom_character_voice/linghua/processed_74.wav|ㄨㄛˇ ㄙㄨㄟˉ ㄐㄧㄣˇㄌㄧˋ ㄈㄣˉㄉㄢˉ ㄒㄩㄥˉㄓㄤˇ ㄐㄧㄢˉㄕㄤˋ ㄙㄨㄛˇ ㄈㄨˋㄉㄢˉ ㄉㄜ˙ ㄗㄜˊㄖㄣˋ, ㄑㄩㄝˋ ㄧㄝˇ ㄨˊㄈㄚˇㄏㄨㄢˇ ㄏㄜˊ ㄊㄚˉ ㄔㄤˊㄋㄧㄢˊ ㄐㄧˉㄧㄚˉ ㄗㄞˋ ㄕㄣˉ ㄉㄜ˙ ㄆㄧˊㄐㄩㄢˋ。
|
| 74 |
+
./custom_character_voice/linghua/processed_75.wav|ㄨㄛˇ ㄧㄝˇ ㄕˋ ㄉㄤˉㄕˊ ㄨㄟˋㄌㄜ˙ ㄇㄟˋㄇㄟˋ ㄓㄨㄛˊㄒㄧㄤˇ, ㄒㄧˉㄨㄤˋ ㄋㄧˇ ㄋㄥˊ ㄑㄩㄢˋㄧㄢˊ, ㄖㄤˋ ㄒㄩㄥˉㄓㄤˇ ㄉㄨㄛˉㄉㄨㄛˉ ㄓㄨˋㄧˋ ㄕㄣˉㄊㄧˇ ㄚ˙。
|
| 75 |
+
./custom_character_voice/linghua/processed_76.wav|ㄐㄧㄝˊㄑㄧㄥˋㄑㄧㄥˋㄉㄧㄢˇ ㄕˋ ㄕㄥˋ ㄈㄥˋㄒㄧㄥˊ ㄏㄜˊ ㄨˉㄋㄩˇ ㄓㄨㄥˉ ㄉㄜ˙ ㄗㄜˊㄖㄣˋ。
|
| 76 |
+
./custom_character_voice/linghua/processed_77.wav|ㄗㄨㄛˋㄨㄟˋ ㄧㄢˉㄏㄨㄛˇ ㄓㄨㄢˉㄐㄧㄚˉ, ㄧㄝˇ ㄉㄜ˙ ㄑㄩㄝˋㄋㄥˊ ㄖㄤˋ ㄑㄧˋㄈㄣˉ ㄖㄜˋㄌㄧㄝˋ ㄑㄧˇㄌㄞˊ。
|
| 77 |
+
./custom_character_voice/linghua/processed_78.wav|ㄏㄜˊㄗㄨㄛˋ ㄉㄨㄛˉ ㄌㄜ˙, ㄧㄣˉㄦˊ ㄐㄧㄢˋㄐㄧㄢˋ ㄕㄨˊㄌㄨㄛˋ。
|
| 78 |
+
./custom_character_voice/linghua/processed_79.wav|ㄓˋㄢˉ ㄏㄜˊ ㄒㄧㄠˉㄈㄤˊ ㄨㄣˋㄊㄧˊ ㄇㄚ˙? ㄨㄛˇㄇㄣ˙ ㄧㄝˇ ㄏㄨㄟˋ ㄧˉ ㄅㄧㄥˋ ㄋㄚˋㄖㄨˋ ㄩˋㄒㄧㄢˉ ㄍㄨㄟˉㄏㄨㄚˋ ㄉㄜ˙。
|
| 79 |
+
./custom_character_voice/linghua/processed_80.wav|ㄓㄜˋㄒㄧㄝˉ ㄩㄢˊㄧㄣˉ ㄦˊ ㄎㄢˋㄅㄨˊㄉㄠˋ ㄧㄥˉㄏㄨㄚˉ, ㄘㄞˊ ㄏㄨㄟˋ ㄖㄤˋ ㄖㄣˊㄇㄣ˙ ㄒㄧㄣˉㄓㄨㄥˉ ㄌㄧㄡˊㄒㄧㄚˋ ㄑㄩㄝˉㄏㄢˋ ㄅㄚ˙。
|
| 80 |
+
./custom_character_voice/linghua/processed_81.wav|ㄋㄧˇ ㄉㄜ˙ ㄑㄧㄥˇㄑㄧㄡˊ, ㄉㄨㄟˋ ㄨㄛˇ ㄌㄞˊㄕㄨㄛˉ ㄏㄣˇ ㄊㄜˋㄅㄧㄝˊ ㄋㄜ˙ ㄐㄧˋㄖㄢˊ ㄅㄚˇ ㄋㄧˇ ㄉㄤˋㄗㄨㄛˋ ㄆㄥˊㄧㄡˇ, ㄨㄛˇ ㄧㄝˇ ㄧㄥˉ ㄊㄢˇㄔㄥˊㄧˇㄉㄞˋ。
|
| 81 |
+
./custom_character_voice/linghua/processed_82.wav|ㄅㄨˋㄍㄨㄛˋ, ㄕˋㄍㄨㄢˉ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ ㄉㄜ˙ ㄇㄧˋㄇㄧˋ, ㄏㄞˊ ㄒㄧˉㄨㄤˋ ㄋㄧˇ ㄋㄥˊ ㄕㄡˇㄎㄡˇㄖㄨˊㄆㄧㄥˊ。
|
| 82 |
+
./custom_character_voice/linghua/processed_83.wav|ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉㄧㄣˉ ㄨㄟˋ ㄇㄟˊㄋㄥˊ ㄅㄠˇㄏㄨˋ ㄏㄠˇ ㄍㄨㄛˊㄅ���ˇㄐㄧˊ ㄅㄧㄝˊ ㄉㄜ˙ ㄉㄠˉㄍㄨㄥˉ, ㄗㄠˉㄕㄡˋ ㄌㄜ˙ ㄅㄨˋㄒㄧㄠˇ ㄉㄜ˙ ㄔㄨㄥˉㄐㄧˉ。
|
| 83 |
+
./custom_character_voice/linghua/processed_84.wav|ㄅㄧㄝˊㄖㄣˊ ㄓㄨㄥˉ ㄧㄣˉㄇㄡˊ ㄙㄨㄢˋㄐㄧˋ ㄨㄛˇㄇㄣ˙ ㄕㄜˊㄙㄨㄣˇ ㄌㄜ˙ ㄓㄨˉㄉㄨㄛˉ ㄔㄣˊ ㄒㄧㄚˋ ㄕㄡˋㄉㄠˋ ㄒㄩˇㄉㄨㄛˉ ㄗㄜˊㄈㄚˊ。
|
| 84 |
+
./custom_character_voice/linghua/processed_85.wav|ㄕㄣˋㄓˋ ㄧㄣˉ ㄓˉ ㄗㄠˇㄕㄨㄞˉ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄗㄞˋ ㄇㄨˋㄈㄨˇ ㄓㄨㄥˉ ㄉㄜ˙ ㄉㄧˋㄨㄟˋ ㄧㄝˇ ㄧˉㄌㄨㄛˋㄑㄧㄢˉㄓㄤˋ。
|
| 85 |
+
./custom_character_voice/linghua/processed_86.wav|ㄏㄠˇ ㄗㄞˋ ㄒㄩㄥˉㄓㄤˇ ㄐㄧˋㄖㄣˋㄏㄡˋㄌㄧˋ ㄨㄢˇ ㄎㄨㄤˊㄌㄢˊ。
|
| 86 |
+
./custom_character_voice/linghua/processed_87.wav|ㄐㄧㄚˉㄇㄣˊ ㄙㄨㄟˉ ㄧˇ ㄈㄨˋ ㄒㄧㄥˋ, ㄕㄜˋㄈㄥˉㄒㄧㄥˇ ㄧˉㄒㄧˉ ㄧㄝˇ ㄕㄤˋㄒㄧㄚˋ ㄑㄧˊㄒㄧㄣˉ, ㄉㄢˋ ㄉㄚˋㄕˋ ㄧㄠˋㄕˋ ㄈㄤˉㄇㄧㄢˋ ㄖㄥˊㄎㄠˋ ㄒㄩㄥˉㄓㄤˇ ㄉㄧㄥˋㄉㄨㄛˊ。
|
| 87 |
+
./custom_character_voice/linghua/processed_88.wav|ㄊㄚˉㄇㄣ˙ ㄙㄨㄛˇㄔㄨㄢˊ ㄉㄜ˙ ㄉㄨㄢˋ ㄉㄠˉ ㄓˉㄕㄨˋ, ㄧㄝˇ ㄧㄣˉ ㄒㄧㄥˉㄒㄧㄤˋ, ㄩㄥˋㄊㄨˊ, ㄎㄨㄤˋㄓˊ, ㄌㄨˊㄏㄨㄛˇ ㄏㄨㄢˊㄐㄧㄥˋ, ㄖㄣˊ ㄓˉ ㄒㄧㄥˋㄍㄜˊ, ㄩㄢˊㄙㄨˋ ㄅㄧㄢˋㄏㄨㄚˋ ㄉㄜ˙ ㄅㄨˋㄊㄨㄥˊ ㄦˊ ㄧㄡˇㄙㄨㄛˇ ㄑㄩˉㄈㄣˉ。
|
| 88 |
+
./custom_character_voice/linghua/processed_89.wav|ㄕˋ ㄉㄠˉ ㄍㄨㄥˉ ㄓˉㄐㄧㄢˉ ㄙㄨㄛˇㄕㄨㄛˉ ㄉㄜ˙ ㄌㄟˊㄉㄧㄢˋ ㄨˇㄔㄨㄢˉ。
|
| 89 |
+
./custom_character_voice/linghua/processed_90.wav|ㄘㄤˊㄇㄧㄥˊ ㄉㄠˉ ㄉㄜ˙ ㄉㄠˉㄍㄨㄥˉ, ㄧㄝˇ ㄅㄟˋ ㄙㄨㄢˋㄗㄨㄛˋ ㄕˋ ㄅㄣˇㄌㄧㄥˇ ㄊㄨㄥˉㄕㄣˊ ㄉㄜ˙ ㄕㄣˊㄕˋ ㄒㄧㄤˉㄍㄨㄢˉ ㄖㄣˊㄩㄢˊ, ㄍㄨㄟˉㄕㄨˇ ㄊㄨㄥˇㄔㄡˊ ㄨㄣˊㄏㄨㄚˋ, ㄧˋㄕㄨˋ, ㄐㄧˋㄙˋ ㄉㄜ˙ ㄕㄜˋㄈㄥˋ ㄒㄧㄥˊㄧˋ ㄆㄞˋ ㄍㄨㄢˇㄌㄧˇ。
|
| 90 |
+
./custom_character_voice/linghua/processed_91.wav|ㄔㄨˉㄒㄧㄢˋ ㄌㄜ˙ ㄉㄠˉㄍㄨㄥˉ ㄅㄟˋㄆㄢˋ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ, ㄗˋㄖㄢˊ ㄐㄧㄡˋㄕˋ ㄕㄣˊㄌㄧˇㄐㄧㄚˉ ㄉㄜ˙ ㄉㄨˊㄅㄢˋ ㄅㄨˋㄌㄧˋ ㄌㄜ˙。
|
| 91 |
+
./custom_character_voice/linghua/processed_92.wav|ㄉㄨㄟˋ ㄨㄛˇ ㄌㄞˊ ㄕㄨㄛˉ, ㄇㄨˇㄑㄧㄣˉ ㄕˋ ㄧˋㄧˋ ㄈㄟˉㄈㄢˊ ㄉㄜ˙ ㄘㄨㄣˊㄗㄞˋ。
|
| 92 |
+
./custom_character_voice/linghua/processed_93.wav|ㄈㄨˊㄓㄨㄤˉ, ㄧㄡˉㄧㄚˇ, ㄨˊㄌㄨㄣˋ ㄩˋㄉㄠˋ ㄗㄣˇㄧㄤˋ ㄉㄜ˙ ㄐㄩˊㄇㄧㄢˋ, ㄉㄡˉ ㄏㄨㄟˋ ㄌㄨˋㄔㄨˉ ㄔㄣˊㄐㄧㄣˋ ㄉㄜ˙ ㄒㄧㄠˋㄖㄨㄥˊ, ㄧˇ ㄘㄨㄥˊㄖㄨㄥˊㄅㄨˋㄆㄛˋ ㄉㄜ˙ ㄊㄞˋㄉㄨˋ, ㄘㄠˉㄔˊ ㄓㄜ˙ ㄕㄣˇㄌㄧˇ ㄐㄧㄚˉ ㄉㄚˋㄉㄚˋㄒㄧㄠˇㄒㄧㄠˇ ㄉㄜ˙ ㄕˋㄨˋ。
|
| 93 |
+
./custom_character_voice/linghua/processed_94.wav|ㄍㄢˇㄑㄧㄥˊ ㄕˋ ㄨㄢˊㄇㄟˇ ㄉㄜ˙ ㄏㄨㄚˋㄕㄣˉ ㄧㄝˇ ㄅㄨˋ ㄨㄟˋㄍㄨㄛˋ。
|
| 94 |
+
./custom_character_voice/linghua/processed_95.wav|ㄉㄢˋ ㄗˋㄘㄨㄥˊ ㄊㄚˉ ㄌㄧˊㄕˋ ㄉㄜ˙ ㄋㄚˋ ㄧˉㄎㄜˋㄑㄧˇ, ㄨㄛˇ ㄐㄧㄡˋ ㄕㄣˉㄑㄧㄝˋ ㄉㄧˋ ㄧˋㄕˊ ㄉㄠˋ, ㄨㄛˇ ㄧˇㄐㄧㄥˉ ㄅㄨˊㄕˋ ㄋㄚˋㄍㄜˋ ㄎㄜˇㄧˇ ㄉㄨㄛˇ ㄗㄞˋ ㄇㄨˇㄑㄧㄣˉ ㄕㄣˉㄏㄡˋ ㄉㄜ˙ ㄒㄧㄠˇㄌㄧㄥˊㄏㄨㄚˉ ㄌㄜ˙。
|
| 95 |
+
./custom_character_voice/linghua/processed_96.wav|ㄩㄢˊㄌㄞˊ ㄧㄠˋㄕㄨㄛˉ ㄉㄜ˙ㄏㄨㄚˋ, ㄎㄜˇㄋㄥˊ ㄅㄨˋㄊㄞˋ ㄈㄨˊㄏㄜˊ ㄉㄠˋㄑㄧㄝˋ ㄇㄨˋㄈㄨˇ ㄕㄜˋ ㄈㄥˉㄒㄧㄥˊ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄕㄣˉㄈㄣˋ。
|
| 96 |
+
./custom_character_voice/linghua/processed_97.wav|ㄅㄨˋㄍㄨㄛˋ, ㄐㄧㄡˋ ㄨㄛˇ ㄉㄜ˙ ㄆㄢˋㄉㄨㄢˋ, ㄋㄧˇ ㄧㄥˉㄍㄞˉ ㄋㄥˊ ㄖㄨㄥˊㄒㄩˇ ㄨㄛˇ ㄒㄧㄠˇㄒㄧㄠˇㄉㄜ˙ ㄖㄣˋㄒㄧㄥˋ ㄅㄚ˙。
|
| 97 |
+
./custom_character_voice/linghua/processed_98.wav|ㄕㄠˉㄨㄟˉ ㄧㄡˇㄉㄧㄢˇㄌㄟˋ ㄌㄜ˙ ㄎㄜˇㄧˇ ㄖㄤˋ ㄨㄛˇ ㄎㄠˋ ㄧˉㄒㄧㄚˋ ㄋㄧˇ ㄉㄜ˙ ㄐㄧㄢˉㄅㄤˇ ㄇㄚ˙?
|
| 98 |
+
./custom_character_voice/linghua/processed_99.wav|ㄐㄧㄡˋㄐㄧㄡˋ。
|
| 99 |
+
./custom_character_voice/linghua/processed_100.wav|ㄨㄛˇ ㄉㄡˉ ㄏㄣˇ ㄒㄧˇㄏㄨㄢˉ ㄧㄚˇㄩㄝˋ ㄕˉㄘˊ ㄑㄧˊㄧˋ ㄩˇ ㄨˇㄉㄠˇ ㄋㄧˇ ㄧㄝˇ ㄍㄢˇㄒㄧㄥˋㄑㄩˋ ㄇㄚ˙?
|
| 100 |
+
./custom_character_voice/linghua/processed_102.wav|…… ㄕˋ ㄚ˙, ㄓˇㄧㄠˋ ㄕㄥˉㄏㄨㄛˊ ㄗㄞˋ ㄓㄜˋㄍㄜˋ ㄕˋㄐㄧㄝˋ ㄕㄤˋ, ㄐㄧㄡˋ ㄋㄢˊㄇㄧㄢˇ ㄩˋㄉㄠˋ ㄓㄨㄥˇㄓㄨㄥˇ ㄅㄨˋㄖㄨˊㄧˋ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ。
|
| 101 |
+
./custom_character_voice/linghua/processed_103.wav|ㄉㄢˋ ㄖㄨˊㄍㄨㄛˇ ㄕˋ ㄧㄣˉㄨㄟˋ ㄗˋㄐㄧˇ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ, ㄐㄧㄡˋ ㄖㄤˋ ㄓㄡˉㄗㄠˉ ㄉㄜ˙ ㄖㄣˊ ㄉㄢˉㄒㄧㄣˉ ㄉㄜ�� ㄏㄨㄚˋ……
|
| 102 |
+
./custom_character_voice/linghua/processed_104.wav|ㄍㄨㄛˇㄖㄢˊ, ㄨㄛˇ ㄏㄞˊㄕˋ ㄅㄨˋㄋㄥˊ ㄕㄨㄛˉ。
|
| 103 |
+
./custom_character_voice/linghua/processed_105.wav|ㄋㄢˊㄕㄨㄞˋ, ㄓㄣˉㄉㄜ˙ ㄕˋ ㄧˉㄐㄧㄢˋ ㄏㄣˇㄋㄢˊ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ。
|
| 104 |
+
./custom_character_voice/linghua/processed_106.wav|ㄨㄛˇ ㄅㄧˋㄒㄩˉ ㄅㄨˋㄉㄨㄢˋ ㄍㄠˋㄐㄧㄝˋ ㄗˋㄐㄧˇ ㄕˋ ㄕㄣˊㄌㄧˋ ㄐㄧㄚˉ ㄉㄜ˙ ㄉㄚˋ ㄒㄧㄠˇㄐㄧㄝˇ ㄗㄞˋ ㄨˊㄕㄨˋㄕㄨㄤˉ ㄧㄢˇㄐㄧㄥˉ, ㄨˊㄕㄨˋ ㄖㄣˊ ㄉㄜ˙ ㄑㄧˉㄆㄢˋ ㄓˉㄒㄧㄚˋ ㄅㄞˇ ㄔㄨˉ ㄨㄢˊㄇㄟˇㄨˊㄑㄩㄝˉ ㄉㄜ˙ ㄗˉㄊㄞˋ。
|
| 105 |
+
./custom_character_voice/linghua/processed_107.wav|ㄓㄜˋㄧㄤˋ ㄉㄜ˙ ㄨㄛˇ, ㄕˋㄈㄡˇ ㄧㄝˇ ㄍㄞˉ ㄓㄨㄟˉㄑㄧㄡˊ ㄗˋㄐㄧˇ ㄉㄜ˙ ㄩㄢˋㄨㄤˋ ㄋㄜ˙?
|
| 106 |
+
./custom_character_voice/linghua/processed_108.wav|ㄕˋㄈㄡˇ ㄧㄝˇ ㄍㄞˉ… ㄖㄤˋ ㄋㄧˇ ㄌㄧˇㄐㄧㄝˇ ㄨㄛˇ ㄉㄜ˙ ㄒㄧㄣˉㄧˋ ㄋㄜ˙?
|
| 107 |
+
./custom_character_voice/linghua/processed_109.wav|ㄨㄛˇ ㄉㄨㄟˋ ㄧˋㄍㄨㄛˊ ㄌㄧㄠˋㄌㄧˇ ㄏㄣˇ ㄧㄡˇ ㄒㄧㄥˋㄑㄩˋ, ㄙㄨㄟˉㄖㄢˊ ㄏㄣˇㄕㄠˇ ㄧㄡˇ ㄔㄤˊㄕˋ ㄉㄜ˙ ㄐㄧˉㄏㄨㄟˋ。
|
| 108 |
+
./custom_character_voice/linghua/processed_110.wav|ㄖㄨˊㄍㄨㄛˇ ㄕˋ ㄧㄠˋ ㄐㄩˊㄒㄧㄢˋ ㄗㄞˋ ㄉㄠˋㄑㄧˉ ㄌㄧㄠˋㄌㄧˇ ㄋㄟˋ ㄉㄜ˙ ㄏㄨㄚˋ, ㄧㄥˉㄍㄞˉ ㄕˋ ㄔㄚˊ ㄆㄠˋ ㄈㄢˋ ㄅㄚ˙。
|
| 109 |
+
./custom_character_voice/linghua/processed_111.wav|ㄅㄨˋㄋㄥˊ ㄍㄟˇ ㄧˋㄅㄢˉ ㄎㄜˋㄖㄣˊ ㄎㄢˋㄐㄧㄢˋ。
|
| 110 |
+
./custom_character_voice/linghua/processed_112.wav|ㄨㄛˇ ㄧㄝˇ ㄕˋ ㄊㄡˉㄊㄡˉ ㄍㄠˋㄙㄨˋ ㄋㄧˇ ㄉㄜ˙。
|
| 111 |
+
./custom_character_voice/linghua/processed_113.wav|ㄙㄨㄟˉㄖㄢˊ ㄅㄨˊㄕˋ ㄅㄨˋㄋㄥˊ ㄔˉ, ㄉㄢˋ ㄨㄛˇ ㄉㄨㄟˋ ㄉㄨㄥˋㄨˋ ㄓˉㄈㄤˊ ㄏㄨㄛˋ ㄋㄟˋㄗㄤˋ… ㄉㄚˋㄍㄞˋ ㄏㄨㄟˋ ㄧㄡˇㄉㄧㄢˇ…
|
| 112 |
+
./custom_character_voice/linghua/processed_114.wav|ㄑㄧㄥˇ ㄙㄨㄟˊ ㄨㄛˇ ㄌㄞˊ, ㄓˇㄧㄠˋ ㄗㄡˇ ㄧˉㄒㄧㄠˇ ㄉㄨㄢˋㄌㄨˋ, ㄅㄨˊㄏㄨㄟˋ ㄉㄢˉㄍㄜˉ ㄋㄧˇ ㄊㄞˋ ㄓㄤˇㄕˊㄐㄧㄢˉ ㄉㄜ˙。
|
| 113 |
+
./custom_character_voice/linghua/processed_115.wav|ㄉㄚˇㄊㄧㄥˉ ㄉㄠˋ ㄋㄧˇ ㄉㄜ˙ ㄕㄥˉㄖˋ ㄓˉㄏㄡˋ, ㄨㄛˇ ㄐㄧㄡˋ ㄊㄧˊㄑㄧㄢˊ ㄌㄜ˙ ㄧˉㄉㄨㄢˋㄕˊㄐㄧㄢˉ ㄎㄞˉㄕˇ ㄔㄡˊㄅㄟˋ。
|
| 114 |
+
./custom_character_voice/linghua/processed_116.wav|ㄅㄧˇㄑㄧˇ ㄇㄧㄥˊㄍㄨㄟˋ ㄉㄜ˙ ㄌㄧˇㄨˋ ㄨㄛˇ ㄨㄤˋㄗˋ ㄘㄞˉㄘㄜˋ ㄏㄨㄛˋㄒㄩˇ ㄓㄜˋㄧㄤˋ ㄉㄜ˙ ㄌㄧˇㄨˋ ㄏㄨㄟˋ ㄍㄥˋㄏㄜˊ ㄨㄛˇㄇㄣ˙ ㄉㄜ˙ ㄑㄧㄥˊㄧˋ?
|
| 115 |
+
./custom_character_voice/linghua/processed_117.wav|ㄘˇㄘˋ, ㄐㄧㄡˋ ㄑㄧㄥˇ ㄖㄤˋ ㄨㄛˇ ㄧˇㄕㄢˋ ㄨˊㄨㄟˋㄌㄧˇ ㄅㄚ˙。
|
| 116 |
+
./custom_character_voice/linghua/processed_118.wav|ㄕˉㄌㄧˇ ㄌㄜ˙。
|
| 117 |
+
./custom_character_voice/linghua/processed_119.wav|ㄍㄢˇㄒㄧㄝˋ, ㄩˇ ㄋㄧˇ ㄑㄧㄝˉㄘㄨㄛˉ ㄕˇ ㄨㄛˇ ㄕㄡˉㄧˋ ㄌㄧㄤˊㄉㄨㄛˉ, ㄒㄧㄤˉㄒㄧㄣˋ ㄗㄞˋ ㄐㄧㄢˋㄕㄨˋ ㄕㄤˋ ㄧㄝˇ ㄋㄥˊ ㄍㄥˋ ㄐㄧㄣˋ ㄧˉㄅㄨˋ。
|
| 118 |
+
./custom_character_voice/linghua/processed_120.wav|ㄉㄨㄛˉㄎㄨㄟˉ ㄋㄧˇ ㄉㄜ˙ ㄉㄧㄢˇㄅㄛˉ。
|
| 119 |
+
./custom_character_voice/linghua/processed_121.wav|ㄨㄛˇ ㄉㄨㄟˋ ㄗˋㄐㄧˇ ㄉㄜ˙ ㄋㄥˊㄌㄧˋ ㄧㄝˇ ㄌㄧˇㄐㄧㄝˇ ㄉㄜˊ ㄍㄥˋ ㄊㄡˋㄔㄜˋ ㄌㄜ˙。
|
| 120 |
+
./custom_character_voice/linghua/processed_122.wav|ㄍㄥˋㄐㄧㄚˉ ㄧㄡˊㄖㄣˋㄧㄡˇㄩˊ ㄌㄜ˙。
|
| 121 |
+
./custom_character_voice/linghua/processed_123.wav|ㄕㄡˉ ㄈㄥˋㄒㄧㄥˊ ㄕˋㄨˋ ㄓˉㄩˊ, ㄕㄣˋㄓˋ ㄧㄡˇㄎㄨㄥˋ ㄔㄤˊㄕˋ ㄧˉㄒㄧㄝˉ ㄒㄧㄣˉ ㄉㄜ˙ ㄕˋㄑㄧㄥˊ。
|
| 122 |
+
./custom_character_voice/linghua/processed_124.wav|ㄒㄧㄤˇㄧㄠˋ ㄌㄞˊ ㄕˋㄕˋ ㄗˋㄐㄧˇ ㄒㄩㄝˊㄗㄨㄛˋ ㄉㄜ˙ ㄉㄧㄢˇㄒㄧㄣˉ ㄇㄚ˙?
|
| 123 |
+
./custom_character_voice/linghua/processed_125.wav|ㄒㄧㄣˉ ㄧㄡˇㄙㄨㄛˇㄙˉ, ㄙˉㄕˋ ㄖㄨˊㄆㄢˋ。
|
| 124 |
+
./custom_character_voice/linghua/processed_126.wav|ㄊㄨˊㄌㄧㄠˋ ㄈㄨˊㄕˋ ㄕˋ, ㄌㄧㄡˊㄓㄨˋ ㄋㄢˊ。
|
| 125 |
+
./custom_character_voice/linghua/processed_127.wav|ㄅㄠˋㄑㄧㄢˋ, ㄇㄧㄥˊㄇㄧㄥˊ ㄕˋ ㄓˊㄉㄜ˙ ㄍㄠˉㄒㄧㄥˋ ㄉㄜ˙ ㄕˊㄏㄡˋ, ㄨㄛˇ ㄑㄩㄝˋ ㄒㄧㄤˇㄑㄧˇ ㄌㄜ˙ ㄋㄚˋㄇㄜ˙ ㄅㄟˉㄕㄤˉ ㄉㄜ˙ ㄕˊㄎㄜˋ……
|
| 126 |
+
./custom_character_voice/linghua/processed_128.wav|ㄒㄧㄤˉㄔㄨˋ ㄉㄜ˙ ㄕˊㄐㄧㄢˉㄍㄨㄛˋ ㄩˊ ㄔㄤˋㄏㄨㄢˇ ㄐㄧㄥˋㄖㄢˊ ㄖㄤˋ ㄨㄛˇ ㄏㄞˋㄆㄚˋ ㄗㄞˋㄘˋ ㄕˉㄑㄩˋ。
|
| 127 |
+
./custom_character_voice/linghua/processed_129.wav|ㄕˉ… ㄕˉㄊㄞˋ ㄌㄜ˙ ㄧㄚ˙。
|
| 128 |
+
./custom_character_voice/linghua/processed_130.wav|ㄅㄧˇㄨˇ ㄅㄚ˙ ㄕˉㄌㄧˇ ㄌㄜ˙。
|
| 129 |
+
./custom_character_voice/linghua/processed_132.wav|ㄕㄣˊㄌㄧˇㄌㄧㄡˊ ㄕㄨㄤˉㄇㄧㄝˋ。
|
| 130 |
+
./custom_character_voice/linghua/processed_133.wav|ㄓㄜˋ ㄇㄧˋ ㄑㄧˊ, ㄧㄝˇ ㄙㄨㄢˋ ㄉㄜˊ ㄧˉㄓㄨㄥˇ ㄧㄚˇㄑㄩˋ。
|
| 131 |
+
./custom_character_voice/linghua/processed_134.wav|ㄐㄧㄣˉㄖˋ ㄩㄣˋㄕˋ ㄅㄨˋㄘㄨㄛˋ, ㄨㄛˇㄏㄨㄟˋ ㄓㄣˉㄒㄧˉ ㄓㄜˋ ㄧˉㄈㄣˋ ㄒㄧㄥˋㄩㄣˋ, ㄅㄨˋㄖㄨㄥˊ ㄒㄧㄠˇㄑㄩˋ ㄋㄜ˙。
|
| 132 |
+
./custom_character_voice/linghua/processed_135.wav|ㄨㄛˇ ㄉㄜ˙ ㄉㄨㄟˋㄕㄡˇ, ㄍㄞˉ ㄐㄩㄝˊㄉㄨㄢˋ ㄌㄜ˙。
|
| 133 |
+
./custom_character_voice/linghua/processed_136.wav|ㄕˉㄊㄞˋ ㄌㄜ˙ ㄨㄛˇ ㄏㄞˊㄧㄡˇ ㄨㄟˋㄐㄧㄣˇ ㄓˉㄕˋ ㄖㄤˋ ㄐㄧㄚˉㄗㄨˊ ㄇㄥˊㄒㄧㄡˉ ㄌㄜ˙。
|
| 134 |
+
./custom_character_voice/linghua/processed_137.wav|ㄉㄜ˙ ㄐㄧㄚˉㄏㄨㄛ˙… ㄗㄣˇㄇㄜ˙ ㄏㄨㄟˋ…
|
| 135 |
+
./custom_character_voice/linghua/processed_138.wav|ㄕㄣˊㄌㄧˇㄌㄧㄥˊㄏㄨㄚˊ。
|
| 136 |
+
./custom_character_voice/linghua/processed_140.wav|ㄑㄧㄥˇ ㄘˋㄐㄧㄠˋ。
|
| 137 |
+
./custom_character_voice/linghua/processed_141.wav|ㄑㄧㄥˇ ㄉㄨㄛˉ ㄍㄨㄢˉㄓㄠˋ。
|
filelists/short_character_anno.list
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
./custom_character_voice/linghua/processed_0.wav|0|稻妻神里流太刀术皆传神里绫华参上
|
| 2 |
+
./custom_character_voice/linghua/processed_1.wav|0|請多指教啊
|
| 3 |
+
./custom_character_voice/linghua/processed_2.wav|0|這樣悠閒安穩的時光,如果再多一點就好了。
|
| 4 |
+
./custom_character_voice/linghua/processed_3.wav|0|我真貪心啊
|
| 5 |
+
./custom_character_voice/linghua/processed_4.wav|0|就和茶一样,细细品味,才能理解其中风雅。
|
| 6 |
+
./custom_character_voice/linghua/processed_5.wav|0|都是旅行者平日里的生活吗?
|
| 7 |
+
./custom_character_voice/linghua/processed_6.wav|0|感覺又多瞭解了你一些。
|
| 8 |
+
./custom_character_voice/linghua/processed_7.wav|0|剑抱业名工懷寶
|
| 9 |
+
./custom_character_voice/linghua/processed_8.wav|0|随我一同避雨吧
|
| 10 |
+
./custom_character_voice/linghua/processed_9.wav|0|所大人,是在訴說什麼嗎?
|
| 11 |
+
./custom_character_voice/linghua/processed_10.wav|0|寂银妆素,桔高映琼枝。
|
| 12 |
+
./custom_character_voice/linghua/processed_11.wav|0|嗯……美景当前,只差一壶茶与之相衬呢。
|
| 13 |
+
./custom_character_voice/linghua/processed_12.wav|0|要去哪邊走走嗎?
|
| 14 |
+
./custom_character_voice/linghua/processed_13.wav|0|眼睛,向著風吹來的方向
|
| 15 |
+
./custom_character_voice/linghua/processed_14.wav|0|哎呀,很舒服吧
|
| 16 |
+
./custom_character_voice/linghua/processed_15.wav|0|旅行者
|
| 17 |
+
./custom_character_voice/linghua/processed_16.wav|0|這樣在清晨見你一面,我會忍不住覺得,接下來將是順利的一天。
|
| 18 |
+
./custom_character_voice/linghua/processed_18.wav|0|茶饭之后,难免略有困倦是否有兴致下盘棋提神呢?
|
| 19 |
+
./custom_character_voice/linghua/processed_20.wav|0|会是一个良宵呢
|
| 20 |
+
./custom_character_voice/linghua/processed_21.wav|0|知是梦 何须醒
|
| 21 |
+
./custom_character_voice/linghua/processed_22.wav|0|不比真如,一相會。
|
| 22 |
+
./custom_character_voice/linghua/processed_23.wav|0|稻妻幕府社奉行神里家,位於稻妻名門中的筆頭之格位。
|
| 23 |
+
./custom_character_voice/linghua/processed_24.wav|0|作为三奉行之一,掌管祭祀活动与人文艺术
|
| 24 |
+
./custom_character_voice/linghua/processed_25.wav|0|双亲过世之后,族内的大小事务便由兄长和我承担了。
|
| 25 |
+
./custom_character_voice/linghua/processed_26.wav|0|很多人因為我是白鷺公主,是社奉行神里家的大小姐,而敬重我。
|
| 26 |
+
./custom_character_voice/linghua/processed_27.wav|0|他们所敬重的,只是我所身处的地位,与绫华我是怎样的人并无关系。
|
| 27 |
+
./custom_character_voice/linghua/processed_28.wav|0|我想,能真正走进我的,或许只有,如今的我
|
| 28 |
+
./custom_character_voice/linghua/processed_29.wav|0|依舊想成為值得大家信任的人
|
| 29 |
+
./custom_character_voice/linghua/processed_30.wav|0|鼓舞我的原因,已不再是肩上的责任,或他人的期待。
|
| 30 |
+
./custom_character_voice/linghua/processed_31.wav|0|是因為……你也是這樣的人啊
|
| 31 |
+
./custom_character_voice/linghua/processed_32.wav|0|如果您有空,我們一步暮露茶室如何?
|
| 32 |
+
./custom_character_voice/linghua/processed_33.wav|0|在这样恬静的日子,略加交流茶艺心得,想来是颇具雅趣的。
|
| 33 |
+
./custom_character_voice/linghua/processed_34.wav|0|如果有机会的话,我想试着和你共度异国的节日。
|
| 34 |
+
./custom_character_voice/linghua/processed_35.wav|0|遵循的当地风俗、礼仪规范,还有伴手礼的推荐
|
| 35 |
+
./custom_character_voice/linghua/processed_36.wav|0|可以麻烦你…一一指导我吗?
|
| 36 |
+
./custom_character_voice/linghua/processed_37.wav|0|神之眼,即是胸怀大志之人所获的应兽
|
| 37 |
+
./custom_character_voice/linghua/processed_38.wav|0|如果问我有什么志向的话
|
| 38 |
+
./custom_character_voice/linghua/processed_39.wav|0|这个还是保密吧
|
| 39 |
+
./custom_character_voice/linghua/processed_40.wav|0|只是一个微不足道的梦想罢了
|
| 40 |
+
./custom_character_voice/linghua/processed_41.wav|0|常说 蝉茶一味
|
| 41 |
+
./custom_character_voice/linghua/processed_42.wav|0|剑禅亦如
|
| 42 |
+
./custom_character_voice/linghua/processed_43.wav|0|那么剑和茶,又是什么关系呢?
|
| 43 |
+
./custom_character_voice/linghua/processed_44.wav|0|你在城中,見過枯萎的櫻花樹嗎?
|
| 44 |
+
./custom_character_voice/linghua/processed_45.wav|0|枯枝美 讓我想到春天盛開之景
|
| 45 |
+
./custom_character_voice/linghua/processed_46.wav|0|不过,别人似乎并不这么想
|
| 46 |
+
./custom_character_voice/linghua/processed_47.wav|0|開花的音數會被移走
|
| 47 |
+
./custom_character_voice/linghua/processed_48.wav|0|就算一次也好,真想看到它再次開放。
|
| 48 |
+
./custom_character_voice/linghua/processed_49.wav|0|是我很重要的朋友
|
| 49 |
+
./custom_character_voice/linghua/processed_50.wav|0|天冷和阳光,总是感染着我
|
| 50 |
+
./custom_character_voice/linghua/processed_51.wav|0|意义上来说,他就像是我的另一个兄长一样。
|
| 51 |
+
./custom_character_voice/linghua/processed_52.wav|0|成為了神力家的一員
|
| 52 |
+
./custom_character_voice/linghua/processed_53.wav|0|领奉行工作的九条沙罗,他总是一脸严肃
|
| 53 |
+
./custom_character_voice/linghua/processed_54.wav|0|她曾经起过几次争端
|
| 54 |
+
./custom_character_voice/linghua/processed_55.wav|0|���本质是忠义之士,这点无可否认
|
| 55 |
+
./custom_character_voice/linghua/processed_56.wav|0|苏冶岳先生
|
| 56 |
+
./custom_character_voice/linghua/processed_57.wav|0|她和九条小姐一样,是天领奉行的人。
|
| 57 |
+
./custom_character_voice/linghua/processed_58.wav|0|她……也是一个很有原则的人。
|
| 58 |
+
./custom_character_voice/linghua/processed_59.wav|0|这些原则的坚持,甚至比九条小姐更执着。
|
| 59 |
+
./custom_character_voice/linghua/processed_60.wav|0|不过,什么事应该被算在这些原则之内……我想,或许只有路也愿先生自己知道吧。
|
| 60 |
+
./custom_character_voice/linghua/processed_61.wav|0|小幼稚孩子,最近有沒有給你添什麼麻煩呢?
|
| 61 |
+
./custom_character_voice/linghua/processed_62.wav|0|如果看見他偷懶,可以直接告訴我。
|
| 62 |
+
./custom_character_voice/linghua/processed_63.wav|0|理所當然的看法嗎?
|
| 63 |
+
./custom_character_voice/linghua/processed_64.wav|0|不該由我等下屬隨意議論
|
| 64 |
+
./custom_character_voice/linghua/processed_65.wav|0|哼,將軍大人他在追求永恆之路上,可能也很孤獨吧。
|
| 65 |
+
./custom_character_voice/linghua/processed_66.wav|0|一刀,并且活了下来。该说是堪称伟业的经历了吧。
|
| 66 |
+
./custom_character_voice/linghua/processed_67.wav|0|虽然对我来说,她是真正的神明
|
| 67 |
+
./custom_character_voice/linghua/processed_68.wav|0|可以更改到期的命运
|
| 68 |
+
./custom_character_voice/linghua/processed_69.wav|0|但是如果是和你起了冲突的话,我一定会站在你这一边的。
|
| 69 |
+
./custom_character_voice/linghua/processed_70.wav|0|八重公司大人的合作向来很愉快
|
| 70 |
+
./custom_character_voice/linghua/processed_71.wav|0|看,操辦節慶慶典非常勞神費力,營收多半也不好看。
|
| 71 |
+
./custom_character_voice/linghua/processed_72.wav|0|八重公司大人操办的产业,真的既风雅又有收成。
|
| 72 |
+
./custom_character_voice/linghua/processed_73.wav|0|作為神力家的家主,兄長平日需要出面諸多場合。
|
| 73 |
+
./custom_character_voice/linghua/processed_74.wav|0|我雖盡力分擔兄長肩上所負擔的責任,卻也無法緩和他常年積壓在身的疲倦。
|
| 74 |
+
./custom_character_voice/linghua/processed_75.wav|0|我也是当时为了妹妹着想,希望你能劝言,让兄长多多注意身体啊。
|
| 75 |
+
./custom_character_voice/linghua/processed_76.wav|0|節慶慶典是聖奉行和巫女中的責任
|
| 76 |
+
./custom_character_voice/linghua/processed_77.wav|0|作為煙火專家,也的確能讓氣氛熱烈起來。
|
| 77 |
+
./custom_character_voice/linghua/processed_78.wav|0|合作多了,因而漸漸熟絡
|
| 78 |
+
./custom_character_voice/linghua/processed_79.wav|0|治安和消防問題嗎?我們也會一併納入預先規劃的
|
| 79 |
+
./custom_character_voice/linghua/processed_80.wav|0|這些原因而看不到櫻花,才會讓人們心中留下缺憾吧。
|
| 80 |
+
./custom_character_voice/linghua/processed_81.wav|0|你的请求,对我来说很特别呢既然把你当作朋友,我也应坦诚以待
|
| 81 |
+
./custom_character_voice/linghua/processed_82.wav|0|不过,事关神里家的秘密,还希望你能守口如瓶。
|
| 82 |
+
./custom_character_voice/linghua/processed_83.wav|0|神力嘉因為沒能保護好國寶級別的刀功,遭受了不小的衝擊。
|
| 83 |
+
./custom_character_voice/linghua/processed_84.wav|0|别人中阴谋算计我们折损了诸多臣下受到许多责罚
|
| 84 |
+
./custom_character_voice/linghua/processed_85.wav|0|甚至因之早衰神力家在幕府中的地位也一落千丈
|
| 85 |
+
./custom_character_voice/linghua/processed_86.wav|0|好在兄長繼任後力挽狂瀾
|
| 86 |
+
./custom_character_voice/linghua/processed_87.wav|0|家門雖已復興,射風醒一夕也上下其心,但大事要事方面仍靠兄長定奪。
|
| 87 |
+
./custom_character_voice/linghua/processed_88.wav|0|他们所传的断刀之术,也因星象、用途、旷植、炉火环境、人之性格、元素变化的不同而有所区分
|
| 88 |
+
./custom_character_voice/linghua/processed_89.wav|0|是刀弓之间所说的雷电五川
|
| 89 |
+
./custom_character_voice/linghua/processed_90.wav|0|藏明刀的刀工,也被算作是本領通神的神士相關人員,歸屬統籌文化、藝術、祭祀的射鳳形意派管理。
|
| 90 |
+
./custom_character_voice/linghua/processed_91.wav|0|出現了刀工背叛的事情,自然就是神里家的獨辦不力了。
|
| 91 |
+
./custom_character_voice/linghua/processed_92.wav|0|對我來說,母親是意義非凡的存在。
|
| 92 |
+
./custom_character_voice/linghua/processed_93.wav|0|服装,优雅,无论遇到怎样的局面,都会露出沉浸的笑容,以从容不迫的态度,操持着审理家大大小小的事物。
|
| 93 |
+
./custom_character_voice/linghua/processed_94.wav|0|感情是完美的化身也不為過
|
| 94 |
+
./custom_character_voice/linghua/processed_95.wav|0|但自从她离世的那一刻起,我就深切地意识到,我已经不是那个可以躲在母亲身后的小灵花了。
|
| 95 |
+
./custom_character_voice/linghua/processed_96.wav|0|原来要说的话,可能不太符合盗窃幕府射风行神力家的身份
|
| 96 |
+
./custom_character_voice/linghua/processed_97.wav|0|不过,就我的判断,你应该能容许我小小的任性吧
|
| 97 |
+
./custom_character_voice/linghua/processed_98.wav|0|稍微有点累了可以让我靠一���你的肩膀吗?
|
| 98 |
+
./custom_character_voice/linghua/processed_99.wav|0|舅舅
|
| 99 |
+
./custom_character_voice/linghua/processed_100.wav|0|我都很喜欢雅乐诗词棋艺与舞蹈你也感兴趣吗?
|
| 100 |
+
./custom_character_voice/linghua/processed_102.wav|0|……是啊,只要生活在這個世界上,就難免遇到種種不如意的事情。
|
| 101 |
+
./custom_character_voice/linghua/processed_103.wav|0|但如果是因為自己的事情,就讓周遭的人擔心的話……
|
| 102 |
+
./custom_character_voice/linghua/processed_104.wav|0|果然,我還是不能說。
|
| 103 |
+
./custom_character_voice/linghua/processed_105.wav|0|男帅,真的是一件很难的事情
|
| 104 |
+
./custom_character_voice/linghua/processed_106.wav|0|我必须不断告诫自己是神力家的大小姐在无数双眼睛、无数人的期盼之下摆出完美无缺的姿态
|
| 105 |
+
./custom_character_voice/linghua/processed_107.wav|0|这样的我,是否也该追求自己的愿望呢?
|
| 106 |
+
./custom_character_voice/linghua/processed_108.wav|0|是否也該…讓你理解我的心意呢?
|
| 107 |
+
./custom_character_voice/linghua/processed_109.wav|0|我对异国料理很有兴趣,虽然很少有尝试的机会。
|
| 108 |
+
./custom_character_voice/linghua/processed_110.wav|0|如果是要局限在稻妻料理內的話,應該是茶泡飯吧。
|
| 109 |
+
./custom_character_voice/linghua/processed_111.wav|0|不能給一般客人看見
|
| 110 |
+
./custom_character_voice/linghua/processed_112.wav|0|我也是偷偷告訴你的
|
| 111 |
+
./custom_character_voice/linghua/processed_113.wav|0|虽然不是不能吃,但我对动物脂肪或内脏…大概会有点…
|
| 112 |
+
./custom_character_voice/linghua/processed_114.wav|0|请随我来,只要走一小段路,不会耽搁你太长时间的。
|
| 113 |
+
./custom_character_voice/linghua/processed_115.wav|0|打听到你的生日之后,我就提前了一段时间开始筹备。
|
| 114 |
+
./custom_character_voice/linghua/processed_116.wav|0|比起名贵的礼物我妄自猜测或许这样的礼物会更合我们的情意?
|
| 115 |
+
./custom_character_voice/linghua/processed_117.wav|0|此次,就請讓我以善無為禮吧。
|
| 116 |
+
./custom_character_voice/linghua/processed_118.wav|0|失禮了
|
| 117 |
+
./custom_character_voice/linghua/processed_119.wav|0|感謝,與你切磋使我收益良多,相信在劍術上也能更進一步。
|
| 118 |
+
./custom_character_voice/linghua/processed_120.wav|0|多亏你的点播
|
| 119 |
+
./custom_character_voice/linghua/processed_121.wav|0|我對自己的能力也理解得更透徹了。
|
| 120 |
+
./custom_character_voice/linghua/processed_122.wav|0|更加游刃有余了
|
| 121 |
+
./custom_character_voice/linghua/processed_123.wav|0|收奉行事物之餘,甚至有空嘗試一些新的事情。
|
| 122 |
+
./custom_character_voice/linghua/processed_124.wav|0|想要來試試自己學做的點心嗎?
|
| 123 |
+
./custom_character_voice/linghua/processed_125.wav|0|心有所思,思事如盼。
|
| 124 |
+
./custom_character_voice/linghua/processed_126.wav|0|塗料服侍世,留住難。
|
| 125 |
+
./custom_character_voice/linghua/processed_127.wav|0|抱歉,明明是值得高兴的时候,我却想起了那么悲伤的时刻……
|
| 126 |
+
./custom_character_voice/linghua/processed_128.wav|0|相處的時間過於暢緩竟然讓我害怕再次失去
|
| 127 |
+
./custom_character_voice/linghua/processed_129.wav|0|失…失態了呀
|
| 128 |
+
./custom_character_voice/linghua/processed_130.wav|0|比武吧失禮了
|
| 129 |
+
./custom_character_voice/linghua/processed_132.wav|0|神里流 霜灭
|
| 130 |
+
./custom_character_voice/linghua/processed_133.wav|0|這祕奇,也算得一種雅趣
|
| 131 |
+
./custom_character_voice/linghua/processed_134.wav|0|今日运势不错,我会珍惜这一份幸运,不容小觑呢。
|
| 132 |
+
./custom_character_voice/linghua/processed_135.wav|0|我的对手,该决断了
|
| 133 |
+
./custom_character_voice/linghua/processed_136.wav|0|失态了我还有未尽之事让家族蒙羞了
|
| 134 |
+
./custom_character_voice/linghua/processed_137.wav|0|的家伙…怎么会…
|
| 135 |
+
./custom_character_voice/linghua/processed_138.wav|0|神里绫华
|
| 136 |
+
./custom_character_voice/linghua/processed_140.wav|0|请赐教
|
| 137 |
+
./custom_character_voice/linghua/processed_141.wav|0|請多關照
|
infer_onnx.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import onnxruntime
|
| 3 |
+
import numpy as np
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
+
import commons
|
| 7 |
+
import utils
|
| 8 |
+
from text import text_to_sequence
|
| 9 |
+
|
| 10 |
+
from scipy.io.wavfile import write
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_text(text, hps):
|
| 14 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
| 15 |
+
if hps.data.add_blank:
|
| 16 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 17 |
+
text_norm = torch.LongTensor(text_norm)
|
| 18 |
+
return text_norm
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def main() -> None:
|
| 22 |
+
parser = argparse.ArgumentParser()
|
| 23 |
+
parser.add_argument("--model", required=True, help="Path to model (.onnx)")
|
| 24 |
+
parser.add_argument(
|
| 25 |
+
"--config-path", required=True, help="Path to model config (.json)"
|
| 26 |
+
)
|
| 27 |
+
parser.add_argument(
|
| 28 |
+
"--output-wav-path", required=True, help="Path to write WAV file"
|
| 29 |
+
)
|
| 30 |
+
parser.add_argument("--text", required=True, type=str, help="Text to synthesize")
|
| 31 |
+
args = parser.parse_args()
|
| 32 |
+
|
| 33 |
+
sess_options = onnxruntime.SessionOptions()
|
| 34 |
+
model = onnxruntime.InferenceSession(str(args.model), sess_options=sess_options)
|
| 35 |
+
|
| 36 |
+
hps = utils.get_hparams_from_file(args.config_path)
|
| 37 |
+
|
| 38 |
+
phoneme_ids = get_text(args.text, hps)
|
| 39 |
+
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
|
| 40 |
+
text_lengths = np.array([text.shape[1]], dtype=np.int64)
|
| 41 |
+
scales = np.array([0.667, 1.0, 0.8], dtype=np.float32)
|
| 42 |
+
sid = None
|
| 43 |
+
|
| 44 |
+
audio = model.run(
|
| 45 |
+
None,
|
| 46 |
+
{
|
| 47 |
+
"input": text,
|
| 48 |
+
"input_lengths": text_lengths,
|
| 49 |
+
"scales": scales,
|
| 50 |
+
"sid": sid,
|
| 51 |
+
},
|
| 52 |
+
)[0].squeeze((0, 1))
|
| 53 |
+
|
| 54 |
+
write(data=audio, rate=hps.data.sampling_rate, filename=args.output_wav_path)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
main()
|
inference.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## LJSpeech
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
import commons
|
| 5 |
+
import utils
|
| 6 |
+
from models import SynthesizerTrn
|
| 7 |
+
from text.symbols import symbols
|
| 8 |
+
from text import text_to_sequence
|
| 9 |
+
|
| 10 |
+
from scipy.io.wavfile import write
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_text(text, hps):
|
| 14 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
| 15 |
+
if hps.data.add_blank:
|
| 16 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 17 |
+
text_norm = torch.LongTensor(text_norm)
|
| 18 |
+
return text_norm
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
CONFIG_PATH = "./configs/vits2_ljs_nosdp.json"
|
| 22 |
+
MODEL_PATH = "./logs/G_114000.pth"
|
| 23 |
+
TEXT = "VITS-2 is Awesome!"
|
| 24 |
+
OUTPUT_WAV_PATH = "sample_vits2.wav"
|
| 25 |
+
|
| 26 |
+
hps = utils.get_hparams_from_file(CONFIG_PATH)
|
| 27 |
+
|
| 28 |
+
if (
|
| 29 |
+
"use_mel_posterior_encoder" in hps.model.keys()
|
| 30 |
+
and hps.model.use_mel_posterior_encoder == True
|
| 31 |
+
):
|
| 32 |
+
print("Using mel posterior encoder for VITS2")
|
| 33 |
+
posterior_channels = 80 # vits2
|
| 34 |
+
hps.data.use_mel_posterior_encoder = True
|
| 35 |
+
else:
|
| 36 |
+
print("Using lin posterior encoder for VITS1")
|
| 37 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
| 38 |
+
hps.data.use_mel_posterior_encoder = False
|
| 39 |
+
|
| 40 |
+
net_g = SynthesizerTrn(
|
| 41 |
+
len(symbols),
|
| 42 |
+
posterior_channels,
|
| 43 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 44 |
+
**hps.model
|
| 45 |
+
).cuda()
|
| 46 |
+
_ = net_g.eval()
|
| 47 |
+
|
| 48 |
+
_ = utils.load_checkpoint(MODEL_PATH, net_g, None)
|
| 49 |
+
|
| 50 |
+
stn_tst = get_text(TEXT, hps)
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
x_tst = stn_tst.cuda().unsqueeze(0)
|
| 53 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
|
| 54 |
+
audio = (
|
| 55 |
+
net_g.infer(
|
| 56 |
+
x_tst, x_tst_lengths, noise_scale=0.667, noise_scale_w=0.8, length_scale=1
|
| 57 |
+
)[0][0, 0]
|
| 58 |
+
.data.cpu()
|
| 59 |
+
.float()
|
| 60 |
+
.numpy()
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
write(data=audio, rate=hps.data.sampling_rate, filename=OUTPUT_WAV_PATH)
|
inference_ms.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## VCTK
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
import commons
|
| 5 |
+
import utils
|
| 6 |
+
from models import SynthesizerTrn
|
| 7 |
+
from text.symbols import symbols
|
| 8 |
+
from text import text_to_sequence
|
| 9 |
+
|
| 10 |
+
from scipy.io.wavfile import write
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_text(text, hps):
|
| 14 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
| 15 |
+
if hps.data.add_blank:
|
| 16 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 17 |
+
text_norm = torch.LongTensor(text_norm)
|
| 18 |
+
return text_norm
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
CONFIG_PATH = "./configs/vits2_vctk_base.json"
|
| 22 |
+
MODEL_PATH = "/path/to/pretrained_vctk.pth"
|
| 23 |
+
TEXT = "VITS-2 is Awesome!"
|
| 24 |
+
SPK_ID = 4
|
| 25 |
+
OUTPUT_WAV_PATH = "sample_vits2_ms.wav"
|
| 26 |
+
|
| 27 |
+
hps = utils.get_hparams_from_file(CONFIG_PATH)
|
| 28 |
+
|
| 29 |
+
if (
|
| 30 |
+
"use_mel_posterior_encoder" in hps.model.keys()
|
| 31 |
+
and hps.model.use_mel_posterior_encoder == True
|
| 32 |
+
):
|
| 33 |
+
print("Using mel posterior encoder for VITS2")
|
| 34 |
+
posterior_channels = 80 # vits2
|
| 35 |
+
hps.data.use_mel_posterior_encoder = True
|
| 36 |
+
else:
|
| 37 |
+
print("Using lin posterior encoder for VITS1")
|
| 38 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
| 39 |
+
hps.data.use_mel_posterior_encoder = False
|
| 40 |
+
|
| 41 |
+
net_g = SynthesizerTrn(
|
| 42 |
+
len(symbols),
|
| 43 |
+
posterior_channels,
|
| 44 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 45 |
+
n_speakers=hps.data.n_speakers,
|
| 46 |
+
**hps.model
|
| 47 |
+
).cuda()
|
| 48 |
+
_ = net_g.eval()
|
| 49 |
+
|
| 50 |
+
_ = utils.load_checkpoint(MODEL_PATH, net_g, None)
|
| 51 |
+
|
| 52 |
+
stn_tst = get_text(TEXT, hps)
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
x_tst = stn_tst.cuda().unsqueeze(0)
|
| 55 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
|
| 56 |
+
sid = torch.LongTensor([SPK_ID]).cuda()
|
| 57 |
+
audio = (
|
| 58 |
+
net_g.infer(
|
| 59 |
+
x_tst,
|
| 60 |
+
x_tst_lengths,
|
| 61 |
+
sid=sid,
|
| 62 |
+
noise_scale=0.667,
|
| 63 |
+
noise_scale_w=0.8,
|
| 64 |
+
length_scale=1,
|
| 65 |
+
)[0][0, 0]
|
| 66 |
+
.data.cpu()
|
| 67 |
+
.float()
|
| 68 |
+
.numpy()
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
write(data=audio, rate=hps.data.sampling_rate, filename=OUTPUT_WAV_PATH)
|
logs/pretrained_models/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Please put the pretrained models under this folder | 请将预训练模型放在此文件夹下
|
losses.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
import commons
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def feature_loss(fmap_r, fmap_g):
|
| 8 |
+
loss = 0
|
| 9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
| 10 |
+
for rl, gl in zip(dr, dg):
|
| 11 |
+
rl = rl.float().detach()
|
| 12 |
+
gl = gl.float()
|
| 13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
| 14 |
+
|
| 15 |
+
return loss * 2
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
| 19 |
+
loss = 0
|
| 20 |
+
r_losses = []
|
| 21 |
+
g_losses = []
|
| 22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
| 23 |
+
dr = dr.float()
|
| 24 |
+
dg = dg.float()
|
| 25 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
| 26 |
+
g_loss = torch.mean(dg**2)
|
| 27 |
+
loss += r_loss + g_loss
|
| 28 |
+
r_losses.append(r_loss.item())
|
| 29 |
+
g_losses.append(g_loss.item())
|
| 30 |
+
|
| 31 |
+
return loss, r_losses, g_losses
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def generator_loss(disc_outputs):
|
| 35 |
+
loss = 0
|
| 36 |
+
gen_losses = []
|
| 37 |
+
for dg in disc_outputs:
|
| 38 |
+
dg = dg.float()
|
| 39 |
+
l = torch.mean((1 - dg) ** 2)
|
| 40 |
+
gen_losses.append(l)
|
| 41 |
+
loss += l
|
| 42 |
+
|
| 43 |
+
return loss, gen_losses
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
| 47 |
+
"""
|
| 48 |
+
z_p, logs_q: [b, h, t_t]
|
| 49 |
+
m_p, logs_p: [b, h, t_t]
|
| 50 |
+
"""
|
| 51 |
+
z_p = z_p.float()
|
| 52 |
+
logs_q = logs_q.float()
|
| 53 |
+
m_p = m_p.float()
|
| 54 |
+
logs_p = logs_p.float()
|
| 55 |
+
z_mask = z_mask.float()
|
| 56 |
+
|
| 57 |
+
kl = logs_p - logs_q - 0.5
|
| 58 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
| 59 |
+
kl = torch.sum(kl * z_mask)
|
| 60 |
+
l = kl / torch.sum(z_mask)
|
| 61 |
+
return l
|
mel_processing.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import os
|
| 3 |
+
from packaging import version
|
| 4 |
+
import random
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.utils.data
|
| 9 |
+
import numpy as np
|
| 10 |
+
import librosa
|
| 11 |
+
import librosa.util as librosa_util
|
| 12 |
+
from librosa.util import normalize, pad_center, tiny
|
| 13 |
+
from scipy.signal import get_window
|
| 14 |
+
from scipy.io.wavfile import read
|
| 15 |
+
from librosa.filters import mel as librosa_mel_fn
|
| 16 |
+
|
| 17 |
+
MAX_WAV_VALUE = 32768.0
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
| 21 |
+
"""
|
| 22 |
+
PARAMS
|
| 23 |
+
------
|
| 24 |
+
C: compression factor
|
| 25 |
+
"""
|
| 26 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def dynamic_range_decompression_torch(x, C=1):
|
| 30 |
+
"""
|
| 31 |
+
PARAMS
|
| 32 |
+
------
|
| 33 |
+
C: compression factor used to compress
|
| 34 |
+
"""
|
| 35 |
+
return torch.exp(x) / C
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def spectral_normalize_torch(magnitudes):
|
| 39 |
+
output = dynamic_range_compression_torch(magnitudes)
|
| 40 |
+
return output
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def spectral_de_normalize_torch(magnitudes):
|
| 44 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
| 45 |
+
return output
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
mel_basis = {}
|
| 49 |
+
hann_window = {}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
| 53 |
+
if torch.min(y) < -1.0:
|
| 54 |
+
print("min value is ", torch.min(y))
|
| 55 |
+
if torch.max(y) > 1.0:
|
| 56 |
+
print("max value is ", torch.max(y))
|
| 57 |
+
|
| 58 |
+
global hann_window
|
| 59 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
| 60 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
| 61 |
+
if wnsize_dtype_device not in hann_window:
|
| 62 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
| 63 |
+
dtype=y.dtype, device=y.device
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
y = torch.nn.functional.pad(
|
| 67 |
+
y.unsqueeze(1),
|
| 68 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
| 69 |
+
mode="reflect",
|
| 70 |
+
)
|
| 71 |
+
y = y.squeeze(1)
|
| 72 |
+
|
| 73 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
| 74 |
+
spec = torch.stft(
|
| 75 |
+
y,
|
| 76 |
+
n_fft,
|
| 77 |
+
hop_length=hop_size,
|
| 78 |
+
win_length=win_size,
|
| 79 |
+
window=hann_window[wnsize_dtype_device],
|
| 80 |
+
center=center,
|
| 81 |
+
pad_mode="reflect",
|
| 82 |
+
normalized=False,
|
| 83 |
+
onesided=True,
|
| 84 |
+
return_complex=False,
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
spec = torch.stft(
|
| 88 |
+
y,
|
| 89 |
+
n_fft,
|
| 90 |
+
hop_length=hop_size,
|
| 91 |
+
win_length=win_size,
|
| 92 |
+
window=hann_window[wnsize_dtype_device],
|
| 93 |
+
center=center,
|
| 94 |
+
pad_mode="reflect",
|
| 95 |
+
normalized=False,
|
| 96 |
+
onesided=True,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 100 |
+
return spec
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
| 104 |
+
global mel_basis
|
| 105 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
| 106 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
| 107 |
+
if fmax_dtype_device not in mel_basis:
|
| 108 |
+
mel = librosa_mel_fn(
|
| 109 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
| 110 |
+
)
|
| 111 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
| 112 |
+
dtype=spec.dtype, device=spec.device
|
| 113 |
+
)
|
| 114 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
| 115 |
+
spec = spectral_normalize_torch(spec)
|
| 116 |
+
return spec
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def mel_spectrogram_torch(
|
| 120 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
| 121 |
+
):
|
| 122 |
+
if torch.min(y) < -1.0:
|
| 123 |
+
print("min value is ", torch.min(y))
|
| 124 |
+
if torch.max(y) > 1.0:
|
| 125 |
+
print("max value is ", torch.max(y))
|
| 126 |
+
|
| 127 |
+
global mel_basis, hann_window
|
| 128 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
| 129 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
| 130 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
| 131 |
+
if fmax_dtype_device not in mel_basis:
|
| 132 |
+
mel = librosa_mel_fn(
|
| 133 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
| 134 |
+
)
|
| 135 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
| 136 |
+
dtype=y.dtype, device=y.device
|
| 137 |
+
)
|
| 138 |
+
if wnsize_dtype_device not in hann_window:
|
| 139 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
| 140 |
+
dtype=y.dtype, device=y.device
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
y = torch.nn.functional.pad(
|
| 144 |
+
y.unsqueeze(1),
|
| 145 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
| 146 |
+
mode="reflect",
|
| 147 |
+
)
|
| 148 |
+
y = y.squeeze(1)
|
| 149 |
+
|
| 150 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
| 151 |
+
spec = torch.stft(
|
| 152 |
+
y,
|
| 153 |
+
n_fft,
|
| 154 |
+
hop_length=hop_size,
|
| 155 |
+
win_length=win_size,
|
| 156 |
+
window=hann_window[wnsize_dtype_device],
|
| 157 |
+
center=center,
|
| 158 |
+
pad_mode="reflect",
|
| 159 |
+
normalized=False,
|
| 160 |
+
onesided=True,
|
| 161 |
+
return_complex=False,
|
| 162 |
+
)
|
| 163 |
+
else:
|
| 164 |
+
spec = torch.stft(
|
| 165 |
+
y,
|
| 166 |
+
n_fft,
|
| 167 |
+
hop_length=hop_size,
|
| 168 |
+
win_length=win_size,
|
| 169 |
+
window=hann_window[wnsize_dtype_device],
|
| 170 |
+
center=center,
|
| 171 |
+
pad_mode="reflect",
|
| 172 |
+
normalized=False,
|
| 173 |
+
onesided=True,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 177 |
+
|
| 178 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
| 179 |
+
spec = spectral_normalize_torch(spec)
|
| 180 |
+
|
| 181 |
+
return spec
|
models.py
ADDED
|
@@ -0,0 +1,1202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
import commons
|
| 8 |
+
import modules
|
| 9 |
+
import attentions
|
| 10 |
+
import monotonic_align
|
| 11 |
+
|
| 12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 14 |
+
from commons import init_weights, get_padding
|
| 15 |
+
|
| 16 |
+
AVAILABLE_FLOW_TYPES = [
|
| 17 |
+
"pre_conv",
|
| 18 |
+
"fft",
|
| 19 |
+
"mono_layer_inter_residual",
|
| 20 |
+
"mono_layer_post_residual",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class StochasticDurationPredictor(nn.Module):
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
in_channels,
|
| 28 |
+
filter_channels,
|
| 29 |
+
kernel_size,
|
| 30 |
+
p_dropout,
|
| 31 |
+
n_flows=4,
|
| 32 |
+
gin_channels=0,
|
| 33 |
+
):
|
| 34 |
+
super().__init__()
|
| 35 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
| 36 |
+
self.in_channels = in_channels
|
| 37 |
+
self.filter_channels = filter_channels
|
| 38 |
+
self.kernel_size = kernel_size
|
| 39 |
+
self.p_dropout = p_dropout
|
| 40 |
+
self.n_flows = n_flows
|
| 41 |
+
self.gin_channels = gin_channels
|
| 42 |
+
|
| 43 |
+
self.log_flow = modules.Log()
|
| 44 |
+
self.flows = nn.ModuleList()
|
| 45 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
| 46 |
+
for i in range(n_flows):
|
| 47 |
+
self.flows.append(
|
| 48 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
| 49 |
+
)
|
| 50 |
+
self.flows.append(modules.Flip())
|
| 51 |
+
|
| 52 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
| 53 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 54 |
+
self.post_convs = modules.DDSConv(
|
| 55 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
| 56 |
+
)
|
| 57 |
+
self.post_flows = nn.ModuleList()
|
| 58 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
| 59 |
+
for i in range(4):
|
| 60 |
+
self.post_flows.append(
|
| 61 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
| 62 |
+
)
|
| 63 |
+
self.post_flows.append(modules.Flip())
|
| 64 |
+
|
| 65 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
| 66 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 67 |
+
self.convs = modules.DDSConv(
|
| 68 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
| 69 |
+
)
|
| 70 |
+
if gin_channels != 0:
|
| 71 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
| 72 |
+
|
| 73 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
| 74 |
+
x = torch.detach(x)
|
| 75 |
+
x = self.pre(x)
|
| 76 |
+
if g is not None:
|
| 77 |
+
g = torch.detach(g)
|
| 78 |
+
x = x + self.cond(g)
|
| 79 |
+
x = self.convs(x, x_mask)
|
| 80 |
+
x = self.proj(x) * x_mask
|
| 81 |
+
|
| 82 |
+
if not reverse:
|
| 83 |
+
flows = self.flows
|
| 84 |
+
assert w is not None
|
| 85 |
+
|
| 86 |
+
logdet_tot_q = 0
|
| 87 |
+
h_w = self.post_pre(w)
|
| 88 |
+
h_w = self.post_convs(h_w, x_mask)
|
| 89 |
+
h_w = self.post_proj(h_w) * x_mask
|
| 90 |
+
e_q = (
|
| 91 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
| 92 |
+
* x_mask
|
| 93 |
+
)
|
| 94 |
+
z_q = e_q
|
| 95 |
+
for flow in self.post_flows:
|
| 96 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
| 97 |
+
logdet_tot_q += logdet_q
|
| 98 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
| 99 |
+
u = torch.sigmoid(z_u) * x_mask
|
| 100 |
+
z0 = (w - u) * x_mask
|
| 101 |
+
logdet_tot_q += torch.sum(
|
| 102 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
| 103 |
+
)
|
| 104 |
+
logq = (
|
| 105 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
| 106 |
+
- logdet_tot_q
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
logdet_tot = 0
|
| 110 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
| 111 |
+
logdet_tot += logdet
|
| 112 |
+
z = torch.cat([z0, z1], 1)
|
| 113 |
+
for flow in flows:
|
| 114 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
| 115 |
+
logdet_tot = logdet_tot + logdet
|
| 116 |
+
nll = (
|
| 117 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
| 118 |
+
- logdet_tot
|
| 119 |
+
)
|
| 120 |
+
return nll + logq # [b]
|
| 121 |
+
else:
|
| 122 |
+
flows = list(reversed(self.flows))
|
| 123 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
| 124 |
+
z = (
|
| 125 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
| 126 |
+
* noise_scale
|
| 127 |
+
)
|
| 128 |
+
for flow in flows:
|
| 129 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
| 130 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
| 131 |
+
logw = z0
|
| 132 |
+
return logw
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class DurationPredictor(nn.Module):
|
| 136 |
+
def __init__(
|
| 137 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
| 138 |
+
):
|
| 139 |
+
super().__init__()
|
| 140 |
+
|
| 141 |
+
self.in_channels = in_channels
|
| 142 |
+
self.filter_channels = filter_channels
|
| 143 |
+
self.kernel_size = kernel_size
|
| 144 |
+
self.p_dropout = p_dropout
|
| 145 |
+
self.gin_channels = gin_channels
|
| 146 |
+
|
| 147 |
+
self.drop = nn.Dropout(p_dropout)
|
| 148 |
+
self.conv_1 = nn.Conv1d(
|
| 149 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 150 |
+
)
|
| 151 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 152 |
+
self.conv_2 = nn.Conv1d(
|
| 153 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 154 |
+
)
|
| 155 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 156 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
| 157 |
+
|
| 158 |
+
if gin_channels != 0:
|
| 159 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 160 |
+
|
| 161 |
+
def forward(self, x, x_mask, g=None):
|
| 162 |
+
x = torch.detach(x)
|
| 163 |
+
if g is not None:
|
| 164 |
+
g = torch.detach(g)
|
| 165 |
+
x = x + self.cond(g)
|
| 166 |
+
x = self.conv_1(x * x_mask)
|
| 167 |
+
x = torch.relu(x)
|
| 168 |
+
x = self.norm_1(x)
|
| 169 |
+
x = self.drop(x)
|
| 170 |
+
x = self.conv_2(x * x_mask)
|
| 171 |
+
x = torch.relu(x)
|
| 172 |
+
x = self.norm_2(x)
|
| 173 |
+
x = self.drop(x)
|
| 174 |
+
x = self.proj(x * x_mask)
|
| 175 |
+
return x * x_mask
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class DurationDiscriminator(nn.Module): # vits2
|
| 179 |
+
# TODO : not using "spk conditioning" for now according to the paper.
|
| 180 |
+
# Can be a better discriminator if we use it.
|
| 181 |
+
def __init__(
|
| 182 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
| 183 |
+
):
|
| 184 |
+
super().__init__()
|
| 185 |
+
|
| 186 |
+
self.in_channels = in_channels
|
| 187 |
+
self.filter_channels = filter_channels
|
| 188 |
+
self.kernel_size = kernel_size
|
| 189 |
+
self.p_dropout = p_dropout
|
| 190 |
+
self.gin_channels = gin_channels
|
| 191 |
+
|
| 192 |
+
self.drop = nn.Dropout(p_dropout)
|
| 193 |
+
self.conv_1 = nn.Conv1d(
|
| 194 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 195 |
+
)
|
| 196 |
+
# self.norm_1 = modules.LayerNorm(filter_channels)
|
| 197 |
+
self.conv_2 = nn.Conv1d(
|
| 198 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 199 |
+
)
|
| 200 |
+
# self.norm_2 = modules.LayerNorm(filter_channels)
|
| 201 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
| 202 |
+
|
| 203 |
+
self.pre_out_conv_1 = nn.Conv1d(
|
| 204 |
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 205 |
+
)
|
| 206 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
| 207 |
+
self.pre_out_conv_2 = nn.Conv1d(
|
| 208 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 209 |
+
)
|
| 210 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
| 211 |
+
|
| 212 |
+
# if gin_channels != 0:
|
| 213 |
+
# self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 214 |
+
|
| 215 |
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
| 216 |
+
|
| 217 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
| 218 |
+
dur = self.dur_proj(dur)
|
| 219 |
+
x = torch.cat([x, dur], dim=1)
|
| 220 |
+
x = self.pre_out_conv_1(x * x_mask)
|
| 221 |
+
# x = torch.relu(x)
|
| 222 |
+
# x = self.pre_out_norm_1(x)
|
| 223 |
+
# x = self.drop(x)
|
| 224 |
+
x = self.pre_out_conv_2(x * x_mask)
|
| 225 |
+
# x = torch.relu(x)
|
| 226 |
+
# x = self.pre_out_norm_2(x)
|
| 227 |
+
# x = self.drop(x)
|
| 228 |
+
x = x * x_mask
|
| 229 |
+
x = x.transpose(1, 2)
|
| 230 |
+
output_prob = self.output_layer(x)
|
| 231 |
+
return output_prob
|
| 232 |
+
|
| 233 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
| 234 |
+
x = torch.detach(x)
|
| 235 |
+
# if g is not None:
|
| 236 |
+
# g = torch.detach(g)
|
| 237 |
+
# x = x + self.cond(g)
|
| 238 |
+
x = self.conv_1(x * x_mask)
|
| 239 |
+
# x = torch.relu(x)
|
| 240 |
+
# x = self.norm_1(x)
|
| 241 |
+
# x = self.drop(x)
|
| 242 |
+
x = self.conv_2(x * x_mask)
|
| 243 |
+
# x = torch.relu(x)
|
| 244 |
+
# x = self.norm_2(x)
|
| 245 |
+
# x = self.drop(x)
|
| 246 |
+
|
| 247 |
+
output_probs = []
|
| 248 |
+
for dur in [dur_r, dur_hat]:
|
| 249 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
| 250 |
+
output_probs.append(output_prob)
|
| 251 |
+
|
| 252 |
+
return output_probs
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class TextEncoder(nn.Module):
|
| 256 |
+
def __init__(
|
| 257 |
+
self,
|
| 258 |
+
n_vocab,
|
| 259 |
+
out_channels,
|
| 260 |
+
hidden_channels,
|
| 261 |
+
filter_channels,
|
| 262 |
+
n_heads,
|
| 263 |
+
n_layers,
|
| 264 |
+
kernel_size,
|
| 265 |
+
p_dropout,
|
| 266 |
+
gin_channels=0,
|
| 267 |
+
):
|
| 268 |
+
super().__init__()
|
| 269 |
+
self.n_vocab = n_vocab
|
| 270 |
+
self.out_channels = out_channels
|
| 271 |
+
self.hidden_channels = hidden_channels
|
| 272 |
+
self.filter_channels = filter_channels
|
| 273 |
+
self.n_heads = n_heads
|
| 274 |
+
self.n_layers = n_layers
|
| 275 |
+
self.kernel_size = kernel_size
|
| 276 |
+
self.p_dropout = p_dropout
|
| 277 |
+
self.gin_channels = gin_channels
|
| 278 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 279 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
| 280 |
+
|
| 281 |
+
self.encoder = attentions.Encoder(
|
| 282 |
+
hidden_channels,
|
| 283 |
+
filter_channels,
|
| 284 |
+
n_heads,
|
| 285 |
+
n_layers,
|
| 286 |
+
kernel_size,
|
| 287 |
+
p_dropout,
|
| 288 |
+
gin_channels=self.gin_channels,
|
| 289 |
+
)
|
| 290 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 291 |
+
|
| 292 |
+
def forward(self, x, x_lengths, g=None):
|
| 293 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 294 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 295 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 296 |
+
x.dtype
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
| 300 |
+
stats = self.proj(x) * x_mask
|
| 301 |
+
|
| 302 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 303 |
+
return x, m, logs, x_mask
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class ResidualCouplingTransformersLayer(nn.Module): # vits2
|
| 307 |
+
def __init__(
|
| 308 |
+
self,
|
| 309 |
+
channels,
|
| 310 |
+
hidden_channels,
|
| 311 |
+
kernel_size,
|
| 312 |
+
dilation_rate,
|
| 313 |
+
n_layers,
|
| 314 |
+
p_dropout=0,
|
| 315 |
+
gin_channels=0,
|
| 316 |
+
mean_only=False,
|
| 317 |
+
):
|
| 318 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 319 |
+
super().__init__()
|
| 320 |
+
self.channels = channels
|
| 321 |
+
self.hidden_channels = hidden_channels
|
| 322 |
+
self.kernel_size = kernel_size
|
| 323 |
+
self.dilation_rate = dilation_rate
|
| 324 |
+
self.n_layers = n_layers
|
| 325 |
+
self.half_channels = channels // 2
|
| 326 |
+
self.mean_only = mean_only
|
| 327 |
+
# vits2
|
| 328 |
+
self.pre_transformer = attentions.Encoder(
|
| 329 |
+
self.half_channels,
|
| 330 |
+
self.half_channels,
|
| 331 |
+
n_heads=2,
|
| 332 |
+
n_layers=2,
|
| 333 |
+
kernel_size=3,
|
| 334 |
+
p_dropout=0.1,
|
| 335 |
+
window_size=None,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
| 339 |
+
self.enc = modules.WN(
|
| 340 |
+
hidden_channels,
|
| 341 |
+
kernel_size,
|
| 342 |
+
dilation_rate,
|
| 343 |
+
n_layers,
|
| 344 |
+
p_dropout=p_dropout,
|
| 345 |
+
gin_channels=gin_channels,
|
| 346 |
+
)
|
| 347 |
+
# vits2
|
| 348 |
+
self.post_transformer = attentions.Encoder(
|
| 349 |
+
self.hidden_channels,
|
| 350 |
+
self.hidden_channels,
|
| 351 |
+
n_heads=2,
|
| 352 |
+
n_layers=2,
|
| 353 |
+
kernel_size=3,
|
| 354 |
+
p_dropout=0.1,
|
| 355 |
+
window_size=None,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
| 359 |
+
self.post.weight.data.zero_()
|
| 360 |
+
self.post.bias.data.zero_()
|
| 361 |
+
|
| 362 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 363 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 364 |
+
x0_ = self.pre_transformer(x0 * x_mask, x_mask) # vits2
|
| 365 |
+
x0_ = x0_ + x0 # vits2 residual connection
|
| 366 |
+
h = self.pre(x0_) * x_mask # changed from x0 to x0_ to retain x0 for the flow
|
| 367 |
+
h = self.enc(h, x_mask, g=g)
|
| 368 |
+
|
| 369 |
+
# vits2 - (experimental;uncomment the following 2 line to use)
|
| 370 |
+
# h_ = self.post_transformer(h, x_mask)
|
| 371 |
+
# h = h + h_ #vits2 residual connection
|
| 372 |
+
|
| 373 |
+
stats = self.post(h) * x_mask
|
| 374 |
+
if not self.mean_only:
|
| 375 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 376 |
+
else:
|
| 377 |
+
m = stats
|
| 378 |
+
logs = torch.zeros_like(m)
|
| 379 |
+
if not reverse:
|
| 380 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 381 |
+
x = torch.cat([x0, x1], 1)
|
| 382 |
+
logdet = torch.sum(logs, [1, 2])
|
| 383 |
+
return x, logdet
|
| 384 |
+
else:
|
| 385 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 386 |
+
x = torch.cat([x0, x1], 1)
|
| 387 |
+
return x
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
class FFTransformerCouplingLayer(nn.Module): # vits2
|
| 391 |
+
def __init__(
|
| 392 |
+
self,
|
| 393 |
+
channels,
|
| 394 |
+
hidden_channels,
|
| 395 |
+
kernel_size,
|
| 396 |
+
n_layers,
|
| 397 |
+
n_heads,
|
| 398 |
+
p_dropout=0,
|
| 399 |
+
filter_channels=768,
|
| 400 |
+
mean_only=False,
|
| 401 |
+
gin_channels=0,
|
| 402 |
+
):
|
| 403 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 404 |
+
super().__init__()
|
| 405 |
+
self.channels = channels
|
| 406 |
+
self.hidden_channels = hidden_channels
|
| 407 |
+
self.kernel_size = kernel_size
|
| 408 |
+
self.n_layers = n_layers
|
| 409 |
+
self.half_channels = channels // 2
|
| 410 |
+
self.mean_only = mean_only
|
| 411 |
+
|
| 412 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
| 413 |
+
self.enc = attentions.FFT(
|
| 414 |
+
hidden_channels,
|
| 415 |
+
filter_channels,
|
| 416 |
+
n_heads,
|
| 417 |
+
n_layers,
|
| 418 |
+
kernel_size,
|
| 419 |
+
p_dropout,
|
| 420 |
+
isflow=True,
|
| 421 |
+
gin_channels=gin_channels,
|
| 422 |
+
)
|
| 423 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
| 424 |
+
self.post.weight.data.zero_()
|
| 425 |
+
self.post.bias.data.zero_()
|
| 426 |
+
|
| 427 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 428 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 429 |
+
h = self.pre(x0) * x_mask
|
| 430 |
+
h_ = self.enc(h, x_mask, g=g)
|
| 431 |
+
h = h_ + h
|
| 432 |
+
stats = self.post(h) * x_mask
|
| 433 |
+
if not self.mean_only:
|
| 434 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 435 |
+
else:
|
| 436 |
+
m = stats
|
| 437 |
+
logs = torch.zeros_like(m)
|
| 438 |
+
|
| 439 |
+
if not reverse:
|
| 440 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 441 |
+
x = torch.cat([x0, x1], 1)
|
| 442 |
+
logdet = torch.sum(logs, [1, 2])
|
| 443 |
+
return x, logdet
|
| 444 |
+
else:
|
| 445 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 446 |
+
x = torch.cat([x0, x1], 1)
|
| 447 |
+
return x
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
class MonoTransformerFlowLayer(nn.Module): # vits2
|
| 451 |
+
def __init__(
|
| 452 |
+
self,
|
| 453 |
+
channels,
|
| 454 |
+
hidden_channels,
|
| 455 |
+
mean_only=False,
|
| 456 |
+
residual_connection=False,
|
| 457 |
+
# according to VITS-2 paper fig 1B set residual_connection=True
|
| 458 |
+
):
|
| 459 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 460 |
+
super().__init__()
|
| 461 |
+
self.channels = channels
|
| 462 |
+
self.hidden_channels = hidden_channels
|
| 463 |
+
self.half_channels = channels // 2
|
| 464 |
+
self.mean_only = mean_only
|
| 465 |
+
self.residual_connection = residual_connection
|
| 466 |
+
# vits2
|
| 467 |
+
self.pre_transformer = attentions.Encoder(
|
| 468 |
+
self.half_channels,
|
| 469 |
+
self.half_channels,
|
| 470 |
+
n_heads=2,
|
| 471 |
+
n_layers=2,
|
| 472 |
+
kernel_size=3,
|
| 473 |
+
p_dropout=0.1,
|
| 474 |
+
window_size=None,
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
self.post = nn.Conv1d(
|
| 478 |
+
self.half_channels, self.half_channels * (2 - mean_only), 1
|
| 479 |
+
)
|
| 480 |
+
self.post.weight.data.zero_()
|
| 481 |
+
self.post.bias.data.zero_()
|
| 482 |
+
|
| 483 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 484 |
+
if self.residual_connection:
|
| 485 |
+
if not reverse:
|
| 486 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 487 |
+
x0_ = self.pre_transformer(x0, x_mask) # vits2
|
| 488 |
+
stats = self.post(x0_) * x_mask
|
| 489 |
+
if not self.mean_only:
|
| 490 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 491 |
+
else:
|
| 492 |
+
m = stats
|
| 493 |
+
logs = torch.zeros_like(m)
|
| 494 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 495 |
+
x_ = torch.cat([x0, x1], 1)
|
| 496 |
+
x = x + x_
|
| 497 |
+
logdet = torch.sum(torch.log(torch.exp(logs) + 1), [1, 2])
|
| 498 |
+
logdet = logdet + torch.log(torch.tensor(2)) * (
|
| 499 |
+
x0.shape[1] * x0.shape[2]
|
| 500 |
+
)
|
| 501 |
+
return x, logdet
|
| 502 |
+
else:
|
| 503 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 504 |
+
x0 = x0 / 2
|
| 505 |
+
x0_ = x0 * x_mask
|
| 506 |
+
x0_ = self.pre_transformer(x0, x_mask) # vits2
|
| 507 |
+
stats = self.post(x0_) * x_mask
|
| 508 |
+
if not self.mean_only:
|
| 509 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 510 |
+
else:
|
| 511 |
+
m = stats
|
| 512 |
+
logs = torch.zeros_like(m)
|
| 513 |
+
x1_ = ((x1 - m) / (1 + torch.exp(-logs))) * x_mask
|
| 514 |
+
x = torch.cat([x0, x1_], 1)
|
| 515 |
+
return x
|
| 516 |
+
else:
|
| 517 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 518 |
+
x0_ = self.pre_transformer(x0 * x_mask, x_mask) # vits2
|
| 519 |
+
h = x0_ + x0 # vits2
|
| 520 |
+
stats = self.post(h) * x_mask
|
| 521 |
+
if not self.mean_only:
|
| 522 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 523 |
+
else:
|
| 524 |
+
m = stats
|
| 525 |
+
logs = torch.zeros_like(m)
|
| 526 |
+
if not reverse:
|
| 527 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 528 |
+
x_ = torch.cat([x0, x1], 1)
|
| 529 |
+
logdet = torch.sum(logs, [1, 2])
|
| 530 |
+
return x, logdet
|
| 531 |
+
else:
|
| 532 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 533 |
+
x = torch.cat([x0, x1], 1)
|
| 534 |
+
return x
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
class ResidualCouplingTransformersBlock(nn.Module): # vits2
|
| 538 |
+
def __init__(
|
| 539 |
+
self,
|
| 540 |
+
channels,
|
| 541 |
+
hidden_channels,
|
| 542 |
+
kernel_size,
|
| 543 |
+
dilation_rate,
|
| 544 |
+
n_layers,
|
| 545 |
+
n_flows=4,
|
| 546 |
+
gin_channels=0,
|
| 547 |
+
use_transformer_flows=False,
|
| 548 |
+
transformer_flow_type="pre_conv",
|
| 549 |
+
):
|
| 550 |
+
super().__init__()
|
| 551 |
+
self.channels = channels
|
| 552 |
+
self.hidden_channels = hidden_channels
|
| 553 |
+
self.kernel_size = kernel_size
|
| 554 |
+
self.dilation_rate = dilation_rate
|
| 555 |
+
self.n_layers = n_layers
|
| 556 |
+
self.n_flows = n_flows
|
| 557 |
+
self.gin_channels = gin_channels
|
| 558 |
+
|
| 559 |
+
self.flows = nn.ModuleList()
|
| 560 |
+
if use_transformer_flows:
|
| 561 |
+
if transformer_flow_type == "pre_conv":
|
| 562 |
+
for i in range(n_flows):
|
| 563 |
+
self.flows.append(
|
| 564 |
+
ResidualCouplingTransformersLayer(
|
| 565 |
+
channels,
|
| 566 |
+
hidden_channels,
|
| 567 |
+
kernel_size,
|
| 568 |
+
dilation_rate,
|
| 569 |
+
n_layers,
|
| 570 |
+
gin_channels=gin_channels,
|
| 571 |
+
mean_only=True,
|
| 572 |
+
)
|
| 573 |
+
)
|
| 574 |
+
self.flows.append(modules.Flip())
|
| 575 |
+
elif transformer_flow_type == "fft":
|
| 576 |
+
for i in range(n_flows):
|
| 577 |
+
self.flows.append(
|
| 578 |
+
FFTransformerCouplingLayer(
|
| 579 |
+
channels,
|
| 580 |
+
hidden_channels,
|
| 581 |
+
kernel_size,
|
| 582 |
+
dilation_rate,
|
| 583 |
+
n_layers,
|
| 584 |
+
gin_channels=gin_channels,
|
| 585 |
+
mean_only=True,
|
| 586 |
+
)
|
| 587 |
+
)
|
| 588 |
+
self.flows.append(modules.Flip())
|
| 589 |
+
elif transformer_flow_type == "mono_layer_inter_residual":
|
| 590 |
+
for i in range(n_flows):
|
| 591 |
+
self.flows.append(
|
| 592 |
+
modules.ResidualCouplingLayer(
|
| 593 |
+
channels,
|
| 594 |
+
hidden_channels,
|
| 595 |
+
kernel_size,
|
| 596 |
+
dilation_rate,
|
| 597 |
+
n_layers,
|
| 598 |
+
gin_channels=gin_channels,
|
| 599 |
+
mean_only=True,
|
| 600 |
+
)
|
| 601 |
+
)
|
| 602 |
+
self.flows.append(modules.Flip())
|
| 603 |
+
self.flows.append(
|
| 604 |
+
MonoTransformerFlowLayer(
|
| 605 |
+
channels, hidden_channels, mean_only=True
|
| 606 |
+
)
|
| 607 |
+
)
|
| 608 |
+
elif transformer_flow_type == "mono_layer_post_residual":
|
| 609 |
+
for i in range(n_flows):
|
| 610 |
+
self.flows.append(
|
| 611 |
+
modules.ResidualCouplingLayer(
|
| 612 |
+
channels,
|
| 613 |
+
hidden_channels,
|
| 614 |
+
kernel_size,
|
| 615 |
+
dilation_rate,
|
| 616 |
+
n_layers,
|
| 617 |
+
gin_channels=gin_channels,
|
| 618 |
+
mean_only=True,
|
| 619 |
+
)
|
| 620 |
+
)
|
| 621 |
+
self.flows.append(modules.Flip())
|
| 622 |
+
self.flows.append(
|
| 623 |
+
MonoTransformerFlowLayer(
|
| 624 |
+
channels,
|
| 625 |
+
hidden_channels,
|
| 626 |
+
mean_only=True,
|
| 627 |
+
residual_connection=True,
|
| 628 |
+
)
|
| 629 |
+
)
|
| 630 |
+
else:
|
| 631 |
+
for i in range(n_flows):
|
| 632 |
+
self.flows.append(
|
| 633 |
+
modules.ResidualCouplingLayer(
|
| 634 |
+
channels,
|
| 635 |
+
hidden_channels,
|
| 636 |
+
kernel_size,
|
| 637 |
+
dilation_rate,
|
| 638 |
+
n_layers,
|
| 639 |
+
gin_channels=gin_channels,
|
| 640 |
+
mean_only=True,
|
| 641 |
+
)
|
| 642 |
+
)
|
| 643 |
+
self.flows.append(modules.Flip())
|
| 644 |
+
|
| 645 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 646 |
+
if not reverse:
|
| 647 |
+
for flow in self.flows:
|
| 648 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 649 |
+
else:
|
| 650 |
+
for flow in reversed(self.flows):
|
| 651 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 652 |
+
return x
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
class ResidualCouplingBlock(nn.Module):
|
| 656 |
+
def __init__(
|
| 657 |
+
self,
|
| 658 |
+
channels,
|
| 659 |
+
hidden_channels,
|
| 660 |
+
kernel_size,
|
| 661 |
+
dilation_rate,
|
| 662 |
+
n_layers,
|
| 663 |
+
n_flows=4,
|
| 664 |
+
gin_channels=0,
|
| 665 |
+
):
|
| 666 |
+
super().__init__()
|
| 667 |
+
self.channels = channels
|
| 668 |
+
self.hidden_channels = hidden_channels
|
| 669 |
+
self.kernel_size = kernel_size
|
| 670 |
+
self.dilation_rate = dilation_rate
|
| 671 |
+
self.n_layers = n_layers
|
| 672 |
+
self.n_flows = n_flows
|
| 673 |
+
self.gin_channels = gin_channels
|
| 674 |
+
|
| 675 |
+
self.flows = nn.ModuleList()
|
| 676 |
+
for i in range(n_flows):
|
| 677 |
+
self.flows.append(
|
| 678 |
+
modules.ResidualCouplingLayer(
|
| 679 |
+
channels,
|
| 680 |
+
hidden_channels,
|
| 681 |
+
kernel_size,
|
| 682 |
+
dilation_rate,
|
| 683 |
+
n_layers,
|
| 684 |
+
gin_channels=gin_channels,
|
| 685 |
+
mean_only=True,
|
| 686 |
+
)
|
| 687 |
+
)
|
| 688 |
+
self.flows.append(modules.Flip())
|
| 689 |
+
|
| 690 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 691 |
+
if not reverse:
|
| 692 |
+
for flow in self.flows:
|
| 693 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 694 |
+
else:
|
| 695 |
+
for flow in reversed(self.flows):
|
| 696 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 697 |
+
return x
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
class PosteriorEncoder(nn.Module):
|
| 701 |
+
def __init__(
|
| 702 |
+
self,
|
| 703 |
+
in_channels,
|
| 704 |
+
out_channels,
|
| 705 |
+
hidden_channels,
|
| 706 |
+
kernel_size,
|
| 707 |
+
dilation_rate,
|
| 708 |
+
n_layers,
|
| 709 |
+
gin_channels=0,
|
| 710 |
+
):
|
| 711 |
+
super().__init__()
|
| 712 |
+
self.in_channels = in_channels
|
| 713 |
+
self.out_channels = out_channels
|
| 714 |
+
self.hidden_channels = hidden_channels
|
| 715 |
+
self.kernel_size = kernel_size
|
| 716 |
+
self.dilation_rate = dilation_rate
|
| 717 |
+
self.n_layers = n_layers
|
| 718 |
+
self.gin_channels = gin_channels
|
| 719 |
+
|
| 720 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 721 |
+
self.enc = modules.WN(
|
| 722 |
+
hidden_channels,
|
| 723 |
+
kernel_size,
|
| 724 |
+
dilation_rate,
|
| 725 |
+
n_layers,
|
| 726 |
+
gin_channels=gin_channels,
|
| 727 |
+
)
|
| 728 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 729 |
+
|
| 730 |
+
def forward(self, x, x_lengths, g=None):
|
| 731 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 732 |
+
x.dtype
|
| 733 |
+
)
|
| 734 |
+
x = self.pre(x) * x_mask
|
| 735 |
+
x = self.enc(x, x_mask, g=g)
|
| 736 |
+
stats = self.proj(x) * x_mask
|
| 737 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 738 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 739 |
+
return z, m, logs, x_mask
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
class Generator(torch.nn.Module):
|
| 743 |
+
def __init__(
|
| 744 |
+
self,
|
| 745 |
+
initial_channel,
|
| 746 |
+
resblock,
|
| 747 |
+
resblock_kernel_sizes,
|
| 748 |
+
resblock_dilation_sizes,
|
| 749 |
+
upsample_rates,
|
| 750 |
+
upsample_initial_channel,
|
| 751 |
+
upsample_kernel_sizes,
|
| 752 |
+
gin_channels=0,
|
| 753 |
+
):
|
| 754 |
+
super(Generator, self).__init__()
|
| 755 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 756 |
+
self.num_upsamples = len(upsample_rates)
|
| 757 |
+
self.conv_pre = Conv1d(
|
| 758 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 759 |
+
)
|
| 760 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 761 |
+
|
| 762 |
+
self.ups = nn.ModuleList()
|
| 763 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 764 |
+
self.ups.append(
|
| 765 |
+
weight_norm(
|
| 766 |
+
ConvTranspose1d(
|
| 767 |
+
upsample_initial_channel // (2**i),
|
| 768 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 769 |
+
k,
|
| 770 |
+
u,
|
| 771 |
+
padding=(k - u) // 2,
|
| 772 |
+
)
|
| 773 |
+
)
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
self.resblocks = nn.ModuleList()
|
| 777 |
+
for i in range(len(self.ups)):
|
| 778 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 779 |
+
for j, (k, d) in enumerate(
|
| 780 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 781 |
+
):
|
| 782 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 783 |
+
|
| 784 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 785 |
+
self.ups.apply(init_weights)
|
| 786 |
+
|
| 787 |
+
if gin_channels != 0:
|
| 788 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 789 |
+
|
| 790 |
+
def forward(self, x, g=None):
|
| 791 |
+
x = self.conv_pre(x)
|
| 792 |
+
if g is not None:
|
| 793 |
+
x = x + self.cond(g)
|
| 794 |
+
|
| 795 |
+
for i in range(self.num_upsamples):
|
| 796 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 797 |
+
x = self.ups[i](x)
|
| 798 |
+
xs = None
|
| 799 |
+
for j in range(self.num_kernels):
|
| 800 |
+
if xs is None:
|
| 801 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 802 |
+
else:
|
| 803 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 804 |
+
x = xs / self.num_kernels
|
| 805 |
+
x = F.leaky_relu(x)
|
| 806 |
+
x = self.conv_post(x)
|
| 807 |
+
x = torch.tanh(x)
|
| 808 |
+
|
| 809 |
+
return x
|
| 810 |
+
|
| 811 |
+
def remove_weight_norm(self):
|
| 812 |
+
print("Removing weight norm...")
|
| 813 |
+
for l in self.ups:
|
| 814 |
+
remove_weight_norm(l)
|
| 815 |
+
for l in self.resblocks:
|
| 816 |
+
l.remove_weight_norm()
|
| 817 |
+
|
| 818 |
+
|
| 819 |
+
class DiscriminatorP(torch.nn.Module):
|
| 820 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 821 |
+
super(DiscriminatorP, self).__init__()
|
| 822 |
+
self.period = period
|
| 823 |
+
self.use_spectral_norm = use_spectral_norm
|
| 824 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 825 |
+
self.convs = nn.ModuleList(
|
| 826 |
+
[
|
| 827 |
+
norm_f(
|
| 828 |
+
Conv2d(
|
| 829 |
+
1,
|
| 830 |
+
32,
|
| 831 |
+
(kernel_size, 1),
|
| 832 |
+
(stride, 1),
|
| 833 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 834 |
+
)
|
| 835 |
+
),
|
| 836 |
+
norm_f(
|
| 837 |
+
Conv2d(
|
| 838 |
+
32,
|
| 839 |
+
128,
|
| 840 |
+
(kernel_size, 1),
|
| 841 |
+
(stride, 1),
|
| 842 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 843 |
+
)
|
| 844 |
+
),
|
| 845 |
+
norm_f(
|
| 846 |
+
Conv2d(
|
| 847 |
+
128,
|
| 848 |
+
512,
|
| 849 |
+
(kernel_size, 1),
|
| 850 |
+
(stride, 1),
|
| 851 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 852 |
+
)
|
| 853 |
+
),
|
| 854 |
+
norm_f(
|
| 855 |
+
Conv2d(
|
| 856 |
+
512,
|
| 857 |
+
1024,
|
| 858 |
+
(kernel_size, 1),
|
| 859 |
+
(stride, 1),
|
| 860 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 861 |
+
)
|
| 862 |
+
),
|
| 863 |
+
norm_f(
|
| 864 |
+
Conv2d(
|
| 865 |
+
1024,
|
| 866 |
+
1024,
|
| 867 |
+
(kernel_size, 1),
|
| 868 |
+
1,
|
| 869 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 870 |
+
)
|
| 871 |
+
),
|
| 872 |
+
]
|
| 873 |
+
)
|
| 874 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 875 |
+
|
| 876 |
+
def forward(self, x):
|
| 877 |
+
fmap = []
|
| 878 |
+
|
| 879 |
+
# 1d to 2d
|
| 880 |
+
b, c, t = x.shape
|
| 881 |
+
if t % self.period != 0: # pad first
|
| 882 |
+
n_pad = self.period - (t % self.period)
|
| 883 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 884 |
+
t = t + n_pad
|
| 885 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 886 |
+
|
| 887 |
+
for l in self.convs:
|
| 888 |
+
x = l(x)
|
| 889 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 890 |
+
fmap.append(x)
|
| 891 |
+
x = self.conv_post(x)
|
| 892 |
+
fmap.append(x)
|
| 893 |
+
x = torch.flatten(x, 1, -1)
|
| 894 |
+
|
| 895 |
+
return x, fmap
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
class DiscriminatorS(torch.nn.Module):
|
| 899 |
+
def __init__(self, use_spectral_norm=False):
|
| 900 |
+
super(DiscriminatorS, self).__init__()
|
| 901 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 902 |
+
self.convs = nn.ModuleList(
|
| 903 |
+
[
|
| 904 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 905 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 906 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 907 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 908 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 909 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 910 |
+
]
|
| 911 |
+
)
|
| 912 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 913 |
+
|
| 914 |
+
def forward(self, x):
|
| 915 |
+
fmap = []
|
| 916 |
+
|
| 917 |
+
for l in self.convs:
|
| 918 |
+
x = l(x)
|
| 919 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 920 |
+
fmap.append(x)
|
| 921 |
+
x = self.conv_post(x)
|
| 922 |
+
fmap.append(x)
|
| 923 |
+
x = torch.flatten(x, 1, -1)
|
| 924 |
+
|
| 925 |
+
return x, fmap
|
| 926 |
+
|
| 927 |
+
|
| 928 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 929 |
+
def __init__(self, use_spectral_norm=False):
|
| 930 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 931 |
+
periods = [2, 3, 5, 7, 11]
|
| 932 |
+
|
| 933 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 934 |
+
discs = discs + [
|
| 935 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 936 |
+
]
|
| 937 |
+
self.discriminators = nn.ModuleList(discs)
|
| 938 |
+
|
| 939 |
+
def forward(self, y, y_hat):
|
| 940 |
+
y_d_rs = []
|
| 941 |
+
y_d_gs = []
|
| 942 |
+
fmap_rs = []
|
| 943 |
+
fmap_gs = []
|
| 944 |
+
for i, d in enumerate(self.discriminators):
|
| 945 |
+
y_d_r, fmap_r = d(y)
|
| 946 |
+
y_d_g, fmap_g = d(y_hat)
|
| 947 |
+
y_d_rs.append(y_d_r)
|
| 948 |
+
y_d_gs.append(y_d_g)
|
| 949 |
+
fmap_rs.append(fmap_r)
|
| 950 |
+
fmap_gs.append(fmap_g)
|
| 951 |
+
|
| 952 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
class SynthesizerTrn(nn.Module):
|
| 956 |
+
"""
|
| 957 |
+
Synthesizer for Training
|
| 958 |
+
"""
|
| 959 |
+
|
| 960 |
+
def __init__(
|
| 961 |
+
self,
|
| 962 |
+
n_vocab,
|
| 963 |
+
spec_channels,
|
| 964 |
+
segment_size,
|
| 965 |
+
inter_channels,
|
| 966 |
+
hidden_channels,
|
| 967 |
+
filter_channels,
|
| 968 |
+
n_heads,
|
| 969 |
+
n_layers,
|
| 970 |
+
kernel_size,
|
| 971 |
+
p_dropout,
|
| 972 |
+
resblock,
|
| 973 |
+
resblock_kernel_sizes,
|
| 974 |
+
resblock_dilation_sizes,
|
| 975 |
+
upsample_rates,
|
| 976 |
+
upsample_initial_channel,
|
| 977 |
+
upsample_kernel_sizes,
|
| 978 |
+
n_speakers=0,
|
| 979 |
+
gin_channels=0,
|
| 980 |
+
use_sdp=True,
|
| 981 |
+
**kwargs,
|
| 982 |
+
):
|
| 983 |
+
super().__init__()
|
| 984 |
+
self.n_vocab = n_vocab
|
| 985 |
+
self.spec_channels = spec_channels
|
| 986 |
+
self.inter_channels = inter_channels
|
| 987 |
+
self.hidden_channels = hidden_channels
|
| 988 |
+
self.filter_channels = filter_channels
|
| 989 |
+
self.n_heads = n_heads
|
| 990 |
+
self.n_layers = n_layers
|
| 991 |
+
self.kernel_size = kernel_size
|
| 992 |
+
self.p_dropout = p_dropout
|
| 993 |
+
self.resblock = resblock
|
| 994 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 995 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 996 |
+
self.upsample_rates = upsample_rates
|
| 997 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 998 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 999 |
+
self.segment_size = segment_size
|
| 1000 |
+
self.n_speakers = n_speakers
|
| 1001 |
+
self.gin_channels = gin_channels
|
| 1002 |
+
self.use_spk_conditioned_encoder = kwargs.get(
|
| 1003 |
+
"use_spk_conditioned_encoder", False
|
| 1004 |
+
)
|
| 1005 |
+
self.use_transformer_flows = kwargs.get("use_transformer_flows", False)
|
| 1006 |
+
self.transformer_flow_type = kwargs.get(
|
| 1007 |
+
"transformer_flow_type", "mono_layer_post_residual"
|
| 1008 |
+
)
|
| 1009 |
+
if self.use_transformer_flows:
|
| 1010 |
+
assert (
|
| 1011 |
+
self.transformer_flow_type in AVAILABLE_FLOW_TYPES
|
| 1012 |
+
), f"transformer_flow_type must be one of {AVAILABLE_FLOW_TYPES}"
|
| 1013 |
+
self.use_sdp = use_sdp
|
| 1014 |
+
# self.use_duration_discriminator = kwargs.get("use_duration_discriminator", False)
|
| 1015 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
| 1016 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
| 1017 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
| 1018 |
+
|
| 1019 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
| 1020 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
| 1021 |
+
self.enc_gin_channels = gin_channels
|
| 1022 |
+
else:
|
| 1023 |
+
self.enc_gin_channels = 0
|
| 1024 |
+
self.enc_p = TextEncoder(
|
| 1025 |
+
n_vocab,
|
| 1026 |
+
inter_channels,
|
| 1027 |
+
hidden_channels,
|
| 1028 |
+
filter_channels,
|
| 1029 |
+
n_heads,
|
| 1030 |
+
n_layers,
|
| 1031 |
+
kernel_size,
|
| 1032 |
+
p_dropout,
|
| 1033 |
+
gin_channels=self.enc_gin_channels,
|
| 1034 |
+
)
|
| 1035 |
+
|
| 1036 |
+
self.dec = Generator(
|
| 1037 |
+
inter_channels,
|
| 1038 |
+
resblock,
|
| 1039 |
+
resblock_kernel_sizes,
|
| 1040 |
+
resblock_dilation_sizes,
|
| 1041 |
+
upsample_rates,
|
| 1042 |
+
upsample_initial_channel,
|
| 1043 |
+
upsample_kernel_sizes,
|
| 1044 |
+
gin_channels=gin_channels,
|
| 1045 |
+
)
|
| 1046 |
+
self.enc_q = PosteriorEncoder(
|
| 1047 |
+
spec_channels,
|
| 1048 |
+
inter_channels,
|
| 1049 |
+
hidden_channels,
|
| 1050 |
+
5,
|
| 1051 |
+
1,
|
| 1052 |
+
16,
|
| 1053 |
+
gin_channels=gin_channels,
|
| 1054 |
+
)
|
| 1055 |
+
# self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
| 1056 |
+
self.flow = ResidualCouplingTransformersBlock(
|
| 1057 |
+
inter_channels,
|
| 1058 |
+
hidden_channels,
|
| 1059 |
+
5,
|
| 1060 |
+
1,
|
| 1061 |
+
4,
|
| 1062 |
+
gin_channels=gin_channels,
|
| 1063 |
+
use_transformer_flows=self.use_transformer_flows,
|
| 1064 |
+
transformer_flow_type=self.transformer_flow_type,
|
| 1065 |
+
)
|
| 1066 |
+
|
| 1067 |
+
if use_sdp:
|
| 1068 |
+
self.dp = StochasticDurationPredictor(
|
| 1069 |
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
| 1070 |
+
)
|
| 1071 |
+
else:
|
| 1072 |
+
self.dp = DurationPredictor(
|
| 1073 |
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
| 1074 |
+
)
|
| 1075 |
+
|
| 1076 |
+
if n_speakers > 1:
|
| 1077 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
| 1078 |
+
|
| 1079 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
| 1080 |
+
if self.n_speakers > 0:
|
| 1081 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 1082 |
+
else:
|
| 1083 |
+
g = None
|
| 1084 |
+
|
| 1085 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g)
|
| 1086 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 1087 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 1088 |
+
|
| 1089 |
+
with torch.no_grad():
|
| 1090 |
+
# negative cross-entropy
|
| 1091 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
| 1092 |
+
neg_cent1 = torch.sum(
|
| 1093 |
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
| 1094 |
+
) # [b, 1, t_s]
|
| 1095 |
+
neg_cent2 = torch.matmul(
|
| 1096 |
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
| 1097 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 1098 |
+
neg_cent3 = torch.matmul(
|
| 1099 |
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
| 1100 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 1101 |
+
neg_cent4 = torch.sum(
|
| 1102 |
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
| 1103 |
+
) # [b, 1, t_s]
|
| 1104 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
| 1105 |
+
|
| 1106 |
+
if self.use_noise_scaled_mas:
|
| 1107 |
+
epsilon = (
|
| 1108 |
+
torch.std(neg_cent)
|
| 1109 |
+
* torch.randn_like(neg_cent)
|
| 1110 |
+
* self.current_mas_noise_scale
|
| 1111 |
+
)
|
| 1112 |
+
neg_cent = neg_cent + epsilon
|
| 1113 |
+
|
| 1114 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 1115 |
+
attn = (
|
| 1116 |
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
| 1117 |
+
.unsqueeze(1)
|
| 1118 |
+
.detach()
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
w = attn.sum(2)
|
| 1122 |
+
if self.use_sdp:
|
| 1123 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
| 1124 |
+
l_length = l_length / torch.sum(x_mask)
|
| 1125 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=1.0)
|
| 1126 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
| 1127 |
+
else:
|
| 1128 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
| 1129 |
+
logw = self.dp(x, x_mask, g=g)
|
| 1130 |
+
l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
| 1131 |
+
x_mask
|
| 1132 |
+
) # for averaging
|
| 1133 |
+
|
| 1134 |
+
# expand prior
|
| 1135 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
| 1136 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
| 1137 |
+
|
| 1138 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 1139 |
+
z, y_lengths, self.segment_size
|
| 1140 |
+
)
|
| 1141 |
+
o = self.dec(z_slice, g=g)
|
| 1142 |
+
return (
|
| 1143 |
+
o,
|
| 1144 |
+
l_length,
|
| 1145 |
+
attn,
|
| 1146 |
+
ids_slice,
|
| 1147 |
+
x_mask,
|
| 1148 |
+
y_mask,
|
| 1149 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 1150 |
+
(x, logw, logw_),
|
| 1151 |
+
)
|
| 1152 |
+
|
| 1153 |
+
def infer(
|
| 1154 |
+
self,
|
| 1155 |
+
x,
|
| 1156 |
+
x_lengths,
|
| 1157 |
+
sid=None,
|
| 1158 |
+
noise_scale=1,
|
| 1159 |
+
length_scale=1,
|
| 1160 |
+
noise_scale_w=1.0,
|
| 1161 |
+
max_len=None,
|
| 1162 |
+
):
|
| 1163 |
+
if self.n_speakers > 0:
|
| 1164 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 1165 |
+
else:
|
| 1166 |
+
g = None
|
| 1167 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g)
|
| 1168 |
+
if self.use_sdp:
|
| 1169 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 1170 |
+
else:
|
| 1171 |
+
logw = self.dp(x, x_mask, g=g)
|
| 1172 |
+
w = torch.exp(logw) * x_mask * length_scale
|
| 1173 |
+
w_ceil = torch.ceil(w)
|
| 1174 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
| 1175 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
| 1176 |
+
x_mask.dtype
|
| 1177 |
+
)
|
| 1178 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 1179 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
| 1180 |
+
|
| 1181 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
| 1182 |
+
1, 2
|
| 1183 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 1184 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
| 1185 |
+
1, 2
|
| 1186 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 1187 |
+
|
| 1188 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 1189 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 1190 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
| 1191 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 1192 |
+
|
| 1193 |
+
## currently vits-2 is not capable of voice conversion
|
| 1194 |
+
# def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
| 1195 |
+
# assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
| 1196 |
+
# g_src = self.emb_g(sid_src).unsqueeze(-1)
|
| 1197 |
+
# g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
| 1198 |
+
# z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
| 1199 |
+
# z_p = self.flow(z, y_mask, g=g_src)
|
| 1200 |
+
# z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 1201 |
+
# o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 1202 |
+
# return o_hat, y_mask, (z, z_p, z_hat)
|
modules.py
ADDED
|
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import scipy
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
|
| 9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
| 11 |
+
|
| 12 |
+
import commons
|
| 13 |
+
from commons import init_weights, get_padding
|
| 14 |
+
from transforms import piecewise_rational_quadratic_transform
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
LRELU_SLOPE = 0.1
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class LayerNorm(nn.Module):
|
| 21 |
+
def __init__(self, channels, eps=1e-5):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.channels = channels
|
| 24 |
+
self.eps = eps
|
| 25 |
+
|
| 26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x = x.transpose(1, -1)
|
| 31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 32 |
+
return x.transpose(1, -1)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ConvReluNorm(nn.Module):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
in_channels,
|
| 39 |
+
hidden_channels,
|
| 40 |
+
out_channels,
|
| 41 |
+
kernel_size,
|
| 42 |
+
n_layers,
|
| 43 |
+
p_dropout,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.in_channels = in_channels
|
| 47 |
+
self.hidden_channels = hidden_channels
|
| 48 |
+
self.out_channels = out_channels
|
| 49 |
+
self.kernel_size = kernel_size
|
| 50 |
+
self.n_layers = n_layers
|
| 51 |
+
self.p_dropout = p_dropout
|
| 52 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
| 53 |
+
|
| 54 |
+
self.conv_layers = nn.ModuleList()
|
| 55 |
+
self.norm_layers = nn.ModuleList()
|
| 56 |
+
self.conv_layers.append(
|
| 57 |
+
nn.Conv1d(
|
| 58 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
| 59 |
+
)
|
| 60 |
+
)
|
| 61 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 62 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
| 63 |
+
for _ in range(n_layers - 1):
|
| 64 |
+
self.conv_layers.append(
|
| 65 |
+
nn.Conv1d(
|
| 66 |
+
hidden_channels,
|
| 67 |
+
hidden_channels,
|
| 68 |
+
kernel_size,
|
| 69 |
+
padding=kernel_size // 2,
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 73 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
| 74 |
+
self.proj.weight.data.zero_()
|
| 75 |
+
self.proj.bias.data.zero_()
|
| 76 |
+
|
| 77 |
+
def forward(self, x, x_mask):
|
| 78 |
+
x_org = x
|
| 79 |
+
for i in range(self.n_layers):
|
| 80 |
+
x = self.conv_layers[i](x * x_mask)
|
| 81 |
+
x = self.norm_layers[i](x)
|
| 82 |
+
x = self.relu_drop(x)
|
| 83 |
+
x = x_org + self.proj(x)
|
| 84 |
+
return x * x_mask
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class DDSConv(nn.Module):
|
| 88 |
+
"""
|
| 89 |
+
Dialted and Depth-Separable Convolution
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.channels = channels
|
| 95 |
+
self.kernel_size = kernel_size
|
| 96 |
+
self.n_layers = n_layers
|
| 97 |
+
self.p_dropout = p_dropout
|
| 98 |
+
|
| 99 |
+
self.drop = nn.Dropout(p_dropout)
|
| 100 |
+
self.convs_sep = nn.ModuleList()
|
| 101 |
+
self.convs_1x1 = nn.ModuleList()
|
| 102 |
+
self.norms_1 = nn.ModuleList()
|
| 103 |
+
self.norms_2 = nn.ModuleList()
|
| 104 |
+
for i in range(n_layers):
|
| 105 |
+
dilation = kernel_size**i
|
| 106 |
+
padding = (kernel_size * dilation - dilation) // 2
|
| 107 |
+
self.convs_sep.append(
|
| 108 |
+
nn.Conv1d(
|
| 109 |
+
channels,
|
| 110 |
+
channels,
|
| 111 |
+
kernel_size,
|
| 112 |
+
groups=channels,
|
| 113 |
+
dilation=dilation,
|
| 114 |
+
padding=padding,
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
| 118 |
+
self.norms_1.append(LayerNorm(channels))
|
| 119 |
+
self.norms_2.append(LayerNorm(channels))
|
| 120 |
+
|
| 121 |
+
def forward(self, x, x_mask, g=None):
|
| 122 |
+
if g is not None:
|
| 123 |
+
x = x + g
|
| 124 |
+
for i in range(self.n_layers):
|
| 125 |
+
y = self.convs_sep[i](x * x_mask)
|
| 126 |
+
y = self.norms_1[i](y)
|
| 127 |
+
y = F.gelu(y)
|
| 128 |
+
y = self.convs_1x1[i](y)
|
| 129 |
+
y = self.norms_2[i](y)
|
| 130 |
+
y = F.gelu(y)
|
| 131 |
+
y = self.drop(y)
|
| 132 |
+
x = x + y
|
| 133 |
+
return x * x_mask
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class WN(torch.nn.Module):
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
hidden_channels,
|
| 140 |
+
kernel_size,
|
| 141 |
+
dilation_rate,
|
| 142 |
+
n_layers,
|
| 143 |
+
gin_channels=0,
|
| 144 |
+
p_dropout=0,
|
| 145 |
+
):
|
| 146 |
+
super(WN, self).__init__()
|
| 147 |
+
assert kernel_size % 2 == 1
|
| 148 |
+
self.hidden_channels = hidden_channels
|
| 149 |
+
self.kernel_size = (kernel_size,)
|
| 150 |
+
self.dilation_rate = dilation_rate
|
| 151 |
+
self.n_layers = n_layers
|
| 152 |
+
self.gin_channels = gin_channels
|
| 153 |
+
self.p_dropout = p_dropout
|
| 154 |
+
|
| 155 |
+
self.in_layers = torch.nn.ModuleList()
|
| 156 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
| 157 |
+
self.drop = nn.Dropout(p_dropout)
|
| 158 |
+
|
| 159 |
+
if gin_channels != 0:
|
| 160 |
+
cond_layer = torch.nn.Conv1d(
|
| 161 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
| 162 |
+
)
|
| 163 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
| 164 |
+
|
| 165 |
+
for i in range(n_layers):
|
| 166 |
+
dilation = dilation_rate**i
|
| 167 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
| 168 |
+
in_layer = torch.nn.Conv1d(
|
| 169 |
+
hidden_channels,
|
| 170 |
+
2 * hidden_channels,
|
| 171 |
+
kernel_size,
|
| 172 |
+
dilation=dilation,
|
| 173 |
+
padding=padding,
|
| 174 |
+
)
|
| 175 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
| 176 |
+
self.in_layers.append(in_layer)
|
| 177 |
+
|
| 178 |
+
# last one is not necessary
|
| 179 |
+
if i < n_layers - 1:
|
| 180 |
+
res_skip_channels = 2 * hidden_channels
|
| 181 |
+
else:
|
| 182 |
+
res_skip_channels = hidden_channels
|
| 183 |
+
|
| 184 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
| 185 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
| 186 |
+
self.res_skip_layers.append(res_skip_layer)
|
| 187 |
+
|
| 188 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
| 189 |
+
output = torch.zeros_like(x)
|
| 190 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
| 191 |
+
|
| 192 |
+
if g is not None:
|
| 193 |
+
g = self.cond_layer(g)
|
| 194 |
+
|
| 195 |
+
for i in range(self.n_layers):
|
| 196 |
+
x_in = self.in_layers[i](x)
|
| 197 |
+
if g is not None:
|
| 198 |
+
cond_offset = i * 2 * self.hidden_channels
|
| 199 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
| 200 |
+
else:
|
| 201 |
+
g_l = torch.zeros_like(x_in)
|
| 202 |
+
|
| 203 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
| 204 |
+
acts = self.drop(acts)
|
| 205 |
+
|
| 206 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
| 207 |
+
if i < self.n_layers - 1:
|
| 208 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
| 209 |
+
x = (x + res_acts) * x_mask
|
| 210 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
| 211 |
+
else:
|
| 212 |
+
output = output + res_skip_acts
|
| 213 |
+
return output * x_mask
|
| 214 |
+
|
| 215 |
+
def remove_weight_norm(self):
|
| 216 |
+
if self.gin_channels != 0:
|
| 217 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
| 218 |
+
for l in self.in_layers:
|
| 219 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 220 |
+
for l in self.res_skip_layers:
|
| 221 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class ResBlock1(torch.nn.Module):
|
| 225 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 226 |
+
super(ResBlock1, self).__init__()
|
| 227 |
+
self.convs1 = nn.ModuleList(
|
| 228 |
+
[
|
| 229 |
+
weight_norm(
|
| 230 |
+
Conv1d(
|
| 231 |
+
channels,
|
| 232 |
+
channels,
|
| 233 |
+
kernel_size,
|
| 234 |
+
1,
|
| 235 |
+
dilation=dilation[0],
|
| 236 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 237 |
+
)
|
| 238 |
+
),
|
| 239 |
+
weight_norm(
|
| 240 |
+
Conv1d(
|
| 241 |
+
channels,
|
| 242 |
+
channels,
|
| 243 |
+
kernel_size,
|
| 244 |
+
1,
|
| 245 |
+
dilation=dilation[1],
|
| 246 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 247 |
+
)
|
| 248 |
+
),
|
| 249 |
+
weight_norm(
|
| 250 |
+
Conv1d(
|
| 251 |
+
channels,
|
| 252 |
+
channels,
|
| 253 |
+
kernel_size,
|
| 254 |
+
1,
|
| 255 |
+
dilation=dilation[2],
|
| 256 |
+
padding=get_padding(kernel_size, dilation[2]),
|
| 257 |
+
)
|
| 258 |
+
),
|
| 259 |
+
]
|
| 260 |
+
)
|
| 261 |
+
self.convs1.apply(init_weights)
|
| 262 |
+
|
| 263 |
+
self.convs2 = nn.ModuleList(
|
| 264 |
+
[
|
| 265 |
+
weight_norm(
|
| 266 |
+
Conv1d(
|
| 267 |
+
channels,
|
| 268 |
+
channels,
|
| 269 |
+
kernel_size,
|
| 270 |
+
1,
|
| 271 |
+
dilation=1,
|
| 272 |
+
padding=get_padding(kernel_size, 1),
|
| 273 |
+
)
|
| 274 |
+
),
|
| 275 |
+
weight_norm(
|
| 276 |
+
Conv1d(
|
| 277 |
+
channels,
|
| 278 |
+
channels,
|
| 279 |
+
kernel_size,
|
| 280 |
+
1,
|
| 281 |
+
dilation=1,
|
| 282 |
+
padding=get_padding(kernel_size, 1),
|
| 283 |
+
)
|
| 284 |
+
),
|
| 285 |
+
weight_norm(
|
| 286 |
+
Conv1d(
|
| 287 |
+
channels,
|
| 288 |
+
channels,
|
| 289 |
+
kernel_size,
|
| 290 |
+
1,
|
| 291 |
+
dilation=1,
|
| 292 |
+
padding=get_padding(kernel_size, 1),
|
| 293 |
+
)
|
| 294 |
+
),
|
| 295 |
+
]
|
| 296 |
+
)
|
| 297 |
+
self.convs2.apply(init_weights)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, x_mask=None):
|
| 300 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 301 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 302 |
+
if x_mask is not None:
|
| 303 |
+
xt = xt * x_mask
|
| 304 |
+
xt = c1(xt)
|
| 305 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 306 |
+
if x_mask is not None:
|
| 307 |
+
xt = xt * x_mask
|
| 308 |
+
xt = c2(xt)
|
| 309 |
+
x = xt + x
|
| 310 |
+
if x_mask is not None:
|
| 311 |
+
x = x * x_mask
|
| 312 |
+
return x
|
| 313 |
+
|
| 314 |
+
def remove_weight_norm(self):
|
| 315 |
+
for l in self.convs1:
|
| 316 |
+
remove_weight_norm(l)
|
| 317 |
+
for l in self.convs2:
|
| 318 |
+
remove_weight_norm(l)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
class ResBlock2(torch.nn.Module):
|
| 322 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
| 323 |
+
super(ResBlock2, self).__init__()
|
| 324 |
+
self.convs = nn.ModuleList(
|
| 325 |
+
[
|
| 326 |
+
weight_norm(
|
| 327 |
+
Conv1d(
|
| 328 |
+
channels,
|
| 329 |
+
channels,
|
| 330 |
+
kernel_size,
|
| 331 |
+
1,
|
| 332 |
+
dilation=dilation[0],
|
| 333 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 334 |
+
)
|
| 335 |
+
),
|
| 336 |
+
weight_norm(
|
| 337 |
+
Conv1d(
|
| 338 |
+
channels,
|
| 339 |
+
channels,
|
| 340 |
+
kernel_size,
|
| 341 |
+
1,
|
| 342 |
+
dilation=dilation[1],
|
| 343 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 344 |
+
)
|
| 345 |
+
),
|
| 346 |
+
]
|
| 347 |
+
)
|
| 348 |
+
self.convs.apply(init_weights)
|
| 349 |
+
|
| 350 |
+
def forward(self, x, x_mask=None):
|
| 351 |
+
for c in self.convs:
|
| 352 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 353 |
+
if x_mask is not None:
|
| 354 |
+
xt = xt * x_mask
|
| 355 |
+
xt = c(xt)
|
| 356 |
+
x = xt + x
|
| 357 |
+
if x_mask is not None:
|
| 358 |
+
x = x * x_mask
|
| 359 |
+
return x
|
| 360 |
+
|
| 361 |
+
def remove_weight_norm(self):
|
| 362 |
+
for l in self.convs:
|
| 363 |
+
remove_weight_norm(l)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
class Log(nn.Module):
|
| 367 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 368 |
+
if not reverse:
|
| 369 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
| 370 |
+
logdet = torch.sum(-y, [1, 2])
|
| 371 |
+
return y, logdet
|
| 372 |
+
else:
|
| 373 |
+
x = torch.exp(x) * x_mask
|
| 374 |
+
return x
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class Flip(nn.Module):
|
| 378 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
| 379 |
+
x = torch.flip(x, [1])
|
| 380 |
+
if not reverse:
|
| 381 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
| 382 |
+
return x, logdet
|
| 383 |
+
else:
|
| 384 |
+
return x
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class ElementwiseAffine(nn.Module):
|
| 388 |
+
def __init__(self, channels):
|
| 389 |
+
super().__init__()
|
| 390 |
+
self.channels = channels
|
| 391 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
| 392 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
| 393 |
+
|
| 394 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 395 |
+
if not reverse:
|
| 396 |
+
y = self.m + torch.exp(self.logs) * x
|
| 397 |
+
y = y * x_mask
|
| 398 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
| 399 |
+
return y, logdet
|
| 400 |
+
else:
|
| 401 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
| 402 |
+
return x
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class ResidualCouplingLayer(nn.Module):
|
| 406 |
+
def __init__(
|
| 407 |
+
self,
|
| 408 |
+
channels,
|
| 409 |
+
hidden_channels,
|
| 410 |
+
kernel_size,
|
| 411 |
+
dilation_rate,
|
| 412 |
+
n_layers,
|
| 413 |
+
p_dropout=0,
|
| 414 |
+
gin_channels=0,
|
| 415 |
+
mean_only=False,
|
| 416 |
+
):
|
| 417 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 418 |
+
super().__init__()
|
| 419 |
+
self.channels = channels
|
| 420 |
+
self.hidden_channels = hidden_channels
|
| 421 |
+
self.kernel_size = kernel_size
|
| 422 |
+
self.dilation_rate = dilation_rate
|
| 423 |
+
self.n_layers = n_layers
|
| 424 |
+
self.half_channels = channels // 2
|
| 425 |
+
self.mean_only = mean_only
|
| 426 |
+
|
| 427 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
| 428 |
+
self.enc = WN(
|
| 429 |
+
hidden_channels,
|
| 430 |
+
kernel_size,
|
| 431 |
+
dilation_rate,
|
| 432 |
+
n_layers,
|
| 433 |
+
p_dropout=p_dropout,
|
| 434 |
+
gin_channels=gin_channels,
|
| 435 |
+
)
|
| 436 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
| 437 |
+
self.post.weight.data.zero_()
|
| 438 |
+
self.post.bias.data.zero_()
|
| 439 |
+
|
| 440 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 441 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 442 |
+
h = self.pre(x0) * x_mask
|
| 443 |
+
h = self.enc(h, x_mask, g=g)
|
| 444 |
+
stats = self.post(h) * x_mask
|
| 445 |
+
if not self.mean_only:
|
| 446 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 447 |
+
else:
|
| 448 |
+
m = stats
|
| 449 |
+
logs = torch.zeros_like(m)
|
| 450 |
+
|
| 451 |
+
if not reverse:
|
| 452 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 453 |
+
x = torch.cat([x0, x1], 1)
|
| 454 |
+
logdet = torch.sum(logs, [1, 2])
|
| 455 |
+
return x, logdet
|
| 456 |
+
else:
|
| 457 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 458 |
+
x = torch.cat([x0, x1], 1)
|
| 459 |
+
return x
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
class ConvFlow(nn.Module):
|
| 463 |
+
def __init__(
|
| 464 |
+
self,
|
| 465 |
+
in_channels,
|
| 466 |
+
filter_channels,
|
| 467 |
+
kernel_size,
|
| 468 |
+
n_layers,
|
| 469 |
+
num_bins=10,
|
| 470 |
+
tail_bound=5.0,
|
| 471 |
+
):
|
| 472 |
+
super().__init__()
|
| 473 |
+
self.in_channels = in_channels
|
| 474 |
+
self.filter_channels = filter_channels
|
| 475 |
+
self.kernel_size = kernel_size
|
| 476 |
+
self.n_layers = n_layers
|
| 477 |
+
self.num_bins = num_bins
|
| 478 |
+
self.tail_bound = tail_bound
|
| 479 |
+
self.half_channels = in_channels // 2
|
| 480 |
+
|
| 481 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
| 482 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
| 483 |
+
self.proj = nn.Conv1d(
|
| 484 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
| 485 |
+
)
|
| 486 |
+
self.proj.weight.data.zero_()
|
| 487 |
+
self.proj.bias.data.zero_()
|
| 488 |
+
|
| 489 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 490 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 491 |
+
h = self.pre(x0)
|
| 492 |
+
h = self.convs(h, x_mask, g=g)
|
| 493 |
+
h = self.proj(h) * x_mask
|
| 494 |
+
|
| 495 |
+
b, c, t = x0.shape
|
| 496 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
| 497 |
+
|
| 498 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
| 499 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
| 500 |
+
self.filter_channels
|
| 501 |
+
)
|
| 502 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
| 503 |
+
|
| 504 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
| 505 |
+
x1,
|
| 506 |
+
unnormalized_widths,
|
| 507 |
+
unnormalized_heights,
|
| 508 |
+
unnormalized_derivatives,
|
| 509 |
+
inverse=reverse,
|
| 510 |
+
tails="linear",
|
| 511 |
+
tail_bound=self.tail_bound,
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
| 515 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
| 516 |
+
if not reverse:
|
| 517 |
+
return x, logdet
|
| 518 |
+
else:
|
| 519 |
+
return x
|
monotonic_align/__init__.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from .monotonic_align.core import maximum_path_c
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def maximum_path(neg_cent, mask):
|
| 7 |
+
"""Cython optimized version.
|
| 8 |
+
neg_cent: [b, t_t, t_s]
|
| 9 |
+
mask: [b, t_t, t_s]
|
| 10 |
+
"""
|
| 11 |
+
device = neg_cent.device
|
| 12 |
+
dtype = neg_cent.dtype
|
| 13 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
| 14 |
+
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
| 15 |
+
|
| 16 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
| 17 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
| 18 |
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
| 19 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
monotonic_align/core.pyx
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cimport cython
|
| 2 |
+
from cython.parallel import prange
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
@cython.boundscheck(False)
|
| 6 |
+
@cython.wraparound(False)
|
| 7 |
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
|
| 8 |
+
cdef int x
|
| 9 |
+
cdef int y
|
| 10 |
+
cdef float v_prev
|
| 11 |
+
cdef float v_cur
|
| 12 |
+
cdef float tmp
|
| 13 |
+
cdef int index = t_x - 1
|
| 14 |
+
|
| 15 |
+
for y in range(t_y):
|
| 16 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
| 17 |
+
if x == y:
|
| 18 |
+
v_cur = max_neg_val
|
| 19 |
+
else:
|
| 20 |
+
v_cur = value[y-1, x]
|
| 21 |
+
if x == 0:
|
| 22 |
+
if y == 0:
|
| 23 |
+
v_prev = 0.
|
| 24 |
+
else:
|
| 25 |
+
v_prev = max_neg_val
|
| 26 |
+
else:
|
| 27 |
+
v_prev = value[y-1, x-1]
|
| 28 |
+
value[y, x] += max(v_prev, v_cur)
|
| 29 |
+
|
| 30 |
+
for y in range(t_y - 1, -1, -1):
|
| 31 |
+
path[y, index] = 1
|
| 32 |
+
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
| 33 |
+
index = index - 1
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@cython.boundscheck(False)
|
| 37 |
+
@cython.wraparound(False)
|
| 38 |
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
|
| 39 |
+
cdef int b = paths.shape[0]
|
| 40 |
+
cdef int i
|
| 41 |
+
for i in prange(b, nogil=True):
|
| 42 |
+
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
|
monotonic_align/monotonic_align/.gitkeep
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
monotonic_align/setup.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from distutils.core import setup
|
| 2 |
+
from Cython.Build import cythonize
|
| 3 |
+
import numpy
|
| 4 |
+
|
| 5 |
+
setup(
|
| 6 |
+
name="monotonic_align",
|
| 7 |
+
ext_modules=cythonize("core.pyx"),
|
| 8 |
+
include_dirs=[numpy.get_include()],
|
| 9 |
+
)
|
preprocess.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
import json
|
| 4 |
+
import sys
|
| 5 |
+
sys.setrecursionlimit(500000) # Fix the error message of RecursionError: maximum recursion depth exceeded while calling a Python object. You can change the number as you want.
|
| 6 |
+
|
| 7 |
+
if __name__ == "__main__":
|
| 8 |
+
parser = argparse.ArgumentParser()
|
| 9 |
+
parser.add_argument("--add_auxiliary_data", type=bool, default="False", help="Whether to add extra data as fine-tuning helper")
|
| 10 |
+
parser.add_argument("--languages", default="C")
|
| 11 |
+
args = parser.parse_args()
|
| 12 |
+
if args.languages == "CJE":
|
| 13 |
+
langs = ["[ZH]", "[JA]", "[EN]"]
|
| 14 |
+
elif args.languages == "CJ":
|
| 15 |
+
langs = ["[ZH]", "[JA]"]
|
| 16 |
+
elif args.languages == "C":
|
| 17 |
+
langs = ["[ZH]"]
|
| 18 |
+
new_annos = []
|
| 19 |
+
# Source 1: transcribed short audios
|
| 20 |
+
if os.path.exists("./filelists/short_character_anno.list"):
|
| 21 |
+
with open("./filelists/short_character_anno.list", 'r', encoding='utf-8') as f:
|
| 22 |
+
short_character_anno = f.readlines()
|
| 23 |
+
new_annos += short_character_anno
|
| 24 |
+
|
| 25 |
+
# Get all speaker names
|
| 26 |
+
speakers = []
|
| 27 |
+
for line in new_annos:
|
| 28 |
+
path, speaker, text = line.split("|")
|
| 29 |
+
if speaker not in speakers:
|
| 30 |
+
speakers.append(speaker)
|
| 31 |
+
assert (len(speakers) != 0), "No audio file found. Please check your uploaded file structure."
|
| 32 |
+
if True:
|
| 33 |
+
# Do not add extra helper data
|
| 34 |
+
# STEP 1: modify config file
|
| 35 |
+
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
| 36 |
+
hps = json.load(f)
|
| 37 |
+
|
| 38 |
+
# assign ids to new speakers
|
| 39 |
+
speaker2id = {}
|
| 40 |
+
for i, speaker in enumerate(speakers):
|
| 41 |
+
speaker2id[speaker] = i
|
| 42 |
+
# modify n_speakers
|
| 43 |
+
hps['data']["n_speakers"] = len(speakers)
|
| 44 |
+
# overwrite speaker names
|
| 45 |
+
hps['speakers'] = speaker2id
|
| 46 |
+
hps['train']['log_interval'] = 10
|
| 47 |
+
hps['train']['eval_interval'] = 100
|
| 48 |
+
hps['train']['batch_size'] = 16
|
| 49 |
+
hps['data']['training_files'] = "final_annotation_train.txt"
|
| 50 |
+
hps['data']['validation_files'] = "final_annotation_val.txt"
|
| 51 |
+
# save modified config
|
| 52 |
+
with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
| 53 |
+
json.dump(hps, f, indent=2)
|
| 54 |
+
|
| 55 |
+
# STEP 2: clean annotations, replace speaker names with assigned speaker IDs
|
| 56 |
+
import text
|
| 57 |
+
|
| 58 |
+
cleaned_new_annos = []
|
| 59 |
+
for i, line in enumerate(new_annos):
|
| 60 |
+
path, speaker, txt = line.split("|")
|
| 61 |
+
if len(txt) > 150:
|
| 62 |
+
continue
|
| 63 |
+
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']).replace("[ZH]", "")
|
| 64 |
+
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
| 65 |
+
cleaned_new_annos.append(path + "|" + cleaned_text)
|
| 66 |
+
|
| 67 |
+
final_annos = cleaned_new_annos
|
| 68 |
+
# save annotation file
|
| 69 |
+
with open("./filelists/final_annotation_train.txt", 'w', encoding='utf-8') as f:
|
| 70 |
+
for line in final_annos:
|
| 71 |
+
f.write(line)
|
| 72 |
+
# save annotation file for validation
|
| 73 |
+
with open("./filelists/final_annotation_val.txt", 'w', encoding='utf-8') as f:
|
| 74 |
+
for line in cleaned_new_annos:
|
| 75 |
+
f.write(line)
|
| 76 |
+
print("finished")
|
requirements.txt
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
librosa==0.10.1
|
| 2 |
+
onnx==1.14.1
|
| 3 |
+
onnxruntime==1.15.1
|
| 4 |
+
matplotlib
|
| 5 |
+
numpy
|
| 6 |
+
numba
|
| 7 |
+
phonemizer
|
| 8 |
+
scipy
|
| 9 |
+
tensorboard
|
| 10 |
+
torch
|
| 11 |
+
torchaudio
|
| 12 |
+
torchvision
|
| 13 |
+
Unidecode
|
| 14 |
+
amfm_decompy
|
| 15 |
+
jieba
|
| 16 |
+
transformers
|
| 17 |
+
pypinyin
|
| 18 |
+
cn2an
|
| 19 |
+
gradio
|
| 20 |
+
av
|
| 21 |
+
mecab-python3
|
| 22 |
+
loguru
|
| 23 |
+
unidic-lite
|
| 24 |
+
cmudict
|
| 25 |
+
fugashi
|
| 26 |
+
num2words
|
| 27 |
+
Cython==0.29.21
|
| 28 |
+
openai-whisper
|
| 29 |
+
protobuf==3.20.*
|
short_audio_transcribe.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import whisper
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import torchaudio
|
| 5 |
+
import argparse
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
lang2token = {
|
| 9 |
+
'zh': "[ZH]",
|
| 10 |
+
'ja': "[JA]",
|
| 11 |
+
"en": "[EN]",
|
| 12 |
+
}
|
| 13 |
+
def transcribe_one(audio_path):
|
| 14 |
+
# load audio and pad/trim it to fit 30 seconds
|
| 15 |
+
audio = whisper.load_audio(audio_path)
|
| 16 |
+
audio = whisper.pad_or_trim(audio)
|
| 17 |
+
|
| 18 |
+
# make log-Mel spectrogram and move to the same device as the model
|
| 19 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
| 20 |
+
|
| 21 |
+
# detect the spoken language
|
| 22 |
+
_, probs = model.detect_language(mel)
|
| 23 |
+
print(f"Detected language: {max(probs, key=probs.get)}")
|
| 24 |
+
lang = max(probs, key=probs.get)
|
| 25 |
+
# decode the audio
|
| 26 |
+
options = whisper.DecodingOptions(beam_size=5)
|
| 27 |
+
result = whisper.decode(model, mel, options)
|
| 28 |
+
|
| 29 |
+
# print the recognized text
|
| 30 |
+
print(result.text)
|
| 31 |
+
return lang, result.text
|
| 32 |
+
if __name__ == "__main__":
|
| 33 |
+
parser = argparse.ArgumentParser()
|
| 34 |
+
parser.add_argument("--languages", default="CJE")
|
| 35 |
+
parser.add_argument("--whisper_size", default="medium")
|
| 36 |
+
args = parser.parse_args()
|
| 37 |
+
if args.languages == "CJE":
|
| 38 |
+
lang2token = {
|
| 39 |
+
'zh': "[ZH]",
|
| 40 |
+
'ja': "[JA]",
|
| 41 |
+
"en": "[EN]",
|
| 42 |
+
}
|
| 43 |
+
elif args.languages == "CJ":
|
| 44 |
+
lang2token = {
|
| 45 |
+
'zh': "[ZH]",
|
| 46 |
+
'ja': "[JA]",
|
| 47 |
+
}
|
| 48 |
+
elif args.languages == "C":
|
| 49 |
+
lang2token = {
|
| 50 |
+
'zh': "[ZH]",
|
| 51 |
+
}
|
| 52 |
+
assert (torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
| 53 |
+
model = whisper.load_model(args.whisper_size)
|
| 54 |
+
parent_dir = "./custom_character_voice/"
|
| 55 |
+
speaker_names = list(os.walk(parent_dir))[0][1]
|
| 56 |
+
speaker_annos = []
|
| 57 |
+
total_files = sum([len(files) for r, d, files in os.walk(parent_dir)])
|
| 58 |
+
# resample audios
|
| 59 |
+
# 2023/4/21: Get the target sampling rate
|
| 60 |
+
with open("./configs/config.json", 'r', encoding='utf-8') as f:
|
| 61 |
+
hps = json.load(f)
|
| 62 |
+
target_sr = hps['data']['sampling_rate']
|
| 63 |
+
processed_files = 0
|
| 64 |
+
for speaker in speaker_names:
|
| 65 |
+
for i, wavfile in enumerate(list(os.walk(parent_dir + speaker))[0][2]):
|
| 66 |
+
# try to load file as audio
|
| 67 |
+
if wavfile.startswith("processed_"):
|
| 68 |
+
continue
|
| 69 |
+
try:
|
| 70 |
+
wav, sr = torchaudio.load(parent_dir + speaker + "/" + wavfile, frame_offset=0, num_frames=-1, normalize=True,
|
| 71 |
+
channels_first=True)
|
| 72 |
+
wav = wav.mean(dim=0).unsqueeze(0)
|
| 73 |
+
if sr != target_sr:
|
| 74 |
+
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(wav)
|
| 75 |
+
if wav.shape[1] / sr > 20:
|
| 76 |
+
print(f"{wavfile} too long, ignoring\n")
|
| 77 |
+
save_path = parent_dir + speaker + "/" + f"processed_{i}.wav"
|
| 78 |
+
torchaudio.save(save_path, wav, target_sr, channels_first=True)
|
| 79 |
+
# transcribe text
|
| 80 |
+
lang, text = transcribe_one(save_path)
|
| 81 |
+
if lang not in list(lang2token.keys()):
|
| 82 |
+
print(f"{lang} not supported, ignoring\n")
|
| 83 |
+
continue
|
| 84 |
+
text = text + "\n"#
|
| 85 |
+
#text = lang2token[lang] + text + lang2token[lang] + "\n"
|
| 86 |
+
speaker_annos.append(save_path + "|" + "0" + "|" + text)
|
| 87 |
+
|
| 88 |
+
processed_files += 1
|
| 89 |
+
print(f"Processed: {processed_files}/{total_files}")
|
| 90 |
+
except:
|
| 91 |
+
continue
|
| 92 |
+
|
| 93 |
+
# # clean annotation
|
| 94 |
+
# import argparse
|
| 95 |
+
# import text
|
| 96 |
+
# from utils import load_filepaths_and_text
|
| 97 |
+
# for i, line in enumerate(speaker_annos):
|
| 98 |
+
# path, sid, txt = line.split("|")
|
| 99 |
+
# cleaned_text = text._clean_text(txt, ["cjke_cleaners2"])
|
| 100 |
+
# cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
| 101 |
+
# speaker_annos[i] = path + "|" + sid + "|" + cleaned_text
|
| 102 |
+
# write into annotation
|
| 103 |
+
if len(speaker_annos) == 0:
|
| 104 |
+
print("Warning: no short audios found, this IS expected if you have only uploaded long audios, videos or video links.")
|
| 105 |
+
print("this IS NOT expected if you have uploaded a zip file of short audios. Please check your file structure or make sure your audio language is supported.")
|
| 106 |
+
with open("./filelists/short_character_anno.list", 'w', encoding='utf-8') as f:
|
| 107 |
+
for line in speaker_annos:
|
| 108 |
+
f.write(line)
|
| 109 |
+
|
| 110 |
+
# import json
|
| 111 |
+
# # generate new config
|
| 112 |
+
# with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
| 113 |
+
# hps = json.load(f)
|
| 114 |
+
# # modify n_speakers
|
| 115 |
+
# hps['data']["n_speakers"] = 1000 + len(speaker2id)
|
| 116 |
+
# # add speaker names
|
| 117 |
+
# for speaker in speaker_names:
|
| 118 |
+
# hps['speakers'][speaker] = speaker2id[speaker]
|
| 119 |
+
# # save modified config
|
| 120 |
+
# with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
| 121 |
+
# json.dump(hps, f, indent=2)
|
| 122 |
+
# print("finished")
|
text/LICENSE
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Copyright (c) 2017 Keith Ito
|
| 2 |
+
|
| 3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 4 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 5 |
+
in the Software without restriction, including without limitation the rights
|
| 6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 7 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 8 |
+
furnished to do so, subject to the following conditions:
|
| 9 |
+
|
| 10 |
+
The above copyright notice and this permission notice shall be included in
|
| 11 |
+
all copies or substantial portions of the Software.
|
| 12 |
+
|
| 13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
| 19 |
+
THE SOFTWARE.
|
text/__init__.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" from https://github.com/keithito/tacotron """
|
| 2 |
+
from text import cleaners
|
| 3 |
+
from text.symbols import symbols
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
| 7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
| 8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def text_to_sequence(text, cleaner_names):
|
| 12 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
| 13 |
+
Args:
|
| 14 |
+
text: string to convert to a sequence
|
| 15 |
+
cleaner_names: names of the cleaner functions to run the text through
|
| 16 |
+
Returns:
|
| 17 |
+
List of integers corresponding to the symbols in the text
|
| 18 |
+
"""
|
| 19 |
+
sequence = []
|
| 20 |
+
|
| 21 |
+
clean_text = _clean_text(text, cleaner_names)
|
| 22 |
+
for symbol in clean_text:
|
| 23 |
+
if symbol in _symbol_to_id.keys():
|
| 24 |
+
symbol_id = _symbol_to_id[symbol]
|
| 25 |
+
sequence += [symbol_id]
|
| 26 |
+
else:
|
| 27 |
+
continue
|
| 28 |
+
return sequence
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def cleaned_text_to_sequence(cleaned_text):
|
| 32 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
| 33 |
+
Args:
|
| 34 |
+
text: string to convert to a sequence
|
| 35 |
+
Returns:
|
| 36 |
+
List of integers corresponding to the symbols in the text
|
| 37 |
+
"""
|
| 38 |
+
sequence = []
|
| 39 |
+
|
| 40 |
+
for symbol in cleaned_text:
|
| 41 |
+
if symbol in _symbol_to_id.keys():
|
| 42 |
+
symbol_id = _symbol_to_id[symbol]
|
| 43 |
+
sequence += [symbol_id]
|
| 44 |
+
else:
|
| 45 |
+
continue
|
| 46 |
+
return sequence
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def sequence_to_text(sequence):
|
| 50 |
+
"""Converts a sequence of IDs back to a string"""
|
| 51 |
+
result = ""
|
| 52 |
+
for symbol_id in sequence:
|
| 53 |
+
s = _id_to_symbol[symbol_id]
|
| 54 |
+
result += s
|
| 55 |
+
return result
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _clean_text(text, cleaner_names):
|
| 59 |
+
for name in cleaner_names:
|
| 60 |
+
cleaner = getattr(cleaners, name)
|
| 61 |
+
if not cleaner:
|
| 62 |
+
raise Exception("Unknown cleaner: %s" % name)
|
| 63 |
+
text = cleaner(text)
|
| 64 |
+
return text
|
text/__pycache__/__init__.cpython-37.pyc
ADDED
|
Binary file (2.34 kB). View file
|
|
|
text/__pycache__/mandarin.cpython-37.pyc
ADDED
|
Binary file (7.51 kB). View file
|
|
|
text/cleaners.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
|
| 3 |
+
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo, chinese_to_romaji, chinese_to_lazy_ipa, chinese_to_ipa, chinese_to_ipa2
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def chinese_cleaners(text):
|
| 7 |
+
'''Pipeline for Chinese text'''
|
| 8 |
+
text = text.replace("[ZH]", "")
|
| 9 |
+
text = number_to_chinese(text)
|
| 10 |
+
text = chinese_to_bopomofo(text)
|
| 11 |
+
text = latin_to_bopomofo(text)
|
| 12 |
+
text = re.sub(r'([ˉˊˇˋ˙])$', r'\1。', text)
|
| 13 |
+
return text
|
text/mandarin.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import re
|
| 4 |
+
from pypinyin import lazy_pinyin, BOPOMOFO
|
| 5 |
+
import jieba
|
| 6 |
+
import cn2an
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# List of (Latin alphabet, bopomofo) pairs:
|
| 11 |
+
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 12 |
+
('a', 'ㄟˉ'),
|
| 13 |
+
('b', 'ㄅㄧˋ'),
|
| 14 |
+
('c', 'ㄙㄧˉ'),
|
| 15 |
+
('d', 'ㄉㄧˋ'),
|
| 16 |
+
('e', 'ㄧˋ'),
|
| 17 |
+
('f', 'ㄝˊㄈㄨˋ'),
|
| 18 |
+
('g', 'ㄐㄧˋ'),
|
| 19 |
+
('h', 'ㄝˇㄑㄩˋ'),
|
| 20 |
+
('i', 'ㄞˋ'),
|
| 21 |
+
('j', 'ㄐㄟˋ'),
|
| 22 |
+
('k', 'ㄎㄟˋ'),
|
| 23 |
+
('l', 'ㄝˊㄛˋ'),
|
| 24 |
+
('m', 'ㄝˊㄇㄨˋ'),
|
| 25 |
+
('n', 'ㄣˉ'),
|
| 26 |
+
('o', 'ㄡˉ'),
|
| 27 |
+
('p', 'ㄆㄧˉ'),
|
| 28 |
+
('q', 'ㄎㄧㄡˉ'),
|
| 29 |
+
('r', 'ㄚˋ'),
|
| 30 |
+
('s', 'ㄝˊㄙˋ'),
|
| 31 |
+
('t', 'ㄊㄧˋ'),
|
| 32 |
+
('u', 'ㄧㄡˉ'),
|
| 33 |
+
('v', 'ㄨㄧˉ'),
|
| 34 |
+
('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
|
| 35 |
+
('x', 'ㄝˉㄎㄨˋㄙˋ'),
|
| 36 |
+
('y', 'ㄨㄞˋ'),
|
| 37 |
+
('z', 'ㄗㄟˋ')
|
| 38 |
+
]]
|
| 39 |
+
|
| 40 |
+
# List of (bopomofo, romaji) pairs:
|
| 41 |
+
_bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 42 |
+
('ㄅㄛ', 'p⁼wo'),
|
| 43 |
+
('ㄆㄛ', 'pʰwo'),
|
| 44 |
+
('ㄇㄛ', 'mwo'),
|
| 45 |
+
('ㄈㄛ', 'fwo'),
|
| 46 |
+
('ㄅ', 'p⁼'),
|
| 47 |
+
('ㄆ', 'pʰ'),
|
| 48 |
+
('ㄇ', 'm'),
|
| 49 |
+
('ㄈ', 'f'),
|
| 50 |
+
('ㄉ', 't⁼'),
|
| 51 |
+
('ㄊ', 'tʰ'),
|
| 52 |
+
('ㄋ', 'n'),
|
| 53 |
+
('ㄌ', 'l'),
|
| 54 |
+
('ㄍ', 'k⁼'),
|
| 55 |
+
('ㄎ', 'kʰ'),
|
| 56 |
+
('ㄏ', 'h'),
|
| 57 |
+
('ㄐ', 'ʧ⁼'),
|
| 58 |
+
('ㄑ', 'ʧʰ'),
|
| 59 |
+
('ㄒ', 'ʃ'),
|
| 60 |
+
('ㄓ', 'ʦ`⁼'),
|
| 61 |
+
('ㄔ', 'ʦ`ʰ'),
|
| 62 |
+
('ㄕ', 's`'),
|
| 63 |
+
('ㄖ', 'ɹ`'),
|
| 64 |
+
('ㄗ', 'ʦ⁼'),
|
| 65 |
+
('ㄘ', 'ʦʰ'),
|
| 66 |
+
('ㄙ', 's'),
|
| 67 |
+
('ㄚ', 'a'),
|
| 68 |
+
('ㄛ', 'o'),
|
| 69 |
+
('ㄜ', 'ə'),
|
| 70 |
+
('ㄝ', 'e'),
|
| 71 |
+
('ㄞ', 'ai'),
|
| 72 |
+
('ㄟ', 'ei'),
|
| 73 |
+
('ㄠ', 'au'),
|
| 74 |
+
('ㄡ', 'ou'),
|
| 75 |
+
('ㄧㄢ', 'yeNN'),
|
| 76 |
+
('ㄢ', 'aNN'),
|
| 77 |
+
('ㄧㄣ', 'iNN'),
|
| 78 |
+
('ㄣ', 'əNN'),
|
| 79 |
+
('ㄤ', 'aNg'),
|
| 80 |
+
('ㄧㄥ', 'iNg'),
|
| 81 |
+
('ㄨㄥ', 'uNg'),
|
| 82 |
+
('ㄩㄥ', 'yuNg'),
|
| 83 |
+
('ㄥ', 'əNg'),
|
| 84 |
+
('ㄦ', 'əɻ'),
|
| 85 |
+
('ㄧ', 'i'),
|
| 86 |
+
('ㄨ', 'u'),
|
| 87 |
+
('ㄩ', 'ɥ'),
|
| 88 |
+
('ˉ', '→'),
|
| 89 |
+
('ˊ', '↑'),
|
| 90 |
+
('ˇ', '↓↑'),
|
| 91 |
+
('ˋ', '↓'),
|
| 92 |
+
('˙', ''),
|
| 93 |
+
(',', ','),
|
| 94 |
+
('。', '.'),
|
| 95 |
+
('!', '!'),
|
| 96 |
+
('?', '?'),
|
| 97 |
+
('—', '-')
|
| 98 |
+
]]
|
| 99 |
+
|
| 100 |
+
# List of (romaji, ipa) pairs:
|
| 101 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
| 102 |
+
('ʃy', 'ʃ'),
|
| 103 |
+
('ʧʰy', 'ʧʰ'),
|
| 104 |
+
('ʧ⁼y', 'ʧ⁼'),
|
| 105 |
+
('NN', 'n'),
|
| 106 |
+
('Ng', 'ŋ'),
|
| 107 |
+
('y', 'j'),
|
| 108 |
+
('h', 'x')
|
| 109 |
+
]]
|
| 110 |
+
|
| 111 |
+
# List of (bopomofo, ipa) pairs:
|
| 112 |
+
_bopomofo_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 113 |
+
('ㄅㄛ', 'p⁼wo'),
|
| 114 |
+
('ㄆㄛ', 'pʰwo'),
|
| 115 |
+
('ㄇㄛ', 'mwo'),
|
| 116 |
+
('ㄈㄛ', 'fwo'),
|
| 117 |
+
('ㄅ', 'p⁼'),
|
| 118 |
+
('ㄆ', 'pʰ'),
|
| 119 |
+
('ㄇ', 'm'),
|
| 120 |
+
('ㄈ', 'f'),
|
| 121 |
+
('ㄉ', 't⁼'),
|
| 122 |
+
('ㄊ', 'tʰ'),
|
| 123 |
+
('ㄋ', 'n'),
|
| 124 |
+
('ㄌ', 'l'),
|
| 125 |
+
('ㄍ', 'k⁼'),
|
| 126 |
+
('ㄎ', 'kʰ'),
|
| 127 |
+
('ㄏ', 'x'),
|
| 128 |
+
('ㄐ', 'tʃ⁼'),
|
| 129 |
+
('ㄑ', 'tʃʰ'),
|
| 130 |
+
('ㄒ', 'ʃ'),
|
| 131 |
+
('ㄓ', 'ts`⁼'),
|
| 132 |
+
('ㄔ', 'ts`ʰ'),
|
| 133 |
+
('ㄕ', 's`'),
|
| 134 |
+
('ㄖ', 'ɹ`'),
|
| 135 |
+
('ㄗ', 'ts⁼'),
|
| 136 |
+
('ㄘ', 'tsʰ'),
|
| 137 |
+
('ㄙ', 's'),
|
| 138 |
+
('ㄚ', 'a'),
|
| 139 |
+
('ㄛ', 'o'),
|
| 140 |
+
('ㄜ', 'ə'),
|
| 141 |
+
('ㄝ', 'ɛ'),
|
| 142 |
+
('ㄞ', 'aɪ'),
|
| 143 |
+
('ㄟ', 'eɪ'),
|
| 144 |
+
('ㄠ', 'ɑʊ'),
|
| 145 |
+
('ㄡ', 'oʊ'),
|
| 146 |
+
('ㄧㄢ', 'jɛn'),
|
| 147 |
+
('ㄩㄢ', 'ɥæn'),
|
| 148 |
+
('ㄢ', 'an'),
|
| 149 |
+
('ㄧㄣ', 'in'),
|
| 150 |
+
('ㄩㄣ', 'ɥn'),
|
| 151 |
+
('ㄣ', 'ən'),
|
| 152 |
+
('ㄤ', 'ɑŋ'),
|
| 153 |
+
('ㄧㄥ', 'iŋ'),
|
| 154 |
+
('ㄨㄥ', 'ʊŋ'),
|
| 155 |
+
('ㄩㄥ', 'jʊŋ'),
|
| 156 |
+
('ㄥ', 'əŋ'),
|
| 157 |
+
('ㄦ', 'əɻ'),
|
| 158 |
+
('ㄧ', 'i'),
|
| 159 |
+
('ㄨ', 'u'),
|
| 160 |
+
('ㄩ', 'ɥ'),
|
| 161 |
+
('ˉ', '→'),
|
| 162 |
+
('ˊ', '↑'),
|
| 163 |
+
('ˇ', '↓↑'),
|
| 164 |
+
('ˋ', '↓'),
|
| 165 |
+
('˙', ''),
|
| 166 |
+
(',', ','),
|
| 167 |
+
('。', '.'),
|
| 168 |
+
('!', '!'),
|
| 169 |
+
('?', '?'),
|
| 170 |
+
('—', '-')
|
| 171 |
+
]]
|
| 172 |
+
|
| 173 |
+
# List of (bopomofo, ipa2) pairs:
|
| 174 |
+
_bopomofo_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
| 175 |
+
('ㄅㄛ', 'pwo'),
|
| 176 |
+
('ㄆㄛ', 'pʰwo'),
|
| 177 |
+
('ㄇㄛ', 'mwo'),
|
| 178 |
+
('ㄈㄛ', 'fwo'),
|
| 179 |
+
('ㄅ', 'p'),
|
| 180 |
+
('ㄆ', 'pʰ'),
|
| 181 |
+
('ㄇ', 'm'),
|
| 182 |
+
('ㄈ', 'f'),
|
| 183 |
+
('ㄉ', 't'),
|
| 184 |
+
('ㄊ', 'tʰ'),
|
| 185 |
+
('ㄋ', 'n'),
|
| 186 |
+
('ㄌ', 'l'),
|
| 187 |
+
('ㄍ', 'k'),
|
| 188 |
+
('ㄎ', 'kʰ'),
|
| 189 |
+
('ㄏ', 'h'),
|
| 190 |
+
('ㄐ', 'tɕ'),
|
| 191 |
+
('ㄑ', 'tɕʰ'),
|
| 192 |
+
('ㄒ', 'ɕ'),
|
| 193 |
+
('ㄓ', 'tʂ'),
|
| 194 |
+
('ㄔ', 'tʂʰ'),
|
| 195 |
+
('ㄕ', 'ʂ'),
|
| 196 |
+
('ㄖ', 'ɻ'),
|
| 197 |
+
('ㄗ', 'ts'),
|
| 198 |
+
('ㄘ', 'tsʰ'),
|
| 199 |
+
('ㄙ', 's'),
|
| 200 |
+
('ㄚ', 'a'),
|
| 201 |
+
('ㄛ', 'o'),
|
| 202 |
+
('ㄜ', 'ɤ'),
|
| 203 |
+
('ㄝ', 'ɛ'),
|
| 204 |
+
('ㄞ', 'aɪ'),
|
| 205 |
+
('ㄟ', 'eɪ'),
|
| 206 |
+
('ㄠ', 'ɑʊ'),
|
| 207 |
+
('ㄡ', 'oʊ'),
|
| 208 |
+
('ㄧㄢ', 'jɛn'),
|
| 209 |
+
('ㄩㄢ', 'yæn'),
|
| 210 |
+
('ㄢ', 'an'),
|
| 211 |
+
('ㄧㄣ', 'in'),
|
| 212 |
+
('ㄩㄣ', 'yn'),
|
| 213 |
+
('ㄣ', 'ən'),
|
| 214 |
+
('ㄤ', 'ɑŋ'),
|
| 215 |
+
('ㄧㄥ', 'iŋ'),
|
| 216 |
+
('ㄨㄥ', 'ʊŋ'),
|
| 217 |
+
('ㄩㄥ', 'jʊŋ'),
|
| 218 |
+
('ㄥ', 'ɤŋ'),
|
| 219 |
+
('ㄦ', 'əɻ'),
|
| 220 |
+
('ㄧ', 'i'),
|
| 221 |
+
('ㄨ', 'u'),
|
| 222 |
+
('ㄩ', 'y'),
|
| 223 |
+
('ˉ', '˥'),
|
| 224 |
+
('ˊ', '˧˥'),
|
| 225 |
+
('ˇ', '˨˩˦'),
|
| 226 |
+
('ˋ', '˥˩'),
|
| 227 |
+
('˙', ''),
|
| 228 |
+
(',', ','),
|
| 229 |
+
('。', '.'),
|
| 230 |
+
('!', '!'),
|
| 231 |
+
('?', '?'),
|
| 232 |
+
('—', '-')
|
| 233 |
+
]]
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def number_to_chinese(text):
|
| 237 |
+
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
| 238 |
+
for number in numbers:
|
| 239 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
| 240 |
+
return text
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def chinese_to_bopomofo(text):
|
| 244 |
+
text = text.replace('、', ',').replace(';', ',').replace(':', ',')
|
| 245 |
+
words = jieba.lcut(text, cut_all=False)
|
| 246 |
+
text = ''
|
| 247 |
+
for word in words:
|
| 248 |
+
bopomofos = lazy_pinyin(word, BOPOMOFO)
|
| 249 |
+
if not re.search('[\u4e00-\u9fff]', word):
|
| 250 |
+
text += word
|
| 251 |
+
continue
|
| 252 |
+
for i in range(len(bopomofos)):
|
| 253 |
+
bopomofos[i] = re.sub(r'([\u3105-\u3129])$', r'\1ˉ', bopomofos[i])
|
| 254 |
+
if text != '':
|
| 255 |
+
text += ' '
|
| 256 |
+
text += ''.join(bopomofos)
|
| 257 |
+
return text
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def latin_to_bopomofo(text):
|
| 261 |
+
for regex, replacement in _latin_to_bopomofo:
|
| 262 |
+
text = re.sub(regex, replacement, text)
|
| 263 |
+
return text
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def bopomofo_to_romaji(text):
|
| 267 |
+
for regex, replacement in _bopomofo_to_romaji:
|
| 268 |
+
text = re.sub(regex, replacement, text)
|
| 269 |
+
return text
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def bopomofo_to_ipa(text):
|
| 273 |
+
for regex, replacement in _bopomofo_to_ipa:
|
| 274 |
+
text = re.sub(regex, replacement, text)
|
| 275 |
+
return text
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def bopomofo_to_ipa2(text):
|
| 279 |
+
for regex, replacement in _bopomofo_to_ipa2:
|
| 280 |
+
text = re.sub(regex, replacement, text)
|
| 281 |
+
return text
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def chinese_to_romaji(text):
|
| 285 |
+
text = number_to_chinese(text)
|
| 286 |
+
text = chinese_to_bopomofo(text)
|
| 287 |
+
text = latin_to_bopomofo(text)
|
| 288 |
+
text = bopomofo_to_romaji(text)
|
| 289 |
+
text = re.sub('i([aoe])', r'y\1', text)
|
| 290 |
+
text = re.sub('u([aoəe])', r'w\1', text)
|
| 291 |
+
text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
| 292 |
+
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
| 293 |
+
text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
| 294 |
+
return text
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def chinese_to_lazy_ipa(text):
|
| 298 |
+
text = chinese_to_romaji(text)
|
| 299 |
+
for regex, replacement in _romaji_to_ipa:
|
| 300 |
+
text = re.sub(regex, replacement, text)
|
| 301 |
+
return text
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def chinese_to_ipa(text):
|
| 305 |
+
text = number_to_chinese(text)
|
| 306 |
+
text = chinese_to_bopomofo(text)
|
| 307 |
+
text = latin_to_bopomofo(text)
|
| 308 |
+
text = bopomofo_to_ipa(text)
|
| 309 |
+
text = re.sub('i([aoe])', r'j\1', text)
|
| 310 |
+
text = re.sub('u([aoəe])', r'w\1', text)
|
| 311 |
+
text = re.sub('([sɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
| 312 |
+
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
| 313 |
+
text = re.sub('([s][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
| 314 |
+
return text
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def chinese_to_ipa2(text):
|
| 318 |
+
text = number_to_chinese(text)
|
| 319 |
+
text = chinese_to_bopomofo(text)
|
| 320 |
+
text = latin_to_bopomofo(text)
|
| 321 |
+
text = bopomofo_to_ipa2(text)
|
| 322 |
+
text = re.sub(r'i([aoe])', r'j\1', text)
|
| 323 |
+
text = re.sub(r'u([aoəe])', r'w\1', text)
|
| 324 |
+
text = re.sub(r'([ʂɹ]ʰ?)([˩˨˧˦˥ ]+|$)', r'\1ʅ\2', text)
|
| 325 |
+
text = re.sub(r'(sʰ?)([˩˨˧˦˥ ]+|$)', r'\1ɿ\2', text)
|
| 326 |
+
return text
|
text/symbols.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Defines the set of symbols used in text input to the model.
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
# chinese_cleaners
|
| 6 |
+
_pad = '_'
|
| 7 |
+
_punctuation = ',,。!?—…'
|
| 8 |
+
_letters = 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄜㄝㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩˉˊˇˋ˙ '
|
| 9 |
+
|
| 10 |
+
# Export all symbols:
|
| 11 |
+
symbols = [_pad] + list(_punctuation) + list(_letters)
|
| 12 |
+
|
| 13 |
+
# Special symbol ids
|
| 14 |
+
SPACE_ID = symbols.index(" ")
|
train.py
ADDED
|
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import argparse
|
| 4 |
+
import itertools
|
| 5 |
+
import math
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn, optim
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 11 |
+
|
| 12 |
+
# from tensorboardX import SummaryWriter
|
| 13 |
+
import torch.multiprocessing as mp
|
| 14 |
+
import torch.distributed as dist
|
| 15 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 16 |
+
from torch.cuda.amp import autocast, GradScaler
|
| 17 |
+
import tqdm
|
| 18 |
+
|
| 19 |
+
import commons
|
| 20 |
+
import utils
|
| 21 |
+
from data_utils import TextAudioLoader, TextAudioCollate, DistributedBucketSampler
|
| 22 |
+
from models import (
|
| 23 |
+
SynthesizerTrn,
|
| 24 |
+
MultiPeriodDiscriminator,
|
| 25 |
+
DurationDiscriminator,
|
| 26 |
+
AVAILABLE_FLOW_TYPES,
|
| 27 |
+
)
|
| 28 |
+
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
| 29 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
| 30 |
+
from text.symbols import symbols
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
torch.backends.cudnn.benchmark = True
|
| 34 |
+
global_step = 0
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def main():
|
| 38 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
| 39 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
| 40 |
+
|
| 41 |
+
n_gpus = torch.cuda.device_count()
|
| 42 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
| 43 |
+
os.environ["MASTER_PORT"] = "6060"
|
| 44 |
+
|
| 45 |
+
hps = utils.get_hparams()
|
| 46 |
+
mp.spawn(
|
| 47 |
+
run,
|
| 48 |
+
nprocs=n_gpus,
|
| 49 |
+
args=(
|
| 50 |
+
n_gpus,
|
| 51 |
+
hps,
|
| 52 |
+
),
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def run(rank, n_gpus, hps):
|
| 57 |
+
global global_step
|
| 58 |
+
if rank == 0:
|
| 59 |
+
logger = utils.get_logger(hps.model_dir)
|
| 60 |
+
logger.info(hps)
|
| 61 |
+
utils.check_git_hash(hps.model_dir)
|
| 62 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
| 63 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
| 64 |
+
|
| 65 |
+
dist.init_process_group(
|
| 66 |
+
backend="nccl", init_method="env://", world_size=n_gpus, rank=rank
|
| 67 |
+
)
|
| 68 |
+
torch.manual_seed(hps.train.seed)
|
| 69 |
+
torch.cuda.set_device(rank)
|
| 70 |
+
|
| 71 |
+
if (
|
| 72 |
+
"use_mel_posterior_encoder" in hps.model.keys()
|
| 73 |
+
and hps.model.use_mel_posterior_encoder == True
|
| 74 |
+
):
|
| 75 |
+
print("Using mel posterior encoder for VITS2")
|
| 76 |
+
posterior_channels = 80 # vits2
|
| 77 |
+
hps.data.use_mel_posterior_encoder = True
|
| 78 |
+
else:
|
| 79 |
+
print("Using lin posterior encoder for VITS1")
|
| 80 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
| 81 |
+
hps.data.use_mel_posterior_encoder = False
|
| 82 |
+
|
| 83 |
+
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
|
| 84 |
+
train_sampler = DistributedBucketSampler(
|
| 85 |
+
train_dataset,
|
| 86 |
+
hps.train.batch_size,
|
| 87 |
+
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
| 88 |
+
num_replicas=n_gpus,
|
| 89 |
+
rank=rank,
|
| 90 |
+
shuffle=True,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
collate_fn = TextAudioCollate()
|
| 94 |
+
train_loader = DataLoader(
|
| 95 |
+
train_dataset,
|
| 96 |
+
num_workers=8,
|
| 97 |
+
shuffle=False,
|
| 98 |
+
pin_memory=True,
|
| 99 |
+
collate_fn=collate_fn,
|
| 100 |
+
batch_sampler=train_sampler,
|
| 101 |
+
)
|
| 102 |
+
if rank == 0:
|
| 103 |
+
eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
|
| 104 |
+
eval_loader = DataLoader(
|
| 105 |
+
eval_dataset,
|
| 106 |
+
num_workers=8,
|
| 107 |
+
shuffle=False,
|
| 108 |
+
batch_size=hps.train.batch_size,
|
| 109 |
+
pin_memory=True,
|
| 110 |
+
drop_last=False,
|
| 111 |
+
collate_fn=collate_fn,
|
| 112 |
+
)
|
| 113 |
+
# some of these flags are not being used in the code and directly set in hps json file.
|
| 114 |
+
# they are kept here for reference and prototyping.
|
| 115 |
+
|
| 116 |
+
if (
|
| 117 |
+
"use_transformer_flows" in hps.model.keys()
|
| 118 |
+
and hps.model.use_transformer_flows == True
|
| 119 |
+
):
|
| 120 |
+
use_transformer_flows = True
|
| 121 |
+
transformer_flow_type = hps.model.transformer_flow_type
|
| 122 |
+
print(f"Using transformer flows {transformer_flow_type} for VITS2")
|
| 123 |
+
assert (
|
| 124 |
+
transformer_flow_type in AVAILABLE_FLOW_TYPES
|
| 125 |
+
), f"transformer_flow_type must be one of {AVAILABLE_FLOW_TYPES}"
|
| 126 |
+
else:
|
| 127 |
+
print("Using normal flows for VITS1")
|
| 128 |
+
use_transformer_flows = False
|
| 129 |
+
|
| 130 |
+
if (
|
| 131 |
+
"use_spk_conditioned_encoder" in hps.model.keys()
|
| 132 |
+
and hps.model.use_spk_conditioned_encoder == True
|
| 133 |
+
):
|
| 134 |
+
if hps.data.n_speakers == 0:
|
| 135 |
+
print("Warning: use_spk_conditioned_encoder is True but n_speakers is 0")
|
| 136 |
+
print(
|
| 137 |
+
"Setting use_spk_conditioned_encoder to False as model is a single speaker model"
|
| 138 |
+
)
|
| 139 |
+
use_spk_conditioned_encoder = False
|
| 140 |
+
else:
|
| 141 |
+
print("Using normal encoder for VITS1")
|
| 142 |
+
use_spk_conditioned_encoder = False
|
| 143 |
+
|
| 144 |
+
if (
|
| 145 |
+
"use_noise_scaled_mas" in hps.model.keys()
|
| 146 |
+
and hps.model.use_noise_scaled_mas == True
|
| 147 |
+
):
|
| 148 |
+
print("Using noise scaled MAS for VITS2")
|
| 149 |
+
use_noise_scaled_mas = True
|
| 150 |
+
mas_noise_scale_initial = 0.01
|
| 151 |
+
noise_scale_delta = 2e-6
|
| 152 |
+
else:
|
| 153 |
+
print("Using normal MAS for VITS1")
|
| 154 |
+
use_noise_scaled_mas = False
|
| 155 |
+
mas_noise_scale_initial = 0.0
|
| 156 |
+
noise_scale_delta = 0.0
|
| 157 |
+
|
| 158 |
+
if (
|
| 159 |
+
"use_duration_discriminator" in hps.model.keys()
|
| 160 |
+
and hps.model.use_duration_discriminator == True
|
| 161 |
+
):
|
| 162 |
+
print("Using duration discriminator for VITS2")
|
| 163 |
+
use_duration_discriminator = True
|
| 164 |
+
net_dur_disc = DurationDiscriminator(
|
| 165 |
+
hps.model.hidden_channels,
|
| 166 |
+
hps.model.hidden_channels,
|
| 167 |
+
3,
|
| 168 |
+
0.1,
|
| 169 |
+
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
| 170 |
+
).cuda(rank)
|
| 171 |
+
else:
|
| 172 |
+
print("NOT using any duration discriminator like VITS1")
|
| 173 |
+
net_dur_disc = None
|
| 174 |
+
use_duration_discriminator = False
|
| 175 |
+
|
| 176 |
+
net_g = SynthesizerTrn(
|
| 177 |
+
len(symbols),
|
| 178 |
+
posterior_channels,
|
| 179 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 180 |
+
mas_noise_scale_initial=mas_noise_scale_initial,
|
| 181 |
+
noise_scale_delta=noise_scale_delta,
|
| 182 |
+
**hps.model,
|
| 183 |
+
).cuda(rank)
|
| 184 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
| 185 |
+
optim_g = torch.optim.AdamW(
|
| 186 |
+
net_g.parameters(),
|
| 187 |
+
hps.train.learning_rate,
|
| 188 |
+
betas=hps.train.betas,
|
| 189 |
+
eps=hps.train.eps,
|
| 190 |
+
)
|
| 191 |
+
optim_d = torch.optim.AdamW(
|
| 192 |
+
net_d.parameters(),
|
| 193 |
+
hps.train.learning_rate,
|
| 194 |
+
betas=hps.train.betas,
|
| 195 |
+
eps=hps.train.eps,
|
| 196 |
+
)
|
| 197 |
+
if net_dur_disc is not None:
|
| 198 |
+
optim_dur_disc = torch.optim.AdamW(
|
| 199 |
+
net_dur_disc.parameters(),
|
| 200 |
+
hps.train.learning_rate,
|
| 201 |
+
betas=hps.train.betas,
|
| 202 |
+
eps=hps.train.eps,
|
| 203 |
+
)
|
| 204 |
+
else:
|
| 205 |
+
optim_dur_disc = None
|
| 206 |
+
|
| 207 |
+
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
| 208 |
+
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
| 209 |
+
if net_dur_disc is not None:
|
| 210 |
+
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
| 214 |
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
|
| 215 |
+
)
|
| 216 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
| 217 |
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
|
| 218 |
+
)
|
| 219 |
+
if net_dur_disc is not None:
|
| 220 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
| 221 |
+
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
| 222 |
+
net_dur_disc,
|
| 223 |
+
optim_dur_disc,
|
| 224 |
+
)
|
| 225 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
| 226 |
+
except:
|
| 227 |
+
epoch_str = 1
|
| 228 |
+
global_step = 0
|
| 229 |
+
|
| 230 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
| 231 |
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 232 |
+
)
|
| 233 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
| 234 |
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 235 |
+
)
|
| 236 |
+
if net_dur_disc is not None:
|
| 237 |
+
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
| 238 |
+
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 239 |
+
)
|
| 240 |
+
else:
|
| 241 |
+
scheduler_dur_disc = None
|
| 242 |
+
|
| 243 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
| 244 |
+
|
| 245 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
| 246 |
+
if rank == 0:
|
| 247 |
+
train_and_evaluate(
|
| 248 |
+
rank,
|
| 249 |
+
epoch,
|
| 250 |
+
hps,
|
| 251 |
+
[net_g, net_d, net_dur_disc],
|
| 252 |
+
[optim_g, optim_d, optim_dur_disc],
|
| 253 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
| 254 |
+
scaler,
|
| 255 |
+
[train_loader, eval_loader],
|
| 256 |
+
logger,
|
| 257 |
+
[writer, writer_eval],
|
| 258 |
+
)
|
| 259 |
+
else:
|
| 260 |
+
train_and_evaluate(
|
| 261 |
+
rank,
|
| 262 |
+
epoch,
|
| 263 |
+
hps,
|
| 264 |
+
[net_g, net_d, net_dur_disc],
|
| 265 |
+
[optim_g, optim_d, optim_dur_disc],
|
| 266 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
| 267 |
+
scaler,
|
| 268 |
+
[train_loader, None],
|
| 269 |
+
None,
|
| 270 |
+
None,
|
| 271 |
+
)
|
| 272 |
+
scheduler_g.step()
|
| 273 |
+
scheduler_d.step()
|
| 274 |
+
if net_dur_disc is not None:
|
| 275 |
+
scheduler_dur_disc.step()
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def train_and_evaluate(
|
| 279 |
+
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
| 280 |
+
):
|
| 281 |
+
net_g, net_d, net_dur_disc = nets
|
| 282 |
+
optim_g, optim_d, optim_dur_disc = optims
|
| 283 |
+
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
| 284 |
+
train_loader, eval_loader = loaders
|
| 285 |
+
if writers is not None:
|
| 286 |
+
writer, writer_eval = writers
|
| 287 |
+
|
| 288 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
| 289 |
+
global global_step
|
| 290 |
+
|
| 291 |
+
net_g.train()
|
| 292 |
+
net_d.train()
|
| 293 |
+
if net_dur_disc is not None:
|
| 294 |
+
net_dur_disc.train()
|
| 295 |
+
|
| 296 |
+
if rank == 0:
|
| 297 |
+
loader = tqdm.tqdm(train_loader, desc="Loading train data")
|
| 298 |
+
else:
|
| 299 |
+
loader = train_loader
|
| 300 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(
|
| 301 |
+
loader
|
| 302 |
+
):
|
| 303 |
+
if net_g.module.use_noise_scaled_mas:
|
| 304 |
+
current_mas_noise_scale = (
|
| 305 |
+
net_g.module.mas_noise_scale_initial
|
| 306 |
+
- net_g.module.noise_scale_delta * global_step
|
| 307 |
+
)
|
| 308 |
+
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
| 309 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
| 310 |
+
rank, non_blocking=True
|
| 311 |
+
)
|
| 312 |
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
| 313 |
+
rank, non_blocking=True
|
| 314 |
+
)
|
| 315 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
| 316 |
+
rank, non_blocking=True
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
with autocast(enabled=hps.train.fp16_run):
|
| 320 |
+
(
|
| 321 |
+
y_hat,
|
| 322 |
+
l_length,
|
| 323 |
+
attn,
|
| 324 |
+
ids_slice,
|
| 325 |
+
x_mask,
|
| 326 |
+
z_mask,
|
| 327 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 328 |
+
(hidden_x, logw, logw_),
|
| 329 |
+
) = net_g(x, x_lengths, spec, spec_lengths)
|
| 330 |
+
|
| 331 |
+
if (
|
| 332 |
+
hps.model.use_mel_posterior_encoder
|
| 333 |
+
or hps.data.use_mel_posterior_encoder
|
| 334 |
+
):
|
| 335 |
+
mel = spec
|
| 336 |
+
else:
|
| 337 |
+
mel = spec_to_mel_torch(
|
| 338 |
+
spec,
|
| 339 |
+
hps.data.filter_length,
|
| 340 |
+
hps.data.n_mel_channels,
|
| 341 |
+
hps.data.sampling_rate,
|
| 342 |
+
hps.data.mel_fmin,
|
| 343 |
+
hps.data.mel_fmax,
|
| 344 |
+
)
|
| 345 |
+
y_mel = commons.slice_segments(
|
| 346 |
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
| 347 |
+
)
|
| 348 |
+
y_hat_mel = mel_spectrogram_torch(
|
| 349 |
+
y_hat.squeeze(1),
|
| 350 |
+
hps.data.filter_length,
|
| 351 |
+
hps.data.n_mel_channels,
|
| 352 |
+
hps.data.sampling_rate,
|
| 353 |
+
hps.data.hop_length,
|
| 354 |
+
hps.data.win_length,
|
| 355 |
+
hps.data.mel_fmin,
|
| 356 |
+
hps.data.mel_fmax,
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
y = commons.slice_segments(
|
| 360 |
+
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
| 361 |
+
) # slice
|
| 362 |
+
|
| 363 |
+
# Discriminator
|
| 364 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
| 365 |
+
with autocast(enabled=False):
|
| 366 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
| 367 |
+
y_d_hat_r, y_d_hat_g
|
| 368 |
+
)
|
| 369 |
+
loss_disc_all = loss_disc
|
| 370 |
+
|
| 371 |
+
# Duration Discriminator
|
| 372 |
+
if net_dur_disc is not None:
|
| 373 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
| 374 |
+
hidden_x.detach(), x_mask.detach(), logw_.detach(), logw.detach()
|
| 375 |
+
)
|
| 376 |
+
with autocast(enabled=False):
|
| 377 |
+
# TODO: I think need to mean using the mask, but for now, just mean all
|
| 378 |
+
(
|
| 379 |
+
loss_dur_disc,
|
| 380 |
+
losses_dur_disc_r,
|
| 381 |
+
losses_dur_disc_g,
|
| 382 |
+
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
| 383 |
+
loss_dur_disc_all = loss_dur_disc
|
| 384 |
+
optim_dur_disc.zero_grad()
|
| 385 |
+
scaler.scale(loss_dur_disc_all).backward()
|
| 386 |
+
scaler.unscale_(optim_dur_disc)
|
| 387 |
+
grad_norm_dur_disc = commons.clip_grad_value_(
|
| 388 |
+
net_dur_disc.parameters(), None
|
| 389 |
+
)
|
| 390 |
+
scaler.step(optim_dur_disc)
|
| 391 |
+
|
| 392 |
+
optim_d.zero_grad()
|
| 393 |
+
scaler.scale(loss_disc_all).backward()
|
| 394 |
+
scaler.unscale_(optim_d)
|
| 395 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
| 396 |
+
scaler.step(optim_d)
|
| 397 |
+
|
| 398 |
+
with autocast(enabled=hps.train.fp16_run):
|
| 399 |
+
# Generator
|
| 400 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
| 401 |
+
if net_dur_disc is not None:
|
| 402 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw)
|
| 403 |
+
with autocast(enabled=False):
|
| 404 |
+
loss_dur = torch.sum(l_length.float())
|
| 405 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
| 406 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
| 407 |
+
|
| 408 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
| 409 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
| 410 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
| 411 |
+
if net_dur_disc is not None:
|
| 412 |
+
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
| 413 |
+
loss_gen_all += loss_dur_gen
|
| 414 |
+
|
| 415 |
+
optim_g.zero_grad()
|
| 416 |
+
scaler.scale(loss_gen_all).backward()
|
| 417 |
+
scaler.unscale_(optim_g)
|
| 418 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
| 419 |
+
scaler.step(optim_g)
|
| 420 |
+
scaler.update()
|
| 421 |
+
|
| 422 |
+
if rank == 0:
|
| 423 |
+
if global_step % hps.train.log_interval == 0:
|
| 424 |
+
lr = optim_g.param_groups[0]["lr"]
|
| 425 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
| 426 |
+
logger.info(
|
| 427 |
+
"Train Epoch: {} [{:.0f}%]".format(
|
| 428 |
+
epoch, 100.0 * batch_idx / len(train_loader)
|
| 429 |
+
)
|
| 430 |
+
)
|
| 431 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
| 432 |
+
|
| 433 |
+
scalar_dict = {
|
| 434 |
+
"loss/g/total": loss_gen_all,
|
| 435 |
+
"loss/d/total": loss_disc_all,
|
| 436 |
+
"learning_rate": lr,
|
| 437 |
+
"grad_norm_d": grad_norm_d,
|
| 438 |
+
"grad_norm_g": grad_norm_g,
|
| 439 |
+
}
|
| 440 |
+
if net_dur_disc is not None:
|
| 441 |
+
scalar_dict.update(
|
| 442 |
+
{
|
| 443 |
+
"loss/dur_disc/total": loss_dur_disc_all,
|
| 444 |
+
"grad_norm_dur_disc": grad_norm_dur_disc,
|
| 445 |
+
}
|
| 446 |
+
)
|
| 447 |
+
scalar_dict.update(
|
| 448 |
+
{
|
| 449 |
+
"loss/g/fm": loss_fm,
|
| 450 |
+
"loss/g/mel": loss_mel,
|
| 451 |
+
"loss/g/dur": loss_dur,
|
| 452 |
+
"loss/g/kl": loss_kl,
|
| 453 |
+
}
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
scalar_dict.update(
|
| 457 |
+
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
| 458 |
+
)
|
| 459 |
+
scalar_dict.update(
|
| 460 |
+
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
| 461 |
+
)
|
| 462 |
+
scalar_dict.update(
|
| 463 |
+
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
# if net_dur_disc is not None:
|
| 467 |
+
# scalar_dict.update({"loss/dur_disc_r" : f"{losses_dur_disc_r}"})
|
| 468 |
+
# scalar_dict.update({"loss/dur_disc_g" : f"{losses_dur_disc_g}"})
|
| 469 |
+
# scalar_dict.update({"loss/dur_gen" : f"{loss_dur_gen}"})
|
| 470 |
+
|
| 471 |
+
image_dict = {
|
| 472 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
| 473 |
+
y_mel[0].data.cpu().numpy()
|
| 474 |
+
),
|
| 475 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
| 476 |
+
y_hat_mel[0].data.cpu().numpy()
|
| 477 |
+
),
|
| 478 |
+
"all/mel": utils.plot_spectrogram_to_numpy(
|
| 479 |
+
mel[0].data.cpu().numpy()
|
| 480 |
+
),
|
| 481 |
+
"all/attn": utils.plot_alignment_to_numpy(
|
| 482 |
+
attn[0, 0].data.cpu().numpy()
|
| 483 |
+
),
|
| 484 |
+
}
|
| 485 |
+
utils.summarize(
|
| 486 |
+
writer=writer,
|
| 487 |
+
global_step=global_step,
|
| 488 |
+
images=image_dict,
|
| 489 |
+
scalars=scalar_dict,
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
if global_step % hps.train.eval_interval == 0:
|
| 493 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
| 494 |
+
utils.save_checkpoint(
|
| 495 |
+
net_g,
|
| 496 |
+
optim_g,
|
| 497 |
+
hps.train.learning_rate,
|
| 498 |
+
epoch,
|
| 499 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
| 500 |
+
)
|
| 501 |
+
utils.save_checkpoint(
|
| 502 |
+
net_d,
|
| 503 |
+
optim_d,
|
| 504 |
+
hps.train.learning_rate,
|
| 505 |
+
epoch,
|
| 506 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
| 507 |
+
)
|
| 508 |
+
if net_dur_disc is not None:
|
| 509 |
+
utils.save_checkpoint(
|
| 510 |
+
net_dur_disc,
|
| 511 |
+
optim_dur_disc,
|
| 512 |
+
hps.train.learning_rate,
|
| 513 |
+
epoch,
|
| 514 |
+
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
| 515 |
+
)
|
| 516 |
+
global_step += 1
|
| 517 |
+
|
| 518 |
+
if rank == 0:
|
| 519 |
+
logger.info("====> Epoch: {}".format(epoch))
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
| 523 |
+
generator.eval()
|
| 524 |
+
with torch.no_grad():
|
| 525 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(
|
| 526 |
+
eval_loader
|
| 527 |
+
):
|
| 528 |
+
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
| 529 |
+
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
| 530 |
+
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
| 531 |
+
|
| 532 |
+
# remove else
|
| 533 |
+
x = x[:1]
|
| 534 |
+
x_lengths = x_lengths[:1]
|
| 535 |
+
spec = spec[:1]
|
| 536 |
+
spec_lengths = spec_lengths[:1]
|
| 537 |
+
y = y[:1]
|
| 538 |
+
y_lengths = y_lengths[:1]
|
| 539 |
+
break
|
| 540 |
+
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
|
| 541 |
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
| 542 |
+
|
| 543 |
+
if hps.model.use_mel_posterior_encoder or hps.data.use_mel_posterior_encoder:
|
| 544 |
+
mel = spec
|
| 545 |
+
else:
|
| 546 |
+
mel = spec_to_mel_torch(
|
| 547 |
+
spec,
|
| 548 |
+
hps.data.filter_length,
|
| 549 |
+
hps.data.n_mel_channels,
|
| 550 |
+
hps.data.sampling_rate,
|
| 551 |
+
hps.data.mel_fmin,
|
| 552 |
+
hps.data.mel_fmax,
|
| 553 |
+
)
|
| 554 |
+
y_hat_mel = mel_spectrogram_torch(
|
| 555 |
+
y_hat.squeeze(1).float(),
|
| 556 |
+
hps.data.filter_length,
|
| 557 |
+
hps.data.n_mel_channels,
|
| 558 |
+
hps.data.sampling_rate,
|
| 559 |
+
hps.data.hop_length,
|
| 560 |
+
hps.data.win_length,
|
| 561 |
+
hps.data.mel_fmin,
|
| 562 |
+
hps.data.mel_fmax,
|
| 563 |
+
)
|
| 564 |
+
image_dict = {
|
| 565 |
+
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
| 566 |
+
}
|
| 567 |
+
audio_dict = {"gen/audio": y_hat[0, :, : y_hat_lengths[0]]}
|
| 568 |
+
if global_step == 0:
|
| 569 |
+
image_dict.update(
|
| 570 |
+
{"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())}
|
| 571 |
+
)
|
| 572 |
+
audio_dict.update({"gt/audio": y[0, :, : y_lengths[0]]})
|
| 573 |
+
|
| 574 |
+
utils.summarize(
|
| 575 |
+
writer=writer_eval,
|
| 576 |
+
global_step=global_step,
|
| 577 |
+
images=image_dict,
|
| 578 |
+
audios=audio_dict,
|
| 579 |
+
audio_sampling_rate=hps.data.sampling_rate,
|
| 580 |
+
)
|
| 581 |
+
generator.train()
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
if __name__ == "__main__":
|
| 585 |
+
main()
|
train_ms.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import argparse
|
| 4 |
+
import itertools
|
| 5 |
+
import math
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn, optim
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 11 |
+
|
| 12 |
+
# from tensorboardX import SummaryWriter
|
| 13 |
+
import torch.multiprocessing as mp
|
| 14 |
+
import torch.distributed as dist
|
| 15 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 16 |
+
from torch.cuda.amp import autocast, GradScaler
|
| 17 |
+
import tqdm
|
| 18 |
+
|
| 19 |
+
import commons
|
| 20 |
+
import utils
|
| 21 |
+
from data_utils import (
|
| 22 |
+
TextAudioSpeakerLoader,
|
| 23 |
+
TextAudioSpeakerCollate,
|
| 24 |
+
DistributedBucketSampler,
|
| 25 |
+
)
|
| 26 |
+
from models import (
|
| 27 |
+
SynthesizerTrn,
|
| 28 |
+
MultiPeriodDiscriminator,
|
| 29 |
+
DurationDiscriminator,
|
| 30 |
+
AVAILABLE_FLOW_TYPES,
|
| 31 |
+
)
|
| 32 |
+
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
| 33 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
| 34 |
+
from text.symbols import symbols
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
torch.backends.cudnn.benchmark = True
|
| 38 |
+
global_step = 0
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def main():
|
| 42 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
| 43 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
| 44 |
+
|
| 45 |
+
n_gpus = torch.cuda.device_count()
|
| 46 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
| 47 |
+
os.environ["MASTER_PORT"] = "6060"
|
| 48 |
+
|
| 49 |
+
hps = utils.get_hparams()
|
| 50 |
+
mp.spawn(
|
| 51 |
+
run,
|
| 52 |
+
nprocs=n_gpus,
|
| 53 |
+
args=(
|
| 54 |
+
n_gpus,
|
| 55 |
+
hps,
|
| 56 |
+
),
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def run(rank, n_gpus, hps):
|
| 61 |
+
global global_step
|
| 62 |
+
if rank == 0:
|
| 63 |
+
logger = utils.get_logger(hps.model_dir)
|
| 64 |
+
logger.info(hps)
|
| 65 |
+
utils.check_git_hash(hps.model_dir)
|
| 66 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
| 67 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
| 68 |
+
|
| 69 |
+
dist.init_process_group(
|
| 70 |
+
backend="nccl", init_method="env://", world_size=n_gpus, rank=rank
|
| 71 |
+
)
|
| 72 |
+
torch.manual_seed(hps.train.seed)
|
| 73 |
+
torch.cuda.set_device(rank)
|
| 74 |
+
|
| 75 |
+
if (
|
| 76 |
+
"use_mel_posterior_encoder" in hps.model.keys()
|
| 77 |
+
and hps.model.use_mel_posterior_encoder == True
|
| 78 |
+
):
|
| 79 |
+
print("Using mel posterior encoder for VITS2")
|
| 80 |
+
posterior_channels = 80 # vits2
|
| 81 |
+
hps.data.use_mel_posterior_encoder = True
|
| 82 |
+
else:
|
| 83 |
+
print("Using lin posterior encoder for VITS1")
|
| 84 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
| 85 |
+
hps.data.use_mel_posterior_encoder = False
|
| 86 |
+
|
| 87 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
| 88 |
+
train_sampler = DistributedBucketSampler(
|
| 89 |
+
train_dataset,
|
| 90 |
+
hps.train.batch_size,
|
| 91 |
+
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
| 92 |
+
num_replicas=n_gpus,
|
| 93 |
+
rank=rank,
|
| 94 |
+
shuffle=True,
|
| 95 |
+
)
|
| 96 |
+
collate_fn = TextAudioSpeakerCollate()
|
| 97 |
+
train_loader = DataLoader(
|
| 98 |
+
train_dataset,
|
| 99 |
+
num_workers=8,
|
| 100 |
+
shuffle=False,
|
| 101 |
+
pin_memory=True,
|
| 102 |
+
collate_fn=collate_fn,
|
| 103 |
+
batch_sampler=train_sampler,
|
| 104 |
+
)
|
| 105 |
+
if rank == 0:
|
| 106 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
| 107 |
+
eval_loader = DataLoader(
|
| 108 |
+
eval_dataset,
|
| 109 |
+
num_workers=8,
|
| 110 |
+
shuffle=False,
|
| 111 |
+
batch_size=hps.train.batch_size,
|
| 112 |
+
pin_memory=True,
|
| 113 |
+
drop_last=False,
|
| 114 |
+
collate_fn=collate_fn,
|
| 115 |
+
)
|
| 116 |
+
# some of these flags are not being used in the code and directly set in hps json file.
|
| 117 |
+
# they are kept here for reference and prototyping.
|
| 118 |
+
if (
|
| 119 |
+
"use_transformer_flows" in hps.model.keys()
|
| 120 |
+
and hps.model.use_transformer_flows == True
|
| 121 |
+
):
|
| 122 |
+
use_transformer_flows = True
|
| 123 |
+
transformer_flow_type = hps.model.transformer_flow_type
|
| 124 |
+
print(f"Using transformer flows {transformer_flow_type} for VITS2")
|
| 125 |
+
assert (
|
| 126 |
+
transformer_flow_type in AVAILABLE_FLOW_TYPES
|
| 127 |
+
), f"transformer_flow_type must be one of {AVAILABLE_FLOW_TYPES}"
|
| 128 |
+
else:
|
| 129 |
+
print("Using normal flows for VITS1")
|
| 130 |
+
use_transformer_flows = False
|
| 131 |
+
|
| 132 |
+
if (
|
| 133 |
+
"use_spk_conditioned_encoder" in hps.model.keys()
|
| 134 |
+
and hps.model.use_spk_conditioned_encoder == True
|
| 135 |
+
):
|
| 136 |
+
if hps.data.n_speakers == 0:
|
| 137 |
+
raise ValueError(
|
| 138 |
+
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
| 139 |
+
)
|
| 140 |
+
use_spk_conditioned_encoder = True
|
| 141 |
+
else:
|
| 142 |
+
print("Using normal encoder for VITS1")
|
| 143 |
+
use_spk_conditioned_encoder = False
|
| 144 |
+
|
| 145 |
+
if (
|
| 146 |
+
"use_noise_scaled_mas" in hps.model.keys()
|
| 147 |
+
and hps.model.use_noise_scaled_mas == True
|
| 148 |
+
):
|
| 149 |
+
print("Using noise scaled MAS for VITS2")
|
| 150 |
+
use_noise_scaled_mas = True
|
| 151 |
+
mas_noise_scale_initial = 0.01
|
| 152 |
+
noise_scale_delta = 2e-6
|
| 153 |
+
else:
|
| 154 |
+
print("Using normal MAS for VITS1")
|
| 155 |
+
use_noise_scaled_mas = False
|
| 156 |
+
mas_noise_scale_initial = 0.0
|
| 157 |
+
noise_scale_delta = 0.0
|
| 158 |
+
|
| 159 |
+
if (
|
| 160 |
+
"use_duration_discriminator" in hps.model.keys()
|
| 161 |
+
and hps.model.use_duration_discriminator == True
|
| 162 |
+
):
|
| 163 |
+
print("Using duration discriminator for VITS2")
|
| 164 |
+
use_duration_discriminator = True
|
| 165 |
+
net_dur_disc = DurationDiscriminator(
|
| 166 |
+
hps.model.hidden_channels,
|
| 167 |
+
hps.model.hidden_channels,
|
| 168 |
+
3,
|
| 169 |
+
0.1,
|
| 170 |
+
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
| 171 |
+
).cuda(rank)
|
| 172 |
+
else:
|
| 173 |
+
print("NOT using any duration discriminator like VITS1")
|
| 174 |
+
net_dur_disc = None
|
| 175 |
+
use_duration_discriminator = False
|
| 176 |
+
|
| 177 |
+
net_g = SynthesizerTrn(
|
| 178 |
+
len(symbols),
|
| 179 |
+
posterior_channels,
|
| 180 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 181 |
+
n_speakers=hps.data.n_speakers,
|
| 182 |
+
mas_noise_scale_initial=mas_noise_scale_initial,
|
| 183 |
+
noise_scale_delta=noise_scale_delta,
|
| 184 |
+
**hps.model,
|
| 185 |
+
).cuda(rank)
|
| 186 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
| 187 |
+
optim_g = torch.optim.AdamW(
|
| 188 |
+
net_g.parameters(),
|
| 189 |
+
hps.train.learning_rate,
|
| 190 |
+
betas=hps.train.betas,
|
| 191 |
+
eps=hps.train.eps,
|
| 192 |
+
)
|
| 193 |
+
optim_d = torch.optim.AdamW(
|
| 194 |
+
net_d.parameters(),
|
| 195 |
+
hps.train.learning_rate,
|
| 196 |
+
betas=hps.train.betas,
|
| 197 |
+
eps=hps.train.eps,
|
| 198 |
+
)
|
| 199 |
+
if net_dur_disc is not None:
|
| 200 |
+
optim_dur_disc = torch.optim.AdamW(
|
| 201 |
+
net_dur_disc.parameters(),
|
| 202 |
+
hps.train.learning_rate,
|
| 203 |
+
betas=hps.train.betas,
|
| 204 |
+
eps=hps.train.eps,
|
| 205 |
+
)
|
| 206 |
+
else:
|
| 207 |
+
optim_dur_disc = None
|
| 208 |
+
|
| 209 |
+
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
| 210 |
+
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
| 211 |
+
if net_dur_disc is not None:
|
| 212 |
+
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
| 213 |
+
|
| 214 |
+
try:
|
| 215 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
| 216 |
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
|
| 217 |
+
)
|
| 218 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
| 219 |
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
|
| 220 |
+
)
|
| 221 |
+
if net_dur_disc is not None:
|
| 222 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
| 223 |
+
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
| 224 |
+
net_dur_disc,
|
| 225 |
+
optim_dur_disc,
|
| 226 |
+
)
|
| 227 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
| 228 |
+
except:
|
| 229 |
+
epoch_str = 1
|
| 230 |
+
global_step = 0
|
| 231 |
+
|
| 232 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
| 233 |
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 234 |
+
)
|
| 235 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
| 236 |
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 237 |
+
)
|
| 238 |
+
if net_dur_disc is not None:
|
| 239 |
+
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
| 240 |
+
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 241 |
+
)
|
| 242 |
+
else:
|
| 243 |
+
scheduler_dur_disc = None
|
| 244 |
+
|
| 245 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
| 246 |
+
|
| 247 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
| 248 |
+
if rank == 0:
|
| 249 |
+
train_and_evaluate(
|
| 250 |
+
rank,
|
| 251 |
+
epoch,
|
| 252 |
+
hps,
|
| 253 |
+
[net_g, net_d, net_dur_disc],
|
| 254 |
+
[optim_g, optim_d, optim_dur_disc],
|
| 255 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
| 256 |
+
scaler,
|
| 257 |
+
[train_loader, eval_loader],
|
| 258 |
+
logger,
|
| 259 |
+
[writer, writer_eval],
|
| 260 |
+
)
|
| 261 |
+
else:
|
| 262 |
+
train_and_evaluate(
|
| 263 |
+
rank,
|
| 264 |
+
epoch,
|
| 265 |
+
hps,
|
| 266 |
+
[net_g, net_d, net_dur_disc],
|
| 267 |
+
[optim_g, optim_d, optim_dur_disc],
|
| 268 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
| 269 |
+
scaler,
|
| 270 |
+
[train_loader, None],
|
| 271 |
+
None,
|
| 272 |
+
None,
|
| 273 |
+
)
|
| 274 |
+
scheduler_g.step()
|
| 275 |
+
scheduler_d.step()
|
| 276 |
+
if net_dur_disc is not None:
|
| 277 |
+
scheduler_dur_disc.step()
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def train_and_evaluate(
|
| 281 |
+
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
| 282 |
+
):
|
| 283 |
+
net_g, net_d, net_dur_disc = nets
|
| 284 |
+
optim_g, optim_d, optim_dur_disc = optims
|
| 285 |
+
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
| 286 |
+
train_loader, eval_loader = loaders
|
| 287 |
+
if writers is not None:
|
| 288 |
+
writer, writer_eval = writers
|
| 289 |
+
|
| 290 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
| 291 |
+
global global_step
|
| 292 |
+
|
| 293 |
+
net_g.train()
|
| 294 |
+
net_d.train()
|
| 295 |
+
if net_dur_disc is not None:
|
| 296 |
+
net_dur_disc.train()
|
| 297 |
+
|
| 298 |
+
if rank == 0:
|
| 299 |
+
loader = tqdm.tqdm(train_loader, desc="Loading train data")
|
| 300 |
+
else:
|
| 301 |
+
loader = train_loader
|
| 302 |
+
for batch_idx, (
|
| 303 |
+
x,
|
| 304 |
+
x_lengths,
|
| 305 |
+
spec,
|
| 306 |
+
spec_lengths,
|
| 307 |
+
y,
|
| 308 |
+
y_lengths,
|
| 309 |
+
speakers,
|
| 310 |
+
) in enumerate(loader):
|
| 311 |
+
if net_g.module.use_noise_scaled_mas:
|
| 312 |
+
current_mas_noise_scale = (
|
| 313 |
+
net_g.module.mas_noise_scale_initial
|
| 314 |
+
- net_g.module.noise_scale_delta * global_step
|
| 315 |
+
)
|
| 316 |
+
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
| 317 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
| 318 |
+
rank, non_blocking=True
|
| 319 |
+
)
|
| 320 |
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
| 321 |
+
rank, non_blocking=True
|
| 322 |
+
)
|
| 323 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
| 324 |
+
rank, non_blocking=True
|
| 325 |
+
)
|
| 326 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
| 327 |
+
|
| 328 |
+
with autocast(enabled=hps.train.fp16_run):
|
| 329 |
+
(
|
| 330 |
+
y_hat,
|
| 331 |
+
l_length,
|
| 332 |
+
attn,
|
| 333 |
+
ids_slice,
|
| 334 |
+
x_mask,
|
| 335 |
+
z_mask,
|
| 336 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 337 |
+
(hidden_x, logw, logw_),
|
| 338 |
+
) = net_g(x, x_lengths, spec, spec_lengths, speakers)
|
| 339 |
+
|
| 340 |
+
if (
|
| 341 |
+
hps.model.use_mel_posterior_encoder
|
| 342 |
+
or hps.data.use_mel_posterior_encoder
|
| 343 |
+
):
|
| 344 |
+
mel = spec
|
| 345 |
+
else:
|
| 346 |
+
mel = spec_to_mel_torch(
|
| 347 |
+
spec,
|
| 348 |
+
hps.data.filter_length,
|
| 349 |
+
hps.data.n_mel_channels,
|
| 350 |
+
hps.data.sampling_rate,
|
| 351 |
+
hps.data.mel_fmin,
|
| 352 |
+
hps.data.mel_fmax,
|
| 353 |
+
)
|
| 354 |
+
y_mel = commons.slice_segments(
|
| 355 |
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
| 356 |
+
)
|
| 357 |
+
y_hat_mel = mel_spectrogram_torch(
|
| 358 |
+
y_hat.squeeze(1),
|
| 359 |
+
hps.data.filter_length,
|
| 360 |
+
hps.data.n_mel_channels,
|
| 361 |
+
hps.data.sampling_rate,
|
| 362 |
+
hps.data.hop_length,
|
| 363 |
+
hps.data.win_length,
|
| 364 |
+
hps.data.mel_fmin,
|
| 365 |
+
hps.data.mel_fmax,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
y = commons.slice_segments(
|
| 369 |
+
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
| 370 |
+
) # slice
|
| 371 |
+
|
| 372 |
+
# Discriminator
|
| 373 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
| 374 |
+
with autocast(enabled=False):
|
| 375 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
| 376 |
+
y_d_hat_r, y_d_hat_g
|
| 377 |
+
)
|
| 378 |
+
loss_disc_all = loss_disc
|
| 379 |
+
|
| 380 |
+
# Duration Discriminator
|
| 381 |
+
if net_dur_disc is not None:
|
| 382 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
| 383 |
+
hidden_x.detach(), x_mask.detach(), logw_.detach(), logw.detach()
|
| 384 |
+
)
|
| 385 |
+
with autocast(enabled=False):
|
| 386 |
+
# TODO: I think need to mean using the mask, but for now, just mean all
|
| 387 |
+
(
|
| 388 |
+
loss_dur_disc,
|
| 389 |
+
losses_dur_disc_r,
|
| 390 |
+
losses_dur_disc_g,
|
| 391 |
+
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
| 392 |
+
loss_dur_disc_all = loss_dur_disc
|
| 393 |
+
optim_dur_disc.zero_grad()
|
| 394 |
+
scaler.scale(loss_dur_disc_all).backward()
|
| 395 |
+
scaler.unscale_(optim_dur_disc)
|
| 396 |
+
grad_norm_dur_disc = commons.clip_grad_value_(
|
| 397 |
+
net_dur_disc.parameters(), None
|
| 398 |
+
)
|
| 399 |
+
scaler.step(optim_dur_disc)
|
| 400 |
+
|
| 401 |
+
optim_d.zero_grad()
|
| 402 |
+
scaler.scale(loss_disc_all).backward()
|
| 403 |
+
scaler.unscale_(optim_d)
|
| 404 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
| 405 |
+
scaler.step(optim_d)
|
| 406 |
+
|
| 407 |
+
with autocast(enabled=hps.train.fp16_run):
|
| 408 |
+
# Generator
|
| 409 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
| 410 |
+
if net_dur_disc is not None:
|
| 411 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw)
|
| 412 |
+
with autocast(enabled=False):
|
| 413 |
+
loss_dur = torch.sum(l_length.float())
|
| 414 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
| 415 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
| 416 |
+
|
| 417 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
| 418 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
| 419 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
| 420 |
+
if net_dur_disc is not None:
|
| 421 |
+
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
| 422 |
+
loss_gen_all += loss_dur_gen
|
| 423 |
+
|
| 424 |
+
optim_g.zero_grad()
|
| 425 |
+
scaler.scale(loss_gen_all).backward()
|
| 426 |
+
scaler.unscale_(optim_g)
|
| 427 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
| 428 |
+
scaler.step(optim_g)
|
| 429 |
+
scaler.update()
|
| 430 |
+
|
| 431 |
+
if rank == 0:
|
| 432 |
+
if global_step % hps.train.log_interval == 0:
|
| 433 |
+
lr = optim_g.param_groups[0]["lr"]
|
| 434 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
| 435 |
+
logger.info(
|
| 436 |
+
"Train Epoch: {} [{:.0f}%]".format(
|
| 437 |
+
epoch, 100.0 * batch_idx / len(train_loader)
|
| 438 |
+
)
|
| 439 |
+
)
|
| 440 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
| 441 |
+
|
| 442 |
+
scalar_dict = {
|
| 443 |
+
"loss/g/total": loss_gen_all,
|
| 444 |
+
"loss/d/total": loss_disc_all,
|
| 445 |
+
"learning_rate": lr,
|
| 446 |
+
"grad_norm_d": grad_norm_d,
|
| 447 |
+
"grad_norm_g": grad_norm_g,
|
| 448 |
+
}
|
| 449 |
+
if net_dur_disc is not None:
|
| 450 |
+
scalar_dict.update(
|
| 451 |
+
{
|
| 452 |
+
"loss/dur_disc/total": loss_dur_disc_all,
|
| 453 |
+
"grad_norm_dur_disc": grad_norm_dur_disc,
|
| 454 |
+
}
|
| 455 |
+
)
|
| 456 |
+
scalar_dict.update(
|
| 457 |
+
{
|
| 458 |
+
"loss/g/fm": loss_fm,
|
| 459 |
+
"loss/g/mel": loss_mel,
|
| 460 |
+
"loss/g/dur": loss_dur,
|
| 461 |
+
"loss/g/kl": loss_kl,
|
| 462 |
+
}
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
scalar_dict.update(
|
| 466 |
+
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
| 467 |
+
)
|
| 468 |
+
scalar_dict.update(
|
| 469 |
+
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
| 470 |
+
)
|
| 471 |
+
scalar_dict.update(
|
| 472 |
+
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
# if net_dur_disc is not None:
|
| 476 |
+
# scalar_dict.update({"loss/dur_disc_r" : f"{losses_dur_disc_r}"})
|
| 477 |
+
# scalar_dict.update({"loss/dur_disc_g" : f"{losses_dur_disc_g}"})
|
| 478 |
+
# scalar_dict.update({"loss/dur_gen" : f"{loss_dur_gen}"})
|
| 479 |
+
|
| 480 |
+
image_dict = {
|
| 481 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
| 482 |
+
y_mel[0].data.cpu().numpy()
|
| 483 |
+
),
|
| 484 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
| 485 |
+
y_hat_mel[0].data.cpu().numpy()
|
| 486 |
+
),
|
| 487 |
+
"all/mel": utils.plot_spectrogram_to_numpy(
|
| 488 |
+
mel[0].data.cpu().numpy()
|
| 489 |
+
),
|
| 490 |
+
"all/attn": utils.plot_alignment_to_numpy(
|
| 491 |
+
attn[0, 0].data.cpu().numpy()
|
| 492 |
+
),
|
| 493 |
+
}
|
| 494 |
+
utils.summarize(
|
| 495 |
+
writer=writer,
|
| 496 |
+
global_step=global_step,
|
| 497 |
+
images=image_dict,
|
| 498 |
+
scalars=scalar_dict,
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
if global_step % hps.train.eval_interval == 0:
|
| 502 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
| 503 |
+
utils.save_checkpoint(
|
| 504 |
+
net_g,
|
| 505 |
+
optim_g,
|
| 506 |
+
hps.train.learning_rate,
|
| 507 |
+
epoch,
|
| 508 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
| 509 |
+
)
|
| 510 |
+
utils.save_checkpoint(
|
| 511 |
+
net_d,
|
| 512 |
+
optim_d,
|
| 513 |
+
hps.train.learning_rate,
|
| 514 |
+
epoch,
|
| 515 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
| 516 |
+
)
|
| 517 |
+
if net_dur_disc is not None:
|
| 518 |
+
utils.save_checkpoint(
|
| 519 |
+
net_dur_disc,
|
| 520 |
+
optim_dur_disc,
|
| 521 |
+
hps.train.learning_rate,
|
| 522 |
+
epoch,
|
| 523 |
+
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
| 524 |
+
)
|
| 525 |
+
global_step += 1
|
| 526 |
+
|
| 527 |
+
if rank == 0:
|
| 528 |
+
logger.info("====> Epoch: {}".format(epoch))
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
| 532 |
+
generator.eval()
|
| 533 |
+
with torch.no_grad():
|
| 534 |
+
for batch_idx, (
|
| 535 |
+
x,
|
| 536 |
+
x_lengths,
|
| 537 |
+
spec,
|
| 538 |
+
spec_lengths,
|
| 539 |
+
y,
|
| 540 |
+
y_lengths,
|
| 541 |
+
speakers,
|
| 542 |
+
) in enumerate(eval_loader):
|
| 543 |
+
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
| 544 |
+
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
| 545 |
+
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
| 546 |
+
speakers = speakers.cuda(0)
|
| 547 |
+
|
| 548 |
+
# remove else
|
| 549 |
+
x = x[:1]
|
| 550 |
+
x_lengths = x_lengths[:1]
|
| 551 |
+
spec = spec[:1]
|
| 552 |
+
spec_lengths = spec_lengths[:1]
|
| 553 |
+
y = y[:1]
|
| 554 |
+
y_lengths = y_lengths[:1]
|
| 555 |
+
speakers = speakers[:1]
|
| 556 |
+
break
|
| 557 |
+
y_hat, attn, mask, *_ = generator.module.infer(
|
| 558 |
+
x, x_lengths, speakers, max_len=1000
|
| 559 |
+
)
|
| 560 |
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
| 561 |
+
|
| 562 |
+
if hps.model.use_mel_posterior_encoder or hps.data.use_mel_posterior_encoder:
|
| 563 |
+
mel = spec
|
| 564 |
+
else:
|
| 565 |
+
mel = spec_to_mel_torch(
|
| 566 |
+
spec,
|
| 567 |
+
hps.data.filter_length,
|
| 568 |
+
hps.data.n_mel_channels,
|
| 569 |
+
hps.data.sampling_rate,
|
| 570 |
+
hps.data.mel_fmin,
|
| 571 |
+
hps.data.mel_fmax,
|
| 572 |
+
)
|
| 573 |
+
y_hat_mel = mel_spectrogram_torch(
|
| 574 |
+
y_hat.squeeze(1).float(),
|
| 575 |
+
hps.data.filter_length,
|
| 576 |
+
hps.data.n_mel_channels,
|
| 577 |
+
hps.data.sampling_rate,
|
| 578 |
+
hps.data.hop_length,
|
| 579 |
+
hps.data.win_length,
|
| 580 |
+
hps.data.mel_fmin,
|
| 581 |
+
hps.data.mel_fmax,
|
| 582 |
+
)
|
| 583 |
+
image_dict = {
|
| 584 |
+
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
| 585 |
+
}
|
| 586 |
+
audio_dict = {"gen/audio": y_hat[0, :, : y_hat_lengths[0]]}
|
| 587 |
+
if global_step == 0:
|
| 588 |
+
image_dict.update(
|
| 589 |
+
{"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())}
|
| 590 |
+
)
|
| 591 |
+
audio_dict.update({"gt/audio": y[0, :, : y_lengths[0]]})
|
| 592 |
+
|
| 593 |
+
utils.summarize(
|
| 594 |
+
writer=writer_eval,
|
| 595 |
+
global_step=global_step,
|
| 596 |
+
images=image_dict,
|
| 597 |
+
audios=audio_dict,
|
| 598 |
+
audio_sampling_rate=hps.data.sampling_rate,
|
| 599 |
+
)
|
| 600 |
+
generator.train()
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
if __name__ == "__main__":
|
| 604 |
+
main()
|
transforms.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
| 8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
| 9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def piecewise_rational_quadratic_transform(
|
| 13 |
+
inputs,
|
| 14 |
+
unnormalized_widths,
|
| 15 |
+
unnormalized_heights,
|
| 16 |
+
unnormalized_derivatives,
|
| 17 |
+
inverse=False,
|
| 18 |
+
tails=None,
|
| 19 |
+
tail_bound=1.0,
|
| 20 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 21 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 22 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 23 |
+
):
|
| 24 |
+
if tails is None:
|
| 25 |
+
spline_fn = rational_quadratic_spline
|
| 26 |
+
spline_kwargs = {}
|
| 27 |
+
else:
|
| 28 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
| 29 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
| 30 |
+
|
| 31 |
+
outputs, logabsdet = spline_fn(
|
| 32 |
+
inputs=inputs,
|
| 33 |
+
unnormalized_widths=unnormalized_widths,
|
| 34 |
+
unnormalized_heights=unnormalized_heights,
|
| 35 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
| 36 |
+
inverse=inverse,
|
| 37 |
+
min_bin_width=min_bin_width,
|
| 38 |
+
min_bin_height=min_bin_height,
|
| 39 |
+
min_derivative=min_derivative,
|
| 40 |
+
**spline_kwargs
|
| 41 |
+
)
|
| 42 |
+
return outputs, logabsdet
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
| 46 |
+
bin_locations[..., -1] += eps
|
| 47 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def unconstrained_rational_quadratic_spline(
|
| 51 |
+
inputs,
|
| 52 |
+
unnormalized_widths,
|
| 53 |
+
unnormalized_heights,
|
| 54 |
+
unnormalized_derivatives,
|
| 55 |
+
inverse=False,
|
| 56 |
+
tails="linear",
|
| 57 |
+
tail_bound=1.0,
|
| 58 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 59 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 60 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 61 |
+
):
|
| 62 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
| 63 |
+
outside_interval_mask = ~inside_interval_mask
|
| 64 |
+
|
| 65 |
+
outputs = torch.zeros_like(inputs)
|
| 66 |
+
logabsdet = torch.zeros_like(inputs)
|
| 67 |
+
|
| 68 |
+
if tails == "linear":
|
| 69 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
| 70 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
| 71 |
+
unnormalized_derivatives[..., 0] = constant
|
| 72 |
+
unnormalized_derivatives[..., -1] = constant
|
| 73 |
+
|
| 74 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
| 75 |
+
logabsdet[outside_interval_mask] = 0
|
| 76 |
+
else:
|
| 77 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
| 78 |
+
|
| 79 |
+
(
|
| 80 |
+
outputs[inside_interval_mask],
|
| 81 |
+
logabsdet[inside_interval_mask],
|
| 82 |
+
) = rational_quadratic_spline(
|
| 83 |
+
inputs=inputs[inside_interval_mask],
|
| 84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
| 85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
| 86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
| 87 |
+
inverse=inverse,
|
| 88 |
+
left=-tail_bound,
|
| 89 |
+
right=tail_bound,
|
| 90 |
+
bottom=-tail_bound,
|
| 91 |
+
top=tail_bound,
|
| 92 |
+
min_bin_width=min_bin_width,
|
| 93 |
+
min_bin_height=min_bin_height,
|
| 94 |
+
min_derivative=min_derivative,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
return outputs, logabsdet
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def rational_quadratic_spline(
|
| 101 |
+
inputs,
|
| 102 |
+
unnormalized_widths,
|
| 103 |
+
unnormalized_heights,
|
| 104 |
+
unnormalized_derivatives,
|
| 105 |
+
inverse=False,
|
| 106 |
+
left=0.0,
|
| 107 |
+
right=1.0,
|
| 108 |
+
bottom=0.0,
|
| 109 |
+
top=1.0,
|
| 110 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 111 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 112 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 113 |
+
):
|
| 114 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
| 115 |
+
raise ValueError("Input to a transform is not within its domain")
|
| 116 |
+
|
| 117 |
+
num_bins = unnormalized_widths.shape[-1]
|
| 118 |
+
|
| 119 |
+
if min_bin_width * num_bins > 1.0:
|
| 120 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
| 121 |
+
if min_bin_height * num_bins > 1.0:
|
| 122 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
| 123 |
+
|
| 124 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
| 125 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
| 126 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
| 127 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
| 128 |
+
cumwidths = (right - left) * cumwidths + left
|
| 129 |
+
cumwidths[..., 0] = left
|
| 130 |
+
cumwidths[..., -1] = right
|
| 131 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
| 132 |
+
|
| 133 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
| 134 |
+
|
| 135 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
| 136 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
| 137 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
| 138 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
| 139 |
+
cumheights = (top - bottom) * cumheights + bottom
|
| 140 |
+
cumheights[..., 0] = bottom
|
| 141 |
+
cumheights[..., -1] = top
|
| 142 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
| 143 |
+
|
| 144 |
+
if inverse:
|
| 145 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
| 146 |
+
else:
|
| 147 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
| 148 |
+
|
| 149 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
| 150 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
| 151 |
+
|
| 152 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
| 153 |
+
delta = heights / widths
|
| 154 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
| 155 |
+
|
| 156 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
| 157 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
| 158 |
+
|
| 159 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
| 160 |
+
|
| 161 |
+
if inverse:
|
| 162 |
+
a = (inputs - input_cumheights) * (
|
| 163 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 164 |
+
) + input_heights * (input_delta - input_derivatives)
|
| 165 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
| 166 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 167 |
+
)
|
| 168 |
+
c = -input_delta * (inputs - input_cumheights)
|
| 169 |
+
|
| 170 |
+
discriminant = b.pow(2) - 4 * a * c
|
| 171 |
+
assert (discriminant >= 0).all()
|
| 172 |
+
|
| 173 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
| 174 |
+
outputs = root * input_bin_widths + input_cumwidths
|
| 175 |
+
|
| 176 |
+
theta_one_minus_theta = root * (1 - root)
|
| 177 |
+
denominator = input_delta + (
|
| 178 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 179 |
+
* theta_one_minus_theta
|
| 180 |
+
)
|
| 181 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 182 |
+
input_derivatives_plus_one * root.pow(2)
|
| 183 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 184 |
+
+ input_derivatives * (1 - root).pow(2)
|
| 185 |
+
)
|
| 186 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 187 |
+
|
| 188 |
+
return outputs, -logabsdet
|
| 189 |
+
else:
|
| 190 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
| 191 |
+
theta_one_minus_theta = theta * (1 - theta)
|
| 192 |
+
|
| 193 |
+
numerator = input_heights * (
|
| 194 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
| 195 |
+
)
|
| 196 |
+
denominator = input_delta + (
|
| 197 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 198 |
+
* theta_one_minus_theta
|
| 199 |
+
)
|
| 200 |
+
outputs = input_cumheights + numerator / denominator
|
| 201 |
+
|
| 202 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 203 |
+
input_derivatives_plus_one * theta.pow(2)
|
| 204 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 205 |
+
+ input_derivatives * (1 - theta).pow(2)
|
| 206 |
+
)
|
| 207 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 208 |
+
|
| 209 |
+
return outputs, logabsdet
|
utils.py
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import glob
|
| 3 |
+
import sys
|
| 4 |
+
import argparse
|
| 5 |
+
import logging
|
| 6 |
+
import json
|
| 7 |
+
import subprocess
|
| 8 |
+
import numpy as np
|
| 9 |
+
from scipy.io.wavfile import read
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
MATPLOTLIB_FLAG = False
|
| 13 |
+
|
| 14 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
| 15 |
+
logger = logging
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
| 19 |
+
assert os.path.isfile(checkpoint_path)
|
| 20 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 21 |
+
iteration = checkpoint_dict["iteration"]
|
| 22 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
| 23 |
+
if optimizer is not None:
|
| 24 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
| 25 |
+
saved_state_dict = checkpoint_dict["model"]
|
| 26 |
+
if hasattr(model, "module"):
|
| 27 |
+
state_dict = model.module.state_dict()
|
| 28 |
+
else:
|
| 29 |
+
state_dict = model.state_dict()
|
| 30 |
+
new_state_dict = {}
|
| 31 |
+
for k, v in state_dict.items():
|
| 32 |
+
try:
|
| 33 |
+
new_state_dict[k] = saved_state_dict[k]
|
| 34 |
+
except:
|
| 35 |
+
logger.info("%s is not in the checkpoint" % k)
|
| 36 |
+
new_state_dict[k] = v
|
| 37 |
+
if hasattr(model, "module"):
|
| 38 |
+
model.module.load_state_dict(new_state_dict)
|
| 39 |
+
else:
|
| 40 |
+
model.load_state_dict(new_state_dict)
|
| 41 |
+
logger.info(
|
| 42 |
+
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
| 43 |
+
)
|
| 44 |
+
return model, optimizer, learning_rate, iteration
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
| 48 |
+
logger.info(
|
| 49 |
+
"Saving model and optimizer state at iteration {} to {}".format(
|
| 50 |
+
iteration, checkpoint_path
|
| 51 |
+
)
|
| 52 |
+
)
|
| 53 |
+
if hasattr(model, "module"):
|
| 54 |
+
state_dict = model.module.state_dict()
|
| 55 |
+
else:
|
| 56 |
+
state_dict = model.state_dict()
|
| 57 |
+
torch.save(
|
| 58 |
+
{
|
| 59 |
+
"model": state_dict,
|
| 60 |
+
"iteration": iteration,
|
| 61 |
+
"optimizer": optimizer.state_dict(),
|
| 62 |
+
"learning_rate": learning_rate,
|
| 63 |
+
},
|
| 64 |
+
checkpoint_path,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def summarize(
|
| 69 |
+
writer,
|
| 70 |
+
global_step,
|
| 71 |
+
scalars={},
|
| 72 |
+
histograms={},
|
| 73 |
+
images={},
|
| 74 |
+
audios={},
|
| 75 |
+
audio_sampling_rate=22050,
|
| 76 |
+
):
|
| 77 |
+
for k, v in scalars.items():
|
| 78 |
+
writer.add_scalar(k, v, global_step)
|
| 79 |
+
for k, v in histograms.items():
|
| 80 |
+
writer.add_histogram(k, v, global_step)
|
| 81 |
+
for k, v in images.items():
|
| 82 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
| 83 |
+
for k, v in audios.items():
|
| 84 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
| 88 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
| 89 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
| 90 |
+
x = f_list[-1]
|
| 91 |
+
print(x)
|
| 92 |
+
return x
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
| 96 |
+
global MATPLOTLIB_FLAG
|
| 97 |
+
if not MATPLOTLIB_FLAG:
|
| 98 |
+
import matplotlib
|
| 99 |
+
|
| 100 |
+
matplotlib.use("Agg")
|
| 101 |
+
MATPLOTLIB_FLAG = True
|
| 102 |
+
mpl_logger = logging.getLogger("matplotlib")
|
| 103 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 104 |
+
import matplotlib.pylab as plt
|
| 105 |
+
import numpy as np
|
| 106 |
+
|
| 107 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 108 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
| 109 |
+
plt.colorbar(im, ax=ax)
|
| 110 |
+
plt.xlabel("Frames")
|
| 111 |
+
plt.ylabel("Channels")
|
| 112 |
+
plt.tight_layout()
|
| 113 |
+
|
| 114 |
+
fig.canvas.draw()
|
| 115 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 116 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 117 |
+
plt.close()
|
| 118 |
+
return data
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
| 122 |
+
global MATPLOTLIB_FLAG
|
| 123 |
+
if not MATPLOTLIB_FLAG:
|
| 124 |
+
import matplotlib
|
| 125 |
+
|
| 126 |
+
matplotlib.use("Agg")
|
| 127 |
+
MATPLOTLIB_FLAG = True
|
| 128 |
+
mpl_logger = logging.getLogger("matplotlib")
|
| 129 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 130 |
+
import matplotlib.pylab as plt
|
| 131 |
+
import numpy as np
|
| 132 |
+
|
| 133 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 134 |
+
im = ax.imshow(
|
| 135 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
| 136 |
+
)
|
| 137 |
+
fig.colorbar(im, ax=ax)
|
| 138 |
+
xlabel = "Decoder timestep"
|
| 139 |
+
if info is not None:
|
| 140 |
+
xlabel += "\n\n" + info
|
| 141 |
+
plt.xlabel(xlabel)
|
| 142 |
+
plt.ylabel("Encoder timestep")
|
| 143 |
+
plt.tight_layout()
|
| 144 |
+
|
| 145 |
+
fig.canvas.draw()
|
| 146 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 147 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 148 |
+
plt.close()
|
| 149 |
+
return data
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def load_wav_to_torch(full_path):
|
| 153 |
+
sampling_rate, data = read(full_path)
|
| 154 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def load_filepaths_and_text(filename, split="|"):
|
| 158 |
+
with open(filename, encoding="utf-8") as f:
|
| 159 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
| 160 |
+
return filepaths_and_text
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def get_hparams(init=True):
|
| 164 |
+
parser = argparse.ArgumentParser()
|
| 165 |
+
parser.add_argument(
|
| 166 |
+
"-c",
|
| 167 |
+
"--config",
|
| 168 |
+
type=str,
|
| 169 |
+
default="./configs/base.json",
|
| 170 |
+
help="JSON file for configuration",
|
| 171 |
+
)
|
| 172 |
+
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
| 173 |
+
|
| 174 |
+
args = parser.parse_args()
|
| 175 |
+
model_dir = os.path.join("./logs", args.model)
|
| 176 |
+
|
| 177 |
+
if not os.path.exists(model_dir):
|
| 178 |
+
os.makedirs(model_dir)
|
| 179 |
+
|
| 180 |
+
config_path = args.config
|
| 181 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
| 182 |
+
if init:
|
| 183 |
+
with open(config_path, "r") as f:
|
| 184 |
+
data = f.read()
|
| 185 |
+
with open(config_save_path, "w") as f:
|
| 186 |
+
f.write(data)
|
| 187 |
+
else:
|
| 188 |
+
with open(config_save_path, "r") as f:
|
| 189 |
+
data = f.read()
|
| 190 |
+
config = json.loads(data)
|
| 191 |
+
|
| 192 |
+
hparams = HParams(**config)
|
| 193 |
+
hparams.model_dir = model_dir
|
| 194 |
+
return hparams
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def get_hparams_from_dir(model_dir):
|
| 198 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
| 199 |
+
with open(config_save_path, "r") as f:
|
| 200 |
+
data = f.read()
|
| 201 |
+
config = json.loads(data)
|
| 202 |
+
|
| 203 |
+
hparams = HParams(**config)
|
| 204 |
+
hparams.model_dir = model_dir
|
| 205 |
+
return hparams
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def get_hparams_from_file(config_path):
|
| 209 |
+
with open(config_path, "r") as f:
|
| 210 |
+
data = f.read()
|
| 211 |
+
config = json.loads(data)
|
| 212 |
+
|
| 213 |
+
hparams = HParams(**config)
|
| 214 |
+
return hparams
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def check_git_hash(model_dir):
|
| 218 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
| 219 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
| 220 |
+
logger.warn(
|
| 221 |
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
| 222 |
+
source_dir
|
| 223 |
+
)
|
| 224 |
+
)
|
| 225 |
+
return
|
| 226 |
+
|
| 227 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
| 228 |
+
|
| 229 |
+
path = os.path.join(model_dir, "githash")
|
| 230 |
+
if os.path.exists(path):
|
| 231 |
+
saved_hash = open(path).read()
|
| 232 |
+
if saved_hash != cur_hash:
|
| 233 |
+
logger.warn(
|
| 234 |
+
"git hash values are different. {}(saved) != {}(current)".format(
|
| 235 |
+
saved_hash[:8], cur_hash[:8]
|
| 236 |
+
)
|
| 237 |
+
)
|
| 238 |
+
else:
|
| 239 |
+
open(path, "w").write(cur_hash)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def get_logger(model_dir, filename="train.log"):
|
| 243 |
+
global logger
|
| 244 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
| 245 |
+
logger.setLevel(logging.DEBUG)
|
| 246 |
+
|
| 247 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
| 248 |
+
if not os.path.exists(model_dir):
|
| 249 |
+
os.makedirs(model_dir)
|
| 250 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
| 251 |
+
h.setLevel(logging.DEBUG)
|
| 252 |
+
h.setFormatter(formatter)
|
| 253 |
+
logger.addHandler(h)
|
| 254 |
+
return logger
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class HParams:
|
| 258 |
+
def __init__(self, **kwargs):
|
| 259 |
+
for k, v in kwargs.items():
|
| 260 |
+
if type(v) == dict:
|
| 261 |
+
v = HParams(**v)
|
| 262 |
+
self[k] = v
|
| 263 |
+
|
| 264 |
+
def keys(self):
|
| 265 |
+
return self.__dict__.keys()
|
| 266 |
+
|
| 267 |
+
def items(self):
|
| 268 |
+
return self.__dict__.items()
|
| 269 |
+
|
| 270 |
+
def values(self):
|
| 271 |
+
return self.__dict__.values()
|
| 272 |
+
|
| 273 |
+
def __len__(self):
|
| 274 |
+
return len(self.__dict__)
|
| 275 |
+
|
| 276 |
+
def __getitem__(self, key):
|
| 277 |
+
return getattr(self, key)
|
| 278 |
+
|
| 279 |
+
def __setitem__(self, key, value):
|
| 280 |
+
return setattr(self, key, value)
|
| 281 |
+
|
| 282 |
+
def __contains__(self, key):
|
| 283 |
+
return key in self.__dict__
|
| 284 |
+
|
| 285 |
+
def __repr__(self):
|
| 286 |
+
return self.__dict__.__repr__()
|
webui.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from gradio import components
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import commons
|
| 7 |
+
import utils
|
| 8 |
+
from models import SynthesizerTrn
|
| 9 |
+
from text.symbols import symbols
|
| 10 |
+
from text import text_to_sequence
|
| 11 |
+
from scipy.io.wavfile import write
|
| 12 |
+
|
| 13 |
+
def get_text(text, hps):
|
| 14 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
| 15 |
+
if hps.data.add_blank:
|
| 16 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 17 |
+
text_norm = torch.LongTensor(text_norm)
|
| 18 |
+
return text_norm
|
| 19 |
+
|
| 20 |
+
def tts(model_path, config_path, text):
|
| 21 |
+
model_path = './logs/' + model_path
|
| 22 |
+
config_path = './configs/' + config_path
|
| 23 |
+
hps = utils.get_hparams_from_file(config_path)
|
| 24 |
+
|
| 25 |
+
if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True:
|
| 26 |
+
posterior_channels = 80
|
| 27 |
+
hps.data.use_mel_posterior_encoder = True
|
| 28 |
+
else:
|
| 29 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
| 30 |
+
hps.data.use_mel_posterior_encoder = False
|
| 31 |
+
|
| 32 |
+
net_g = SynthesizerTrn(
|
| 33 |
+
len(symbols),
|
| 34 |
+
posterior_channels,
|
| 35 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 36 |
+
**hps.model).cuda()
|
| 37 |
+
_ = net_g.eval()
|
| 38 |
+
_ = utils.load_checkpoint(model_path, net_g, None)
|
| 39 |
+
|
| 40 |
+
stn_tst = get_text(text, hps)
|
| 41 |
+
x_tst = stn_tst.cuda().unsqueeze(0)
|
| 42 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
|
| 46 |
+
|
| 47 |
+
output_wav_path = "output.wav"
|
| 48 |
+
write(output_wav_path, hps.data.sampling_rate, audio)
|
| 49 |
+
|
| 50 |
+
return output_wav_path
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
parser = argparse.ArgumentParser()
|
| 54 |
+
parser.add_argument('--model_path', type=str, default=None, help='Path to the model file.')
|
| 55 |
+
parser.add_argument('--config_path', type=str, default=None, help='Path to the config file.')
|
| 56 |
+
args = parser.parse_args()
|
| 57 |
+
|
| 58 |
+
model_files = [f for f in os.listdir('./logs/') if f.endswith('.pth')]
|
| 59 |
+
model_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]), reverse=True)
|
| 60 |
+
config_files = [f for f in os.listdir('./configs/') if f.endswith('.json')]
|
| 61 |
+
|
| 62 |
+
default_model_file = args.model_path if args.model_path else (model_files[0] if model_files else None)
|
| 63 |
+
default_config_file = args.config_path if args.config_path else 'config.json'
|
| 64 |
+
|
| 65 |
+
gr.Interface(
|
| 66 |
+
fn=tts,
|
| 67 |
+
inputs=[components.Dropdown(model_files,value=default_model_file, label="Model File"), components.Dropdown(config_files,value=default_config_file, label="Config File"), components.Textbox(label="Text Input")],
|
| 68 |
+
outputs=components.Audio(type='filepath', label="Generated Speech"),
|
| 69 |
+
live=False
|
| 70 |
+
).launch()
|