Spaces:
Runtime error
Runtime error
Refactoring (#48)
Browse filesRefactor the `Chatbot` class to make overall handling easier.
* Fix error logging
* Limit to words instead of chars
* Add support for text before the documents (useful for prompt engineering)
* return GPT responses separately
* put a check for relevance in a separate function
* use relevance to check if documents were found or not
- buster/chatbot.py +103 -64
buster/chatbot.py
CHANGED
|
@@ -8,7 +8,7 @@ import pandas as pd
|
|
| 8 |
import promptlayer
|
| 9 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 10 |
|
| 11 |
-
from buster.docparser import
|
| 12 |
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -32,7 +32,7 @@ class ChatbotConfig:
|
|
| 32 |
embedding_model: OpenAI model to use to get embeddings.
|
| 33 |
top_k: Max number of documents to retrieve, ordered by cosine similarity
|
| 34 |
thresh: threshold for cosine similarity to be considered
|
| 35 |
-
|
| 36 |
completion_kwargs: kwargs for the OpenAI.Completion() method
|
| 37 |
separator: the separator to use, can be either "\n" or <p> depending on rendering.
|
| 38 |
link_format: the type of format to render links with, e.g. slack or markdown
|
|
@@ -45,7 +45,8 @@ class ChatbotConfig:
|
|
| 45 |
embedding_model: str = "text-embedding-ada-002"
|
| 46 |
top_k: int = 3
|
| 47 |
thresh: float = 0.7
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
completion_kwargs: dict = field(
|
| 51 |
default_factory=lambda: {
|
|
@@ -60,6 +61,7 @@ class ChatbotConfig:
|
|
| 60 |
separator: str = "\n"
|
| 61 |
link_format: str = "slack"
|
| 62 |
unknown_prompt: str = "I Don't know how to answer your question."
|
|
|
|
| 63 |
text_before_prompt: str = "I'm a chatbot, bleep bloop."
|
| 64 |
text_after_response: str = "Answer the following question:\n"
|
| 65 |
|
|
@@ -78,25 +80,23 @@ class Chatbot:
|
|
| 78 |
logger.info(f"embeddings loaded.")
|
| 79 |
|
| 80 |
def _init_unk_embedding(self):
|
| 81 |
-
logger.info("Generating UNK
|
| 82 |
-
unknown_prompt = self.cfg.unknown_prompt
|
| 83 |
-
engine = self.cfg.embedding_model
|
| 84 |
self.unk_embedding = get_embedding(
|
| 85 |
-
unknown_prompt,
|
| 86 |
-
engine=
|
| 87 |
)
|
| 88 |
|
| 89 |
def rank_documents(
|
| 90 |
self,
|
| 91 |
documents: pd.DataFrame,
|
| 92 |
query: str,
|
|
|
|
|
|
|
|
|
|
| 93 |
) -> pd.DataFrame:
|
| 94 |
"""
|
| 95 |
Compare the question to the series of documents and return the best matching documents.
|
| 96 |
"""
|
| 97 |
-
top_k = self.cfg.top_k
|
| 98 |
-
thresh = self.cfg.thresh
|
| 99 |
-
engine = self.cfg.embedding_model # EMBEDDING_MODEL
|
| 100 |
|
| 101 |
query_embedding = get_embedding(
|
| 102 |
query,
|
|
@@ -121,59 +121,64 @@ class Chatbot:
|
|
| 121 |
|
| 122 |
return matched_documents
|
| 123 |
|
| 124 |
-
def
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
"""
|
| 128 |
-
|
| 129 |
-
max_chars = self.cfg.max_chars
|
| 130 |
-
text_before_prompt = self.cfg.text_before_prompt
|
| 131 |
-
|
| 132 |
-
documents_list = candidates.text.to_list()
|
| 133 |
documents_str = " ".join(documents_list)
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
logger.info("truncating documents to fit...")
|
| 136 |
-
documents_str = documents_str[0:
|
|
|
|
| 137 |
|
| 138 |
-
return documents_str
|
| 139 |
|
| 140 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
"""
|
| 142 |
-
|
| 143 |
"""
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
response_text = "I did not find any relevant documentation related to your question."
|
| 147 |
-
return response_text
|
| 148 |
|
| 149 |
-
|
| 150 |
-
logger.info(f"Prompt: {prompt}")
|
| 151 |
# Call the API to generate a response
|
|
|
|
| 152 |
try:
|
| 153 |
-
|
| 154 |
-
completion_kwargs["prompt"] = prompt
|
| 155 |
-
response = openai.Completion.create(**completion_kwargs)
|
| 156 |
-
|
| 157 |
-
# Get the response text
|
| 158 |
-
response_text = response["choices"][0]["text"]
|
| 159 |
-
logger.info(f"GPT Response:\n{response_text}")
|
| 160 |
-
return response_text
|
| 161 |
|
| 162 |
except Exception as e:
|
| 163 |
# log the error and return a generic response instead.
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
def add_sources(self, response: str, matched_documents: pd.DataFrame):
|
| 172 |
"""
|
| 173 |
Add sources fromt the matched documents to the response.
|
| 174 |
"""
|
| 175 |
-
sep = self.cfg.separator # \n
|
| 176 |
-
format = self.cfg.link_format
|
| 177 |
|
| 178 |
urls = matched_documents.url.to_list()
|
| 179 |
names = matched_documents.name.to_list()
|
|
@@ -192,25 +197,46 @@ class Chatbot:
|
|
| 192 |
|
| 193 |
return response
|
| 194 |
|
| 195 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
"""
|
| 197 |
Format the response by adding the sources if necessary, and a disclaimer prompt.
|
| 198 |
"""
|
| 199 |
-
|
| 200 |
sep = self.cfg.separator
|
| 201 |
-
text_after_response = self.cfg.text_after_response
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
)
|
| 209 |
-
score = cosine_similarity(response_embedding, self.unk_embedding)
|
| 210 |
-
logger.info(f"UNK score: {score}")
|
| 211 |
-
if score < 0.9:
|
| 212 |
-
# Liekly that the answer is meaningful, add the top sources
|
| 213 |
-
response = self.add_sources(response, matched_documents=matched_documents)
|
| 214 |
|
| 215 |
response += f"{sep}{sep}{sep}{text_after_response}{sep}"
|
| 216 |
|
|
@@ -223,9 +249,22 @@ class Chatbot:
|
|
| 223 |
|
| 224 |
logger.info(f"User Question:\n{question}")
|
| 225 |
|
| 226 |
-
matched_documents = self.rank_documents(
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
return formatted_output
|
|
|
|
| 8 |
import promptlayer
|
| 9 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 10 |
|
| 11 |
+
from buster.docparser import read_documents
|
| 12 |
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 32 |
embedding_model: OpenAI model to use to get embeddings.
|
| 33 |
top_k: Max number of documents to retrieve, ordered by cosine similarity
|
| 34 |
thresh: threshold for cosine similarity to be considered
|
| 35 |
+
max_words: maximum number of words the retrieved documents can be. Will truncate otherwise.
|
| 36 |
completion_kwargs: kwargs for the OpenAI.Completion() method
|
| 37 |
separator: the separator to use, can be either "\n" or <p> depending on rendering.
|
| 38 |
link_format: the type of format to render links with, e.g. slack or markdown
|
|
|
|
| 45 |
embedding_model: str = "text-embedding-ada-002"
|
| 46 |
top_k: int = 3
|
| 47 |
thresh: float = 0.7
|
| 48 |
+
max_words: int = 3000
|
| 49 |
+
unknown_threshold: float = 0.9 # set to 0 to deactivate
|
| 50 |
|
| 51 |
completion_kwargs: dict = field(
|
| 52 |
default_factory=lambda: {
|
|
|
|
| 61 |
separator: str = "\n"
|
| 62 |
link_format: str = "slack"
|
| 63 |
unknown_prompt: str = "I Don't know how to answer your question."
|
| 64 |
+
text_before_documents: str = ("You are a chatbot.",)
|
| 65 |
text_before_prompt: str = "I'm a chatbot, bleep bloop."
|
| 66 |
text_after_response: str = "Answer the following question:\n"
|
| 67 |
|
|
|
|
| 80 |
logger.info(f"embeddings loaded.")
|
| 81 |
|
| 82 |
def _init_unk_embedding(self):
|
| 83 |
+
logger.info("Generating UNK embedding...")
|
|
|
|
|
|
|
| 84 |
self.unk_embedding = get_embedding(
|
| 85 |
+
self.cfg.unknown_prompt,
|
| 86 |
+
engine=self.cfg.embedding_model,
|
| 87 |
)
|
| 88 |
|
| 89 |
def rank_documents(
|
| 90 |
self,
|
| 91 |
documents: pd.DataFrame,
|
| 92 |
query: str,
|
| 93 |
+
top_k: float,
|
| 94 |
+
thresh: float,
|
| 95 |
+
engine: str,
|
| 96 |
) -> pd.DataFrame:
|
| 97 |
"""
|
| 98 |
Compare the question to the series of documents and return the best matching documents.
|
| 99 |
"""
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
query_embedding = get_embedding(
|
| 102 |
query,
|
|
|
|
| 121 |
|
| 122 |
return matched_documents
|
| 123 |
|
| 124 |
+
def prepare_documents(self, matched_documents: pd.DataFrame, max_words: int) -> str:
|
| 125 |
+
# gather the documents in one large plaintext variable
|
| 126 |
+
documents_list = matched_documents.text.to_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
documents_str = " ".join(documents_list)
|
| 128 |
+
|
| 129 |
+
# truncate the documents to fit
|
| 130 |
+
# TODO: increase to actual token count
|
| 131 |
+
word_count = len(documents_str.split(" "))
|
| 132 |
+
if word_count > max_words:
|
| 133 |
logger.info("truncating documents to fit...")
|
| 134 |
+
documents_str = " ".join(documents_str.split(" ")[0:max_words])
|
| 135 |
+
logger.info(f"Documents after truncation: {documents_str}")
|
| 136 |
|
| 137 |
+
return documents_str
|
| 138 |
|
| 139 |
+
def prepare_prompt(
|
| 140 |
+
self,
|
| 141 |
+
question: str,
|
| 142 |
+
matched_documents: pd.DataFrame,
|
| 143 |
+
text_before_prompt: str,
|
| 144 |
+
text_before_documents: str,
|
| 145 |
+
) -> str:
|
| 146 |
"""
|
| 147 |
+
Prepare the prompt with prompt engineering.
|
| 148 |
"""
|
| 149 |
+
documents_str: str = self.prepare_documents(matched_documents, max_words=self.cfg.max_words)
|
| 150 |
+
return text_before_documents + documents_str + text_before_prompt + question
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
def get_gpt_response(self, **completion_kwargs):
|
|
|
|
| 153 |
# Call the API to generate a response
|
| 154 |
+
logger.info(f"querying GPT...")
|
| 155 |
try:
|
| 156 |
+
return openai.Completion.create(**completion_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
except Exception as e:
|
| 159 |
# log the error and return a generic response instead.
|
| 160 |
+
logger.exception("Error connecting to OpenAI API. See traceback:")
|
| 161 |
+
response = {"choices": [{"text": "We're having trouble connecting to OpenAI right now... Try again soon!"}]}
|
| 162 |
+
return response
|
| 163 |
|
| 164 |
+
def generate_response(self, prompt: str, matched_documents: pd.DataFrame, unknown_prompt: str) -> str:
|
| 165 |
+
"""
|
| 166 |
+
Generate a response based on the retrieved documents.
|
| 167 |
+
"""
|
| 168 |
+
if len(matched_documents) == 0:
|
| 169 |
+
# No matching documents were retrieved, return
|
| 170 |
+
return unknown_prompt
|
| 171 |
+
|
| 172 |
+
logger.info(f"Prompt: {prompt}")
|
| 173 |
+
response = self.get_gpt_response(prompt=prompt, **self.cfg.completion_kwargs)
|
| 174 |
+
response_str = response["choices"][0]["text"]
|
| 175 |
+
logger.info(f"GPT Response:\n{response_str}")
|
| 176 |
+
return response_str
|
| 177 |
|
| 178 |
+
def add_sources(self, response: str, matched_documents: pd.DataFrame, sep: str, format: str):
|
| 179 |
"""
|
| 180 |
Add sources fromt the matched documents to the response.
|
| 181 |
"""
|
|
|
|
|
|
|
| 182 |
|
| 183 |
urls = matched_documents.url.to_list()
|
| 184 |
names = matched_documents.name.to_list()
|
|
|
|
| 197 |
|
| 198 |
return response
|
| 199 |
|
| 200 |
+
def check_response_relevance(
|
| 201 |
+
self, response: str, engine: str, unk_embedding: np.array, unk_threshold: float
|
| 202 |
+
) -> bool:
|
| 203 |
+
"""Check to see if a response is relevant to the chatbot's knowledge or not.
|
| 204 |
+
|
| 205 |
+
We assume we've prompt-engineered our bot to say a response is unrelated to the context if it isn't relevant.
|
| 206 |
+
Here, we compare the embedding of the response to the embedding of the prompt-engineered "I don't know" embedding.
|
| 207 |
+
|
| 208 |
+
set the unk_threshold to 0 to essentially turn off this feature.
|
| 209 |
+
"""
|
| 210 |
+
response_embedding = get_embedding(
|
| 211 |
+
response,
|
| 212 |
+
engine=engine,
|
| 213 |
+
)
|
| 214 |
+
score = cosine_similarity(response_embedding, unk_embedding)
|
| 215 |
+
logger.info(f"UNK score: {score}")
|
| 216 |
+
|
| 217 |
+
# Likely that the answer is meaningful, add the top sources
|
| 218 |
+
return score < unk_threshold
|
| 219 |
+
|
| 220 |
+
def format_response(self, response: str, matched_documents: pd.DataFrame, text_after_response: str) -> str:
|
| 221 |
"""
|
| 222 |
Format the response by adding the sources if necessary, and a disclaimer prompt.
|
| 223 |
"""
|
|
|
|
| 224 |
sep = self.cfg.separator
|
|
|
|
| 225 |
|
| 226 |
+
is_relevant = self.check_response_relevance(
|
| 227 |
+
response=response,
|
| 228 |
+
engine=self.cfg.embedding_model,
|
| 229 |
+
unk_embedding=self.unk_embedding,
|
| 230 |
+
unk_threshold=self.cfg.unknown_threshold,
|
| 231 |
+
)
|
| 232 |
+
if is_relevant:
|
| 233 |
+
# Passes our relevance detection mechanism that the answer is meaningful, add the top sources
|
| 234 |
+
response = self.add_sources(
|
| 235 |
+
response=response,
|
| 236 |
+
matched_documents=matched_documents,
|
| 237 |
+
sep=self.cfg.separator,
|
| 238 |
+
format=self.cfg.link_format,
|
| 239 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
response += f"{sep}{sep}{sep}{text_after_response}{sep}"
|
| 242 |
|
|
|
|
| 249 |
|
| 250 |
logger.info(f"User Question:\n{question}")
|
| 251 |
|
| 252 |
+
matched_documents = self.rank_documents(
|
| 253 |
+
documents=self.documents,
|
| 254 |
+
query=question,
|
| 255 |
+
top_k=self.cfg.top_k,
|
| 256 |
+
thresh=self.cfg.thresh,
|
| 257 |
+
engine=self.cfg.embedding_model,
|
| 258 |
+
)
|
| 259 |
+
prompt = self.prepare_prompt(
|
| 260 |
+
question=question,
|
| 261 |
+
matched_documents=matched_documents,
|
| 262 |
+
text_before_prompt=self.cfg.text_before_prompt,
|
| 263 |
+
text_before_documents=self.cfg.text_before_documents,
|
| 264 |
+
)
|
| 265 |
+
response = self.generate_response(prompt, matched_documents, self.cfg.unknown_prompt)
|
| 266 |
+
formatted_output = self.format_response(
|
| 267 |
+
response, matched_documents, text_after_response=self.cfg.text_after_response
|
| 268 |
+
)
|
| 269 |
|
| 270 |
return formatted_output
|