File size: 3,323 Bytes
4721aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
This script demonstrates how to use the `bad_words_ids` argument to filter out.
"""
import os
import platform
from transformers import AutoTokenizer, AutoModel
import torch

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
if 'cuda' in DEVICE: # AMD, NVIDIA GPU can use Half Precision
    model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).to(DEVICE).eval()
else: # CPU, Intel GPU and other GPU can use Float16 Precision Only
    model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).float().to(DEVICE).eval()

os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
stop_stream = False

welcome_prompt = "欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序"

# 定义不希望出现的词汇, 你可以自定义, 在这个例子中,如果模型回答包含 "你好" 或 "ChatGLM",则会出现这个报错
# probability tensor contains either `inf`, `nan` or element < 0

bad_words = ["你好", "ChatGLM"]
# 将这些词汇转换为token ID列表,每个短语是一个子列表
bad_word_ids = [tokenizer.encode(bad_word, add_special_tokens=False) for bad_word in bad_words]


def build_prompt(history):
    prompt = welcome_prompt
    for query, response in history:
        prompt += f"\n\n用户:{query}"
        prompt += f"\n\nChatGLM3-6B:{response}"
    return prompt

def main():
    past_key_values, history = None, []
    global stop_stream
    print(welcome_prompt)
    while True:
        query = input("\n用户:")
        if query.strip().lower() == "stop":
            break
        if query.strip().lower() == "clear":
            past_key_values, history = None, []
            os.system(clear_command)
            print(welcome_prompt)
            continue

        # Attempt to generate a response
        try:
            print("\nChatGLM:", end="")
            current_length = 0
            response_generated = False
            for response, history, past_key_values in model.stream_chat(
                tokenizer, query, history=history, top_p=1,
                temperature=0.01,
                past_key_values=past_key_values,
                return_past_key_values=True,
                bad_words_ids=bad_word_ids  # assuming this is implemented correctly
            ):
                response_generated = True
                # Check if the response contains any bad words
                if any(bad_word in response for bad_word in bad_words):
                    print("我的回答涉嫌了bad word")
                    break  # Break the loop if a bad word is detected

                # Otherwise, print the generated response
                print(response[current_length:], end="", flush=True)
                current_length = len(response)
            if not response_generated:
                print("没有生成任何回答。")
        except RuntimeError as e:
            print(f"生成文本时发生错误:{e},这可能是涉及到设定的敏感词汇")

        print("")

if __name__ == "__main__":
    main()