Spaces:
Runtime error
Runtime error
Add slackbot support (#12)
Browse files* fix relative import
* add embeddings requirement
* update openai embeddings requirements...
* format responses appropriately
* add markdown response
* Fix newline formatting
* add threshold and top_k
* update response
* fix merge conflict
* Add slackbot
* refactor with a nice config interface
* add TODO
* isort
* add dataclass for chatbot config
* black
* Add support for orion bot
* format text
* Update docs
* use default_factory for dataclass
* Update app home tab
* update unk tokens
* move init to function
* Add logging
- app.py +144 -0
- buster/chatbot.py +189 -85
app.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from slack_bolt import App
|
| 4 |
+
|
| 5 |
+
from buster.chatbot import Chatbot, ChatbotConfig
|
| 6 |
+
|
| 7 |
+
MILA_CLUSTER_CHANNEL = "C04LR4H9KQA"
|
| 8 |
+
ORION_CHANNEL = "C04LYHGUYB0"
|
| 9 |
+
|
| 10 |
+
buster_cfg = ChatbotConfig(
|
| 11 |
+
documents_csv="buster/data/document_embeddings.csv",
|
| 12 |
+
unknown_prompt="This doesn't seem to be related to cluster usage. I am not sure how to answer.",
|
| 13 |
+
embedding_model="text-embedding-ada-002",
|
| 14 |
+
top_k=3,
|
| 15 |
+
thresh=0.7,
|
| 16 |
+
max_chars=3000,
|
| 17 |
+
completion_kwargs={
|
| 18 |
+
"engine": "text-davinci-003",
|
| 19 |
+
"max_tokens": 200,
|
| 20 |
+
},
|
| 21 |
+
separator="\n",
|
| 22 |
+
link_format="slack",
|
| 23 |
+
text_after_response="""I'm a bot 🤖 and not always perfect.
|
| 24 |
+
For more info, view the full documentation here (https://docs.mila.quebec/) or contact support@mila.quebec
|
| 25 |
+
""",
|
| 26 |
+
text_before_prompt="""
|
| 27 |
+
You are a slack chatbot assistant answering technical questions about a cluster.
|
| 28 |
+
Make sure to format your answers in Markdown format, including code block and snippets.
|
| 29 |
+
Do not include any links to urls or hyperlinks in your answers.
|
| 30 |
+
|
| 31 |
+
If you do not know the answer to a question, or if it is completely irrelevant to cluster usage, simply reply with:
|
| 32 |
+
|
| 33 |
+
'This doesn't seem to be related to cluster usage.'
|
| 34 |
+
|
| 35 |
+
For example:
|
| 36 |
+
|
| 37 |
+
What is the meaning of life on the cluster?
|
| 38 |
+
|
| 39 |
+
This doesn't seem to be related to cluster usage.
|
| 40 |
+
|
| 41 |
+
Now answer the following question:
|
| 42 |
+
""",
|
| 43 |
+
)
|
| 44 |
+
buster_chatbot = Chatbot(buster_cfg)
|
| 45 |
+
|
| 46 |
+
orion_cfg = ChatbotConfig(
|
| 47 |
+
documents_csv="buster/data/document_embeddings_orion.csv",
|
| 48 |
+
unknown_prompt="This doesn't seem to be related to the orion library. I am not sure how to answer.",
|
| 49 |
+
embedding_model="text-embedding-ada-002",
|
| 50 |
+
top_k=3,
|
| 51 |
+
thresh=0.7,
|
| 52 |
+
max_chars=3000,
|
| 53 |
+
completion_kwargs={
|
| 54 |
+
"engine": "text-davinci-003",
|
| 55 |
+
"max_tokens": 200,
|
| 56 |
+
},
|
| 57 |
+
separator="\n",
|
| 58 |
+
link_format="slack",
|
| 59 |
+
text_after_response="I'm a bot 🤖 and not always perfect.",
|
| 60 |
+
text_before_prompt="""You are a slack chatbot assistant answering technical questions about orion, a hyperparameter optimization library written in python.
|
| 61 |
+
Make sure to format your answers in Markdown format, including code block and snippets.
|
| 62 |
+
Do not include any links to urls or hyperlinks in your answers.
|
| 63 |
+
|
| 64 |
+
If you do not know the answer to a question, or if it is completely irrelevant to the library usage, simply reply with:
|
| 65 |
+
|
| 66 |
+
'This doesn't seem to be related to the orion library.'
|
| 67 |
+
|
| 68 |
+
For example:
|
| 69 |
+
|
| 70 |
+
What is the meaning of life for orion?
|
| 71 |
+
|
| 72 |
+
This doesn't seem to be related to cluster usage.
|
| 73 |
+
|
| 74 |
+
Now answer the following question:
|
| 75 |
+
""",
|
| 76 |
+
)
|
| 77 |
+
orion_chatbot = Chatbot(orion_cfg)
|
| 78 |
+
|
| 79 |
+
app = App(token=os.environ.get("SLACK_BOT_TOKEN"), signing_secret=os.environ.get("SLACK_SIGNING_SECRET"))
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@app.event("app_mention")
|
| 83 |
+
def respond_to_question(event, say):
|
| 84 |
+
print(event)
|
| 85 |
+
|
| 86 |
+
# user's text
|
| 87 |
+
text = event["text"]
|
| 88 |
+
channel = event["channel"]
|
| 89 |
+
|
| 90 |
+
if channel == MILA_CLUSTER_CHANNEL:
|
| 91 |
+
print("*******using BUSTER********")
|
| 92 |
+
answer = buster_chatbot.process_input(text)
|
| 93 |
+
elif channel == ORION_CHANNEL:
|
| 94 |
+
print("*******using ORION********")
|
| 95 |
+
answer = orion_chatbot.process_input(text)
|
| 96 |
+
|
| 97 |
+
# responds to the message in the thread
|
| 98 |
+
thread_ts = event["event_ts"]
|
| 99 |
+
|
| 100 |
+
say(text=answer, thread_ts=thread_ts)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
@app.event("app_home_opened")
|
| 104 |
+
def update_home_tab(client, event, logger):
|
| 105 |
+
try:
|
| 106 |
+
# views.publish is the method that your app uses to push a view to the Home tab
|
| 107 |
+
client.views_publish(
|
| 108 |
+
# the user that opened your app's app home
|
| 109 |
+
user_id=event["user"],
|
| 110 |
+
# the view object that appears in the app home
|
| 111 |
+
view={
|
| 112 |
+
"type": "home",
|
| 113 |
+
"callback_id": "home_view",
|
| 114 |
+
# body of the view
|
| 115 |
+
"blocks": [
|
| 116 |
+
{"type": "section", "text": {"type": "mrkdwn", "text": "*Hello, I'm _BusterBot_* :tada:"}},
|
| 117 |
+
{"type": "divider"},
|
| 118 |
+
{
|
| 119 |
+
"type": "section",
|
| 120 |
+
"text": {
|
| 121 |
+
"type": "mrkdwn",
|
| 122 |
+
"text": (
|
| 123 |
+
"I am a chatbot 🤖 designed to answer questions related to technical documentation.\n\n"
|
| 124 |
+
"I use OpenAI's GPT models to target which relevant sections of documentation are relevant and respond with.\n"
|
| 125 |
+
"I am open-sourced, and my code is available on github: https://github.com/jerpint/buster\n\n"
|
| 126 |
+
"For more information, contact either Jeremy or Hadrien from the AMLRT team.\n"
|
| 127 |
+
),
|
| 128 |
+
},
|
| 129 |
+
},
|
| 130 |
+
# {
|
| 131 |
+
# "type": "actions",
|
| 132 |
+
# "elements": [{"type": "button", "text": {"type": "plain_text", "text": "Click me!"}}],
|
| 133 |
+
# },
|
| 134 |
+
],
|
| 135 |
+
},
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
except Exception as e:
|
| 139 |
+
logger.error(f"Error publishing home tab: {e}")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# Start your app
|
| 143 |
+
if __name__ == "__main__":
|
| 144 |
+
app.start(port=int(os.environ.get("PORT", 3000)))
|
buster/chatbot.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import logging
|
|
|
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
import openai
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 7 |
|
| 8 |
from buster.docparser import EMBEDDING_MODEL
|
|
@@ -11,107 +13,209 @@ logger = logging.getLogger(__name__)
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
df["similarity"] = df.embedding.apply(lambda x: cosine_similarity(x, product_embedding))
|
| 21 |
|
| 22 |
-
if thresh:
|
| 23 |
-
df = df[df.similarity > thresh]
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
def
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
for url in sources_url:
|
| 48 |
-
response += f"<br>[{url}]({url})\n"
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
"""
|
| 57 |
-
return response
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def answer_question(question: str, df, top_k: int = 1, thresh: float = None) -> str:
|
| 61 |
-
# rank the documents, get the highest scoring doc and generate the prompt
|
| 62 |
-
candidates = rank_documents(df, query=question, top_k=top_k, thresh=thresh)
|
| 63 |
-
|
| 64 |
-
logger.info(f"candidate responses: {candidates}")
|
| 65 |
-
|
| 66 |
-
if len(candidates) == 0:
|
| 67 |
-
return format_response("I did not find any relevant documentation related to your question.")
|
| 68 |
-
|
| 69 |
-
documents = candidates.text.to_list()
|
| 70 |
-
sources_url = candidates.url.to_list()
|
| 71 |
-
prompt = engineer_prompt(question, documents)
|
| 72 |
-
|
| 73 |
-
logger.info(f"querying GPT...")
|
| 74 |
-
logger.info(f"User Question:\n{question}")
|
| 75 |
-
# Call the API to generate a response
|
| 76 |
-
try:
|
| 77 |
-
response = openai.Completion.create(
|
| 78 |
-
engine="text-davinci-003",
|
| 79 |
-
prompt=prompt,
|
| 80 |
-
max_tokens=200,
|
| 81 |
-
# temperature=0,
|
| 82 |
-
# top_p=0,
|
| 83 |
-
frequency_penalty=1,
|
| 84 |
-
presence_penalty=1,
|
| 85 |
-
)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
f"""
|
| 91 |
-
GPT Response:\n{response_text}
|
| 92 |
"""
|
| 93 |
-
)
|
| 94 |
-
return format_response(response_text, sources_url)
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
|
|
|
|
| 103 |
|
| 104 |
-
def
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from dataclasses import dataclass, field
|
| 3 |
|
| 4 |
import numpy as np
|
| 5 |
import openai
|
| 6 |
import pandas as pd
|
| 7 |
+
from omegaconf import OmegaConf
|
| 8 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 9 |
|
| 10 |
from buster.docparser import EMBEDDING_MODEL
|
|
|
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
|
| 15 |
|
| 16 |
+
def load_documents(path: str) -> pd.DataFrame:
|
| 17 |
+
logger.info(f"loading embeddings from {path}...")
|
| 18 |
+
df = pd.read_csv(path)
|
| 19 |
+
df["embedding"] = df.embedding.apply(eval).apply(np.array)
|
| 20 |
+
logger.info(f"embeddings loaded.")
|
| 21 |
+
return df
|
|
|
|
| 22 |
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
class Chatbot:
|
| 25 |
+
def __init__(self, cfg: OmegaConf):
|
| 26 |
+
# TODO: right now, the cfg is being passed as an omegaconf, is this what we want?
|
| 27 |
+
self.cfg = cfg
|
| 28 |
+
self._init_documents()
|
| 29 |
+
self._init_unk_embedding()
|
| 30 |
|
| 31 |
+
def _init_documents(self):
|
| 32 |
+
self.documents = load_documents(self.cfg.documents_csv)
|
| 33 |
|
| 34 |
+
def _init_unk_embedding(self):
|
| 35 |
+
logger.info("Generating UNK token...")
|
| 36 |
+
unknown_prompt = self.cfg.unknown_prompt
|
| 37 |
+
engine = self.cfg.embedding_model
|
| 38 |
+
self.unk_embedding = get_embedding(
|
| 39 |
+
unknown_prompt,
|
| 40 |
+
engine=engine,
|
| 41 |
+
)
|
| 42 |
|
| 43 |
+
def rank_documents(
|
| 44 |
+
self,
|
| 45 |
+
documents: pd.DataFrame,
|
| 46 |
+
query: str,
|
| 47 |
+
) -> pd.DataFrame:
|
| 48 |
+
"""
|
| 49 |
+
Compare the question to the series of documents and return the best matching documents.
|
| 50 |
+
"""
|
| 51 |
+
top_k = self.cfg.top_k
|
| 52 |
+
thresh = self.cfg.thresh
|
| 53 |
+
engine = self.cfg.embedding_model # EMBEDDING_MODEL
|
| 54 |
|
| 55 |
+
query_embedding = get_embedding(
|
| 56 |
+
query,
|
| 57 |
+
engine=engine,
|
| 58 |
+
)
|
| 59 |
+
documents["similarity"] = documents.embedding.apply(lambda x: cosine_similarity(x, query_embedding))
|
| 60 |
|
| 61 |
+
# sort the matched_documents by score
|
| 62 |
+
matched_documents = documents.sort_values("similarity", ascending=False)
|
| 63 |
|
| 64 |
+
# limit search to top_k matched_documents.
|
| 65 |
+
top_k = len(matched_documents) if top_k == -1 else top_k
|
| 66 |
+
matched_documents = matched_documents.head(top_k)
|
| 67 |
|
| 68 |
+
# log matched_documents to the console
|
| 69 |
+
logger.info(f"matched documents before thresh: {matched_documents}")
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
# filter out matched_documents using a threshold
|
| 72 |
+
if thresh:
|
| 73 |
+
matched_documents = matched_documents[matched_documents.similarity > thresh]
|
| 74 |
+
logger.info(f"matched documents after thresh: {matched_documents}")
|
| 75 |
+
|
| 76 |
+
return matched_documents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
def prepare_prompt(self, question: str, candidates: pd.DataFrame) -> str:
|
| 79 |
+
"""
|
| 80 |
+
Prepare the prompt with prompt engineering.
|
|
|
|
|
|
|
| 81 |
"""
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
max_chars = self.cfg.max_chars
|
| 84 |
+
text_before_prompt = self.cfg.text_before_prompt
|
| 85 |
|
| 86 |
+
documents_list = candidates.text.to_list()
|
| 87 |
+
documents_str = " ".join(documents_list)
|
| 88 |
+
if len(documents_str) > max_chars:
|
| 89 |
+
logger.info("truncating documents to fit...")
|
| 90 |
+
documents_str = documents_str[0:max_chars]
|
| 91 |
|
| 92 |
+
return documents_str + text_before_prompt + question
|
| 93 |
|
| 94 |
+
def generate_response(self, prompt: str, matched_documents: pd.DataFrame) -> str:
|
| 95 |
+
"""
|
| 96 |
+
Generate a response based on the retrieved documents.
|
| 97 |
+
"""
|
| 98 |
+
if len(matched_documents) == 0:
|
| 99 |
+
# No matching documents were retrieved, return
|
| 100 |
+
response_text = "I did not find any relevant documentation related to your question."
|
| 101 |
+
return response_text
|
| 102 |
+
|
| 103 |
+
logger.info(f"querying GPT...")
|
| 104 |
+
# Call the API to generate a response
|
| 105 |
+
try:
|
| 106 |
+
completion_kwargs = self.cfg.completion_kwargs
|
| 107 |
+
completion_kwargs["prompt"] = prompt
|
| 108 |
+
response = openai.Completion.create(**completion_kwargs)
|
| 109 |
+
|
| 110 |
+
# Get the response text
|
| 111 |
+
response_text = response["choices"][0]["text"]
|
| 112 |
+
logger.info(f"GPT Response:\n{response_text}")
|
| 113 |
+
return response_text
|
| 114 |
+
|
| 115 |
+
except Exception as e:
|
| 116 |
+
# log the error and return a generic response instead.
|
| 117 |
+
import traceback
|
| 118 |
+
|
| 119 |
+
logging.error(traceback.format_exc())
|
| 120 |
+
response_text = "Oops, something went wrong. Try again later!"
|
| 121 |
+
return response_text
|
| 122 |
+
|
| 123 |
+
def add_sources(self, response: str, matched_documents: pd.DataFrame):
|
| 124 |
+
"""
|
| 125 |
+
Add sources fromt the matched documents to the response.
|
| 126 |
+
"""
|
| 127 |
+
sep = self.cfg.separator # \n
|
| 128 |
+
format = self.cfg.link_format
|
| 129 |
+
|
| 130 |
+
urls = matched_documents.url.to_list()
|
| 131 |
+
names = matched_documents.name.to_list()
|
| 132 |
+
similarities = matched_documents.similarity.to_list()
|
| 133 |
|
| 134 |
+
response += f"{sep}{sep}Here are the sources I used to answer your question:\n"
|
| 135 |
+
for url, name, similarity in zip(urls, names, similarities):
|
| 136 |
+
if format == "markdown":
|
| 137 |
+
response += f"{sep}[{name}]({url}){sep}"
|
| 138 |
+
elif format == "slack":
|
| 139 |
+
response += f"• <{url}|{name}>, score: {similarity:2.3f}{sep}"
|
| 140 |
+
else:
|
| 141 |
+
raise ValueError(f"{format} is not a valid URL format.")
|
| 142 |
|
| 143 |
+
return response
|
| 144 |
+
|
| 145 |
+
def format_response(self, response: str, matched_documents: pd.DataFrame) -> str:
|
| 146 |
+
"""
|
| 147 |
+
Format the response by adding the sources if necessary, and a disclaimer prompt.
|
| 148 |
+
"""
|
| 149 |
|
| 150 |
+
sep = self.cfg.separator
|
| 151 |
+
text_after_response = self.cfg.text_after_response
|
| 152 |
+
|
| 153 |
+
if len(matched_documents) > 0:
|
| 154 |
+
# we have matched documents, now we check to see if the answer is meaningful
|
| 155 |
+
response_embedding = get_embedding(
|
| 156 |
+
response,
|
| 157 |
+
engine=EMBEDDING_MODEL,
|
| 158 |
+
)
|
| 159 |
+
score = cosine_similarity(response_embedding, self.unk_embedding)
|
| 160 |
+
logger.info(f"UNK score: {score}")
|
| 161 |
+
if score < 0.9:
|
| 162 |
+
# Liekly that the answer is meaningful, add the top sources
|
| 163 |
+
response = self.add_sources(response, matched_documents=matched_documents)
|
| 164 |
+
|
| 165 |
+
response += f"{sep}{sep}{sep}{text_after_response}{sep}"
|
| 166 |
+
|
| 167 |
+
return response
|
| 168 |
+
|
| 169 |
+
def process_input(self, question: str) -> str:
|
| 170 |
+
"""
|
| 171 |
+
Main function to process the input question and generate a formatted output.
|
| 172 |
+
"""
|
| 173 |
+
|
| 174 |
+
logger.info(f"User Question:\n{question}")
|
| 175 |
+
|
| 176 |
+
matched_documents = self.rank_documents(documents=self.documents, query=question)
|
| 177 |
+
prompt = self.prepare_prompt(question, matched_documents)
|
| 178 |
+
response = self.generate_response(prompt, matched_documents)
|
| 179 |
+
formatted_output = self.format_response(response, matched_documents)
|
| 180 |
+
|
| 181 |
+
return formatted_output
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
@dataclass
|
| 185 |
+
class ChatbotConfig:
|
| 186 |
+
"""Configuration object for a chatbot.
|
| 187 |
+
|
| 188 |
+
documents_csv: Path to the csv file containing the documents and their embeddings.
|
| 189 |
+
embedding_model: OpenAI model to use to get embeddings.
|
| 190 |
+
top_k: Max number of documents to retrieve, ordered by cosine similarity
|
| 191 |
+
thresh: threshold for cosine similarity to be considered
|
| 192 |
+
max_chars: maximum number of characters the retrieved documents can be. Will truncate otherwise.
|
| 193 |
+
completion_kwargs: kwargs for the OpenAI.Completion() method
|
| 194 |
+
separator: the separator to use, can be either "\n" or <p> depending on rendering.
|
| 195 |
+
link_format: the type of format to render links with, e.g. slack or markdown
|
| 196 |
+
unknown_prompt: Prompt to use to generate the "I don't know" embedding to compare to.
|
| 197 |
+
text_before_prompt: Text to prompt GPT with before the user prompt, but after the documentation.
|
| 198 |
+
text_after_response: Generic response to add the the chatbot's reply.
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
documents_csv: str = "buster/data/document_embeddings.csv"
|
| 202 |
+
embedding_model: str = "text-embedding-ada-002"
|
| 203 |
+
top_k: int = 3
|
| 204 |
+
thresh: float = 0.7
|
| 205 |
+
max_chars: int = 3000
|
| 206 |
+
|
| 207 |
+
completion_kwargs: dict = field(
|
| 208 |
+
default_factory=lambda: {
|
| 209 |
+
"engine": "text-davinci-003",
|
| 210 |
+
"max_tokens": 200,
|
| 211 |
+
"temperature": None,
|
| 212 |
+
"top_p": None,
|
| 213 |
+
"frequency_penalty": 1,
|
| 214 |
+
"presence_penalty": 1,
|
| 215 |
+
}
|
| 216 |
+
)
|
| 217 |
+
separator: str = "\n"
|
| 218 |
+
link_format: str = "slack"
|
| 219 |
+
unknown_prompt: str = "I Don't know how to answer your question."
|
| 220 |
+
text_before_prompt: str = "I'm a chatbot, bleep bloop."
|
| 221 |
+
text_after_response: str = "Answer the following question:\n"
|