Spaces:
Runtime error
Runtime error
end to end working
Browse files
buster/chatbot.py
CHANGED
|
@@ -4,12 +4,14 @@ import pickle
|
|
| 4 |
import numpy as np
|
| 5 |
import openai
|
| 6 |
import pandas as pd
|
| 7 |
-
from docparser import EMBEDDING_MODEL
|
| 8 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 9 |
|
|
|
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
|
|
|
|
| 13 |
# search through the reviews for a specific product
|
| 14 |
def rank_documents(df: pd.DataFrame, query: str, top_k: int = 3) -> pd.DataFrame:
|
| 15 |
product_embedding = get_embedding(
|
|
@@ -33,7 +35,7 @@ def engineer_prompt(question: str, documents: list[str]) -> str:
|
|
| 33 |
def get_gpt_response(question: str, df) -> str:
|
| 34 |
# rank the documents, get the highest scoring doc and generate the prompt
|
| 35 |
candidates = rank_documents(df, query=question, top_k=1)
|
| 36 |
-
documents = candidates.
|
| 37 |
prompt = engineer_prompt(question, documents)
|
| 38 |
|
| 39 |
logger.info(f"querying GPT...")
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import openai
|
| 6 |
import pandas as pd
|
| 7 |
+
from buster.docparser import EMBEDDING_MODEL
|
| 8 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 9 |
|
| 10 |
+
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
|
| 14 |
+
|
| 15 |
# search through the reviews for a specific product
|
| 16 |
def rank_documents(df: pd.DataFrame, query: str, top_k: int = 3) -> pd.DataFrame:
|
| 17 |
product_embedding = get_embedding(
|
|
|
|
| 35 |
def get_gpt_response(question: str, df) -> str:
|
| 36 |
# rank the documents, get the highest scoring doc and generate the prompt
|
| 37 |
candidates = rank_documents(df, query=question, top_k=1)
|
| 38 |
+
documents = candidates.text.to_list()
|
| 39 |
prompt = engineer_prompt(question, documents)
|
| 40 |
|
| 41 |
logger.info(f"querying GPT...")
|
buster/data/document_embeddings.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
buster/data/{sections.pkl → documents.csv}
RENAMED
|
Binary files a/buster/data/sections.pkl and b/buster/data/documents.csv differ
|
|
|
buster/docparser.py
CHANGED
|
@@ -5,7 +5,7 @@ import os
|
|
| 5 |
import pandas as pd
|
| 6 |
import tiktoken
|
| 7 |
from bs4 import BeautifulSoup
|
| 8 |
-
from openai.embeddings_utils import
|
| 9 |
|
| 10 |
|
| 11 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
|
@@ -90,7 +90,7 @@ def get_all_documents(root_dir: str, max_section_length: int = 3000) -> pd.DataF
|
|
| 90 |
|
| 91 |
|
| 92 |
def write_documents(filepath: str, documents_df: pd.DataFrame):
|
| 93 |
-
documents_df.to_csv(filepath)
|
| 94 |
|
| 95 |
|
| 96 |
def read_documents(filepath: str) -> pd.DataFrame:
|
|
@@ -99,27 +99,27 @@ def read_documents(filepath: str) -> pd.DataFrame:
|
|
| 99 |
|
| 100 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
| 101 |
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
|
| 102 |
-
df["n_tokens"] = df.
|
| 103 |
return df
|
| 104 |
|
| 105 |
|
| 106 |
def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
|
| 107 |
-
df["embedding"] = df.
|
| 108 |
return df
|
| 109 |
|
| 110 |
|
| 111 |
def generate_embeddings(filepath: str, output_csv: str) -> pd.DataFrame:
|
| 112 |
# Get all documents and precompute their embeddings
|
| 113 |
-
df = read_documents(filepath)
|
| 114 |
df = compute_n_tokens(df)
|
| 115 |
df = precompute_embeddings(df)
|
| 116 |
-
|
| 117 |
return df
|
| 118 |
|
| 119 |
|
| 120 |
if __name__ == "__main__":
|
| 121 |
root_dir = "/home/hadrien/perso/mila-docs/output/"
|
| 122 |
-
save_filepath =
|
| 123 |
|
| 124 |
# How to write
|
| 125 |
documents_df = get_all_documents(root_dir)
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import tiktoken
|
| 7 |
from bs4 import BeautifulSoup
|
| 8 |
+
from openai.embeddings_utils import get_embedding
|
| 9 |
|
| 10 |
|
| 11 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
def write_documents(filepath: str, documents_df: pd.DataFrame):
|
| 93 |
+
documents_df.to_csv(filepath, index=False)
|
| 94 |
|
| 95 |
|
| 96 |
def read_documents(filepath: str) -> pd.DataFrame:
|
|
|
|
| 99 |
|
| 100 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
| 101 |
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
|
| 102 |
+
df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x)))
|
| 103 |
return df
|
| 104 |
|
| 105 |
|
| 106 |
def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
|
| 107 |
+
df["embedding"] = df.text.apply(lambda x: get_embedding(x, engine=EMBEDDING_MODEL))
|
| 108 |
return df
|
| 109 |
|
| 110 |
|
| 111 |
def generate_embeddings(filepath: str, output_csv: str) -> pd.DataFrame:
|
| 112 |
# Get all documents and precompute their embeddings
|
| 113 |
+
df = read_documents(filepath)
|
| 114 |
df = compute_n_tokens(df)
|
| 115 |
df = precompute_embeddings(df)
|
| 116 |
+
write_documents(output_csv, df)
|
| 117 |
return df
|
| 118 |
|
| 119 |
|
| 120 |
if __name__ == "__main__":
|
| 121 |
root_dir = "/home/hadrien/perso/mila-docs/output/"
|
| 122 |
+
save_filepath = "data/documents.csv"
|
| 123 |
|
| 124 |
# How to write
|
| 125 |
documents_df = get_all_documents(root_dir)
|