kevinwang676's picture
Upload folder using huggingface_hub
4721aa1
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""
import os
from typing import Optional
from transformers import Trainer
import torch
from transformers.modeling_utils import PreTrainedModel, unwrap_model
from transformers.utils import logging
logger = logging.get_logger(__name__)
WEIGHTS_NAME = "pytorch_model.pt"
TRAINING_ARGS_NAME = "training_args.bin"
class LoRATrainer(Trainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def compute_loss(self, model, inputs, return_outputs=False):
return model(**inputs).loss
def save_model(self, output_dir=None, _internal_call=False):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
model_to_save = unwrap_model(self.model)
saved_params = {
k: v.to("cuda") for k, v in model_to_save.named_parameters() if v.requires_grad
}
torch.save(saved_params, os.path.join(output_dir, WEIGHTS_NAME))
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))