File size: 8,403 Bytes
eb94d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import types
from typing import List, Optional
import torch
from torch import nn
from einops import rearrange
from utils.scheduler import SchedulerInterface, FlowMatchScheduler
from wan.modules.tokenizers import HuggingfaceTokenizer
from wan.modules.model import WanModel #, RegisterTokens, GanAttentionBlock
from wan.modules.vae import _video_vae
# from wan.modules.t5 import umt5_xxl
from wan.modules.causal_model import CausalWanModel


class WanVAEWrapper(torch.nn.Module): # todo
    def __init__(self):
        super().__init__()
        mean = [
            -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
            0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
        ]
        std = [
            2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
            3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
        ]
        self.mean = torch.tensor(mean, dtype=torch.float32)
        self.std = torch.tensor(std, dtype=torch.float32)

        # init model
        self.model = _video_vae(
            pretrained_path="skyreels_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth",
            z_dim=16,
        ).eval().requires_grad_(False)

    def encode_to_latent(self, pixel: torch.Tensor) -> torch.Tensor:
        # pixel: [batch_size, num_channels, num_frames, height, width]
        device, dtype = pixel.device, pixel.dtype
        scale = [self.mean.to(device=device, dtype=dtype),
                 1.0 / self.std.to(device=device, dtype=dtype)]

        output = [
            self.model.encode(u.unsqueeze(0), scale).float().squeeze(0)
            for u in pixel
        ]
        output = torch.stack(output, dim=0)
        return output

    def decode_to_pixel(self, latent: torch.Tensor, use_cache: bool = False) -> torch.Tensor:
        if use_cache:
            assert latent.shape[0] == 1, "Batch size must be 1 when using cache"

        device, dtype = latent.device, latent.dtype
        scale = [self.mean.to(device=device, dtype=dtype),
                 1.0 / self.std.to(device=device, dtype=dtype)]

        if use_cache:
            decode_function = self.model.cached_decode
        else:
            decode_function = self.model.decode

        output = []
        for u in zs:
            output.append(decode_function(u.unsqueeze(0), scale).float().clamp_(-1, 1).squeeze(0))
        output = torch.stack(output, dim=0)
        return output


class WanDiffusionWrapper(torch.nn.Module): 
    def __init__(
            self,
            model_config="",
            timestep_shift=5.0,
            is_causal=True,
    ):
        super().__init__()
        print(model_config)
        self.model = CausalWanModel.from_config(model_config)
        self.model.eval()

        # For non-causal diffusion, all frames share the same timestep
        self.uniform_timestep = not is_causal

        self.scheduler = FlowMatchScheduler(
            shift=timestep_shift, sigma_min=0.0, extra_one_step=True
        )
        self.scheduler.set_timesteps(1000, training=True)

        self.seq_len = 15 * 880 # 32760  # [1, 15, 16, 60, 104]
        self.post_init()

    def enable_gradient_checkpointing(self) -> None:
        self.model.enable_gradient_checkpointing()

    def _convert_flow_pred_to_x0(self, flow_pred: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
        """
        Convert flow matching's prediction to x0 prediction.
        flow_pred: the prediction with shape [B, C, H, W]
        xt: the input noisy data with shape [B, C, H, W]
        timestep: the timestep with shape [B]

        pred = noise - x0
        x_t = (1-sigma_t) * x0 + sigma_t * noise
        we have x0 = x_t - sigma_t * pred
        see derivations https://chatgpt.com/share/67bf8589-3d04-8008-bc6e-4cf1a24e2d0e
        """
        # use higher precision for calculations
        
        original_dtype = flow_pred.dtype
        flow_pred, xt, sigmas, timesteps = map(
            lambda x: x.double().to(flow_pred.device), [flow_pred, xt,
                                                        self.scheduler.sigmas,
                                                        self.scheduler.timesteps]
        )

        timestep_id = torch.argmin(
            (timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
        sigma_t = sigmas[timestep_id].reshape(-1, 1, 1, 1)
        x0_pred = xt - sigma_t * flow_pred
        return x0_pred.to(original_dtype)

    @staticmethod
    def _convert_x0_to_flow_pred(scheduler, x0_pred: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
        """
        Convert x0 prediction to flow matching's prediction.
        x0_pred: the x0 prediction with shape [B, C, H, W]
        xt: the input noisy data with shape [B, C, H, W]
        timestep: the timestep with shape [B]

        pred = (x_t - x_0) / sigma_t
        """
        # use higher precision for calculations
        original_dtype = x0_pred.dtype
        x0_pred, xt, sigmas, timesteps = map(
            lambda x: x.double().to(x0_pred.device), [x0_pred, xt,
                                                      scheduler.sigmas,
                                                      scheduler.timesteps]
        )
        timestep_id = torch.argmin(
            (timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
        sigma_t = sigmas[timestep_id].reshape(-1, 1, 1, 1)
        flow_pred = (xt - x0_pred) / sigma_t
        return flow_pred.to(original_dtype)

    def forward(
        self,
        noisy_image_or_video: torch.Tensor, conditional_dict: dict,
        timestep: torch.Tensor, kv_cache: Optional[List[dict]] = None, kv_cache_mouse: Optional[List[dict]] = None, kv_cache_keyboard: Optional[List[dict]] = None,
        crossattn_cache: Optional[List[dict]] = None,
        current_start: Optional[int] = None,
        cache_start: Optional[int] = None
    ) -> torch.Tensor:
    
        assert noisy_image_or_video.shape[1] == 16
        # [B, F] -> [B]
        if self.uniform_timestep:
            input_timestep = timestep[:, 0]
        else:
            input_timestep = timestep
        logits = None

        if kv_cache is not None:
            flow_pred = self.model(
                noisy_image_or_video.to(self.model.dtype),#.permute(0, 2, 1, 3, 4),
                t=input_timestep, **conditional_dict,
                # seq_len=self.seq_len,
                kv_cache=kv_cache,
                kv_cache_mouse=kv_cache_mouse, kv_cache_keyboard=kv_cache_keyboard,
                crossattn_cache=crossattn_cache,
                current_start=current_start,
                cache_start=cache_start
            )#.permute(0, 2, 1, 3, 4)
            
        else:
            flow_pred = self.model(
                noisy_image_or_video.to(self.model.dtype),#.permute(0, 2, 1, 3, 4),
                t=input_timestep, **conditional_dict)
            #.permute(0, 2, 1, 3, 4)
        pred_x0 = self._convert_flow_pred_to_x0(
            flow_pred=rearrange(flow_pred, 'b c f h w -> (b f) c h w'),#.flatten(0, 1),
            xt=rearrange(noisy_image_or_video, 'b c f h w -> (b f) c h w'),#.flatten(0, 1),
            timestep=timestep.flatten(0, 1)
        )# .unflatten(0, flow_pred.shape[:2])
        pred_x0 = rearrange(pred_x0, '(b f) c h w -> b c f h w', b=flow_pred.shape[0])
        if logits is not None:
            return flow_pred, pred_x0, logits

        return flow_pred, pred_x0

    def get_scheduler(self) -> SchedulerInterface:
        """
        Update the current scheduler with the interface's static method
        """
        scheduler = self.scheduler
        scheduler.convert_x0_to_noise = types.MethodType(
            SchedulerInterface.convert_x0_to_noise, scheduler)
        scheduler.convert_noise_to_x0 = types.MethodType(
            SchedulerInterface.convert_noise_to_x0, scheduler)
        scheduler.convert_velocity_to_x0 = types.MethodType(
            SchedulerInterface.convert_velocity_to_x0, scheduler)
        self.scheduler = scheduler
        return scheduler

    def post_init(self):
        """
        A few custom initialization steps that should be called after the object is created.
        Currently, the only one we have is to bind a few methods to scheduler.
        We can gradually add more methods here if needed.
        """
        self.get_scheduler()