from dataclasses import dataclass, field from typing import Optional @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) ptuning_checkpoint: str = field( default=None, metadata={"help": "Path to p-tuning v2 checkpoints"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) resize_position_embeddings: Optional[bool] = field( default=None, metadata={ "help": ( "Whether to automatically resize the position embeddings if `max_source_length` exceeds " "the model's position embeddings." ) }, ) quantization_bit: Optional[int] = field( default=None ) pre_seq_len: Optional[int] = field( default=None ) prefix_projection: bool = field( default=False ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} ) max_seq_length: Optional[int] = field( default=2048, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated." ) }, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) train_format: str = field( default=None, metadata={"help": "The format of the training data file (mulit-turn or input-output)"}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to model maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) def __post_init__(self): extension = self.train_file.split(".")[-1] assert extension in {"jsonl", "json"}, "`train_file` should be a jsonl or a json file." assert self.train_format in {"multi-turn", "input-output"}