import os import streamlit as st from PIL import Image from predictor import predict_image APP_DIR = os.path.dirname(os.path.abspath(__file__)) ASSETS_DIR = os.path.join(APP_DIR, "assets") # 📌 PAGE SETUP st.set_page_config(page_title="Image Classifier App", page_icon="🤖", layout="centered") st.html(""" """) # 📌 INITIALIZE SESSION STATE if "uploaded_image" not in st.session_state: st.session_state["uploaded_image"] = None if "example_selected" not in st.session_state: st.session_state["example_selected"] = False if "prediction_result" not in st.session_state: st.session_state["prediction_result"] = None # 📌 MAIN APP LAYOUT with st.container(): st.title( body="🖼️ Image Classifier with CNN", help="An interactive application to classify images into over 1000 categories.", ) st.html("
") # Use tabs for different sections of the app tab_app, tab_description = st.tabs(["**App**", "**Description**"]) # 📌 APP TAB with tab_app: # Create a two-column layout for the app interface col_upload, col_results = st.columns(2, gap="large") # 📌 IMAGE UPLOAD & EXAMPLE SELECTION with col_upload: st.header("Upload an Image", divider=True) # File uploader widget uploaded_file = st.file_uploader( label="Drag and drop an image here or click to browse", type=["jpg", "jpeg", "png", "webp", "avif"], help="Maximum file size is 200MB", key="image_uploader", ) st.html("
") st.subheader("Or Try an Example", divider=True) # Segmented control for selecting example images selected_example = st.segmented_control( label="Categories", options=["Animal", "Vehicle", "Object", "Building"], default=None, help="Select one of the pre-loaded examples", ) st.html("
") # --- THE SINGLE CLASSIFY BUTTON --- classify_button = st.button( label="Classify Image", key="classify_btn", type="primary", icon="✨", ) # --- LOGIC FOR IMAGE SELECTION & PREDICTION --- # Clear the previous prediction result if a new input is selected if uploaded_file or selected_example: st.session_state.prediction_result = None image_to_process = None if uploaded_file: image_to_process = Image.open(uploaded_file) elif selected_example: try: img_path = os.path.join( APP_DIR, "assets", f"{selected_example.lower()}.jpg" ) image_to_process = Image.open(img_path) except FileNotFoundError: st.error( f"Error: The example image '{selected_example.lower()}.jpg' was not found." ) st.stop() # 📌 PREDICTION RESULTS with col_results: st.header("Results", divider=True) # Display a "get started" message if no image is selected if not image_to_process and not st.session_state.prediction_result: st.info("Choose an image or an example to get a prediction.") # Display the image if one is selected if image_to_process: st.image(image_to_process, caption="Image to be classified") # If the button is clicked, run the prediction logic if classify_button and image_to_process: with st.spinner(text="🧠 Analyzing image..."): try: from predictor import predict_image predicted_label, predicted_score = predict_image( image_to_process ) st.session_state.prediction_result = { "label": predicted_label.replace("_", " ").title(), "score": predicted_score, } except Exception as e: st.error(f"An error occurred during prediction: {e}") # Display the prediction result if available in session state if st.session_state.prediction_result: st.metric( label="Prediction", value=st.session_state.prediction_result["label"], delta=f"{st.session_state.prediction_result['score'] * 100:.2f}%", help="The predicted category and its confidence score.", delta_color="normal", ) st.balloons() elif image_to_process: st.info("Click 'Classify Image' to see the prediction.") # 📌 DESCRIPTION TAB with tab_description: st.header("About This Project", divider=True) st.markdown( """ This project showcases a Convolutional Neural Network (CNN) model that automatically classifies images into over 1000 different categories. ### Original Architecture The original project was built as a multi-service architecture, featuring: * **Streamlit:** For the web user interface. * **FastAPI:** As a RESTful API to handle image processing and model serving. * **Redis:** A message broker for communication between the services. ### Portfolio Adaptation For a live and cost-effective demo, this application has been adapted into a single-service solution. The core logic of the FastAPI backend has been integrated directly into the Streamlit app. This demonstrates the ability to adapt a solution for specific deployment and resource constraints. ### Technologies Used * **Streamlit:** For the interactive web interface. * **TensorFlow:** For loading and running the pre-trained CNN model. * **Pre-trained Model:** ResNet50 with weights trained on the ImageNet dataset. """ )