File size: 6,788 Bytes
eb94d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

import torch
import random

def combine_data(data, num_frames=57, keyboard_dim=6, mouse=True):
    assert num_frames % 4 == 1
    keyboard_condition = torch.zeros((num_frames, keyboard_dim))
    if mouse == True:
        mouse_condition = torch.zeros((num_frames, 2))
    
    current_frame = 0
    selections = [12]

    while current_frame < num_frames:
        rd_frame = selections[random.randint(0, len(selections) - 1)]
        rd = random.randint(0, len(data) - 1)
        k = data[rd]['keyboard_condition']
        if mouse == True:
            m = data[rd]['mouse_condition']
        
        if current_frame == 0:
            keyboard_condition[:1] = k[:1]
            if mouse == True:
                mouse_condition[:1] = m[:1]
            current_frame = 1
        else:
            rd_frame = min(rd_frame, num_frames - current_frame)
            repeat_time = rd_frame // 4
            keyboard_condition[current_frame:current_frame+rd_frame] = k.repeat(repeat_time, 1)
            if mouse == True:
                mouse_condition[current_frame:current_frame+rd_frame] = m.repeat(repeat_time, 1)
            current_frame += rd_frame
    if mouse == True:
        return {
                "keyboard_condition": keyboard_condition,
                "mouse_condition": mouse_condition
            }
    return {"keyboard_condition": keyboard_condition}

def Bench_actions_universal(num_frames, num_samples_per_action=4):
    actions_single_action = [
        "forward",
        # "back",
        "left",
        "right",
    ]
    actions_double_action = [
        "forward_left",
        "forward_right",
        # "back_left",
        # "back_right",
    ]

    actions_single_camera = [   
        "camera_l",
        "camera_r",
        # "camera_ur",
        # "camera_ul",
        # "camera_dl",
        # "camera_dr" 
        # "camera_up",
        # "camera_down",
    ]
    actions_to_test = actions_double_action * 5 + actions_single_camera * 5 + actions_single_action * 5
    for action in (actions_single_action + actions_double_action):
        for camera in (actions_single_camera):
            double_action = f"{action}_{camera}"
            actions_to_test.append(double_action)

    # print("length of actions: ", len(actions_to_test))
    base_action = actions_single_action + actions_single_camera

    KEYBOARD_IDX = { 
        "forward": 0, "back": 1, "left": 2, "right": 3
    }

    CAM_VALUE = 0.1
    CAMERA_VALUE_MAP = {
        "camera_up":  [CAM_VALUE, 0],
        "camera_down": [-CAM_VALUE, 0],
        "camera_l":   [0, -CAM_VALUE],
        "camera_r":   [0, CAM_VALUE],
        "camera_ur":  [CAM_VALUE, CAM_VALUE],
        "camera_ul":  [CAM_VALUE, -CAM_VALUE],
        "camera_dr":  [-CAM_VALUE, CAM_VALUE],
        "camera_dl":  [-CAM_VALUE, -CAM_VALUE],
    }

    data = []

    for action_name in actions_to_test:

        keyboard_condition = [[0, 0, 0, 0] for _ in range(num_samples_per_action)] 
        mouse_condition = [[0,0] for _ in range(num_samples_per_action)] 

        for sub_act in base_action:
            if not sub_act in action_name: # 只处理action_name包含的动作
                continue
            # print(f"action name: {action_name} sub_act: {sub_act}")
            if sub_act in CAMERA_VALUE_MAP:
                mouse_condition = [CAMERA_VALUE_MAP[sub_act]
                                   for _ in range(num_samples_per_action)]

            elif sub_act in KEYBOARD_IDX:
                col = KEYBOARD_IDX[sub_act]
                for row in keyboard_condition:
                    row[col] = 1

        data.append({
            "keyboard_condition": torch.tensor(keyboard_condition),
            "mouse_condition": torch.tensor(mouse_condition)
        })
    return combine_data(data, num_frames, keyboard_dim=4, mouse=True)


def Bench_actions_gta_drive(num_frames, num_samples_per_action=4):
    actions_single_action = [
        "forward",
        "back",
    ]

    actions_single_camera = [   
        "camera_l",
        "camera_r",
    ]
    actions_to_test = actions_single_camera * 2 + actions_single_action * 2
    for action in (actions_single_action):
        for camera in (actions_single_camera):
            double_action = f"{action}_{camera}"
            actions_to_test.append(double_action)

    # print("length of actions: ", len(actions_to_test))
    base_action = actions_single_action + actions_single_camera

    KEYBOARD_IDX = { 
        "forward": 0, "back": 1
    }

    CAM_VALUE = 0.1
    CAMERA_VALUE_MAP = {
        "camera_l":   [0, -CAM_VALUE],
        "camera_r":   [0, CAM_VALUE],
    }
    
    data = []

    for action_name in actions_to_test:

        keyboard_condition = [[0, 0] for _ in range(num_samples_per_action)] 
        mouse_condition = [[0,0] for _ in range(num_samples_per_action)] 

        for sub_act in base_action:
            if not sub_act in action_name: # 只处理action_name包含的动作
                continue
            # print(f"action name: {action_name} sub_act: {sub_act}")
            if sub_act in CAMERA_VALUE_MAP:
                mouse_condition = [CAMERA_VALUE_MAP[sub_act]
                                   for _ in range(num_samples_per_action)]

            elif sub_act in KEYBOARD_IDX:
                col = KEYBOARD_IDX[sub_act]
                for row in keyboard_condition:
                    row[col] = 1

        data.append({
            "keyboard_condition": torch.tensor(keyboard_condition),
            "mouse_condition": torch.tensor(mouse_condition)
        })
    return combine_data(data, num_frames, keyboard_dim=2, mouse=True)

def Bench_actions_templerun(num_frames, num_samples_per_action=4):
    actions_single_action = [
        "jump",
        "slide",
        "leftside",
        "rightside",
        "turnleft",
        "turnright",
        "nomove"
    ]

    actions_to_test = actions_single_action

    base_action = actions_single_action

    KEYBOARD_IDX = { 
        "nomove": 0, "jump": 1, "slide": 2, "turnleft": 3,
        "turnright": 4, "leftside": 5, "rightside": 6
    }

    data = []

    for action_name in actions_to_test:

        keyboard_condition = [[0, 0, 0, 0, 0, 0, 0] for _ in range(num_samples_per_action)] 

        for sub_act in base_action:
            if not sub_act in action_name: # 只处理action_name包含的动作
                continue
            # print(f"action name: {action_name} sub_act: {sub_act}")
            elif sub_act in KEYBOARD_IDX:
                col = KEYBOARD_IDX[sub_act]
                for row in keyboard_condition:
                    row[col] = 1

        data.append({
            "keyboard_condition": torch.tensor(keyboard_condition)
        })
    return combine_data(data, num_frames, keyboard_dim=7, mouse=False)