""" This script demonstrates how to use the `bad_words_ids` argument to filter out. """ import os import platform from transformers import AutoTokenizer, AutoModel import torch MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b') TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH) DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True) if 'cuda' in DEVICE: # AMD, NVIDIA GPU can use Half Precision model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).to(DEVICE).eval() else: # CPU, Intel GPU and other GPU can use Float16 Precision Only model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).float().to(DEVICE).eval() os_name = platform.system() clear_command = 'cls' if os_name == 'Windows' else 'clear' stop_stream = False welcome_prompt = "欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序" # 定义不希望出现的词汇, 你可以自定义, 在这个例子中,如果模型回答包含 "你好" 或 "ChatGLM",则会出现这个报错 # probability tensor contains either `inf`, `nan` or element < 0 bad_words = ["你好", "ChatGLM"] # 将这些词汇转换为token ID列表,每个短语是一个子列表 bad_word_ids = [tokenizer.encode(bad_word, add_special_tokens=False) for bad_word in bad_words] def build_prompt(history): prompt = welcome_prompt for query, response in history: prompt += f"\n\n用户:{query}" prompt += f"\n\nChatGLM3-6B:{response}" return prompt def main(): past_key_values, history = None, [] global stop_stream print(welcome_prompt) while True: query = input("\n用户:") if query.strip().lower() == "stop": break if query.strip().lower() == "clear": past_key_values, history = None, [] os.system(clear_command) print(welcome_prompt) continue # Attempt to generate a response try: print("\nChatGLM:", end="") current_length = 0 response_generated = False for response, history, past_key_values in model.stream_chat( tokenizer, query, history=history, top_p=1, temperature=0.01, past_key_values=past_key_values, return_past_key_values=True, bad_words_ids=bad_word_ids # assuming this is implemented correctly ): response_generated = True # Check if the response contains any bad words if any(bad_word in response for bad_word in bad_words): print("我的回答涉嫌了bad word") break # Break the loop if a bad word is detected # Otherwise, print the generated response print(response[current_length:], end="", flush=True) current_length = len(response) if not response_generated: print("没有生成任何回答。") except RuntimeError as e: print(f"生成文本时发生错误:{e},这可能是涉及到设定的敏感词汇") print("") if __name__ == "__main__": main()