File size: 16,888 Bytes
c742ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import marimo

__generated_with = "0.14.16"
app = marimo.App()


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell
def _(mo):
    mo.center(mo.md("# Home Credit Default Risk Prediction"))
    return


@app.cell
def _():
    import pandas as pd

    from sklearn.ensemble import RandomForestClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score
    from sklearn.model_selection import RandomizedSearchCV

    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, OrdinalEncoder

    from lightgbm import LGBMClassifier

    from src.plots import (
        plot_target_distribution,
        plot_credit_amounts,
        plot_education_levels,
        plot_occupation,
        plot_family_status,
        plot_income_type,
    )
    from src.utils import get_dataset, get_features_target, get_train_test_sets
    from src.preprocessing import preprocess_data_pipeline
    return (
        get_dataset,
        get_features_target,
        get_train_test_sets,
        pd,
        plot_credit_amounts,
        plot_education_levels,
        plot_family_status,
        plot_income_type,
        plot_occupation,
        plot_target_distribution,
        preprocess_data_pipeline,
    )


@app.cell
def _(get_dataset, get_features_target):
    df = get_dataset()
    X, y = get_features_target(df)
    return X, df, y


@app.cell
def _(mo):
    mo.md("""## 1. Exploratory Data Analysis""")
    return


@app.cell
def _(mo):
    mo.callout(
        kind="info",
        value=mo.md(
            """πŸ’‘ **Want a step-by-step walkthrough instead?**   
        Check the Jupyter notebook version here: πŸ‘‰ [Jupyter notebook](https://huggingface.co/spaces/iBrokeTheCode/Home_Credit_Default_Risk_Prediction/blob/main/tutorial_app.ipynb)""",
        ),
    )
    return


@app.cell
def _(mo):
    mo.md("""### 1.1 Dataset Information""")
    return


@app.cell
def _(mo):
    mo.md("""**a. Shape of the train and test datasets**""")
    return


@app.cell
def _(X_test, X_train, df):
    train_samples = "Train dataset samples: {}".format(X_train.shape[0])
    test_samples = "Test dataset samples: {}".format(X_test.shape[0])
    columns_number = "Number of columns: {}".format(df.shape[1])

    train_samples, test_samples, columns_number
    return


@app.cell
def _(mo):
    mo.md("""**b. Dataset features**""")
    return


@app.cell
def _(X):
    X.columns
    return


@app.cell
def _(mo):
    mo.md("""**c. Sample from dataset**""")
    return


@app.cell
def _(X):
    sample = X.head(5).T
    sample.columns = [
        str(col) for col in sample.columns
    ]  # fix integer name warning
    sample = sample.astype(str)  # avoid numeric conversion issues in viewer
    sample
    return


@app.cell
def _(mo):
    mo.md("""**d. Target variable Distribution**""")
    return


@app.cell
def _(df, plot_target_distribution):
    target_table, target_plot = plot_target_distribution(df=df)
    target_table
    return (target_plot,)


@app.cell
def _(target_plot):
    target_plot
    return


@app.cell
def _(mo):
    mo.md("""**e. Number of columns of each data type**""")
    return


@app.cell
def _(X):
    X.dtypes.value_counts().sort_values(ascending=False)
    return


@app.cell
def _(X):
    categorical_cols = (
        X.select_dtypes(include=["object"]).nunique().sort_values(ascending=False)
    )
    categorical_cols
    return


@app.cell
def _(mo):
    mo.md("""**f. Missing data**""")
    return


@app.cell
def _(X, pd):
    missing_count = X.isna().sum().sort_values(ascending=False)
    missing_percentage = (missing_count / X.shape[0] * 100).round(2)

    missing_data = pd.DataFrame(
        data={"Count": missing_count, "percentage": missing_percentage}
    )
    missing_data
    return


@app.cell
def _(mo):
    mo.md("""### 1.2 Distribution of Variables""")
    return


@app.cell
def _(mo):
    mo.md(
        r"""Want to see how these plots were created? You can find the source code for the visualizations in [plots.py](https://huggingface.co/spaces/iBrokeTheCode/Home_Credit_Default_Risk_Prediction/blob/main/src/plots.py)."""
    )
    return


@app.cell
def _(mo):
    mo.md("""**a. Credit Amounts**""")
    return


@app.cell
def _(X, plot_credit_amounts):
    plot_credit_amounts(df=X)
    return


@app.cell
def _(mo):
    mo.md("""**b. Education Level of Credit Applicants**""")
    return


@app.cell
def _(X, plot_education_levels):
    education_table, education_plot = plot_education_levels(df=X)
    education_table
    return (education_plot,)


@app.cell
def _(education_plot):
    education_plot
    return


@app.cell
def _(mo):
    mo.md("""**c. Ocupation of Credit Applicants**""")
    return


@app.cell
def _(X, plot_occupation):
    occupation_table, occupation_plot = plot_occupation(df=X)
    occupation_table
    return (occupation_plot,)


@app.cell
def _(occupation_plot):
    occupation_plot
    return


@app.cell
def _(mo):
    mo.md("""**d. Family Status of Applicants**""")
    return


@app.cell
def _(X, plot_family_status):
    family_status_table, family_status_plot = plot_family_status(df=X)
    family_status_table
    return (family_status_plot,)


@app.cell
def _(family_status_plot):
    family_status_plot
    return


@app.cell
def _(mo):
    mo.md("""**e. Income Type of Applicants by Target Variable**""")
    return


@app.cell
def _(df, plot_income_type):
    plot_income_type(df=df)
    return


@app.cell
def _(mo):
    mo.md("""## 2. Preprocessing""")
    return


@app.cell
def _(mo):
    mo.md("""**a. Separate Train and Test Datasets**""")
    return


@app.cell
def _(X, get_train_test_sets, y):
    X_train, y_train, X_test, y_test = get_train_test_sets(X, y)
    X_train.shape, y_train.shape, X_test.shape, y_test.shape
    return X_test, X_train


@app.cell
def _(mo):
    mo.md("""**b. Preprocess Data**""")
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    This preprocessing perform:

    - Correct outliers/anomalous values in numerical columns (`DAYS_EMPLOYED` column).
    - Encode string categorical features (`dtype object`).
        - If the feature has 2 categories, Binary Encoding is applied.
        - One Hot Encoding for more than 2 categories.
    - Impute values for all columns with missing data (using median as imputing value).
    - Feature scaling with Min-Max scaler

    Want to see how the dataset was processed? You can find the code for the preprocessing steps in [preprocessing.py](https://huggingface.co/spaces/iBrokeTheCode/Home_Credit_Default_Risk_Prediction/blob/main/src/preprocessing.py).
    """
    )
    return


@app.cell
def _(X_test, X_train, preprocess_data_pipeline):
    train_data, test_data = preprocess_data_pipeline(
        train_df=X_train, test_df=X_test
    )
    train_data.shape, test_data.shape
    return


@app.cell
def _(mo):
    mo.md("""## 3. Training Models""")
    return


@app.cell
def _(mo):
    mo.md(
        r"""At this points, we will work with `train_data` and `test_data` as features sets; also `y_train` and `y_test` as target sets."""
    )
    return


@app.cell
def _(mo):
    mo.md(r"""### 3.1 Logistic Regression""")
    return


@app.cell
def _(mo):
    mo.callout(
        mo.md("""
    In Logistic Regression, C is the inverse of regularization strength:

    - **Small C** β†’ Stronger regularization β†’ Simpler model, less overfitting risk, but may underfit.
    - **Large C** β†’ Weaker regularization β†’ Model fits training data more closely, but may overfit.
    """),
        kind="info",
    )
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    We trained our Logistic Regression model using the following code:

    ```py
    # πŸ“Œ Logistic Regression
    log_reg = LogisticRegression(C=0.0001)
    log_reg.fit(train_data, y_train)

    # Train data predicton (class 1)
    lr_train_pred = log_reg.predict_proba(train_data)[:, 1]

    # Test data prediction (class 1)
    lr_test_pred = log_reg.predict_proba(test_data)[:, 1]

    # Get the ROC AUC Score on train and test datasets
    log_reg_scores = {
        "train_score": roc_auc_score(y_train, lr_train_pred),
        "test_score": roc_auc_score(y_test, lr_test_pred),
    }
    log_reg_scores
    ```

    πŸ“ˆ The ROC AUC scores obtained:
    """
    )
    return


@app.cell
def _():
    lr_scores = {
        "train_score": 0.6868418961663535,
        "test_score": 0.6854973003347028,
    }
    lr_scores
    return


@app.cell
def _(mo):
    mo.md(r"""### 3.2 Random Forest Classifier""")
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    We trained our Random Forest Classifier model using the following code:

    ```py
    # πŸ“Œ Random Forest Classifier
    rf = RandomForestClassifier(random_state=42, n_jobs=-1)
    rf.fit(train_data, y_train)

    rf_train_pred = rf.predict_proba(train_data)[:, 1]
    rf_test_pred = rf.predict_proba(test_data)[:, 1]

    rf_scores = {
        "train_score": roc_auc_score(y_train, rf_train_pred),
        "test_score": roc_auc_score(y_test, rf_test_pred),
    }
    rf_scores
    ```

    πŸ“ˆ The ROC AUC scores obtained:
    """
    )
    return


@app.cell
def _():
    rf_scores = {"train_score": 1.0, "test_score": 0.7066811557903828}
    rf_scores
    return


@app.cell
def _(mo):
    mo.md(r"""### 3.3. Randomized Search with Cross Validations""")
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    We trained the Randomized Search CV using the following code:

    ```py
    # πŸ“Œ RandomizedSearchCV
    param_dist = {"n_estimators": [50, 100, 150], "max_depth": [10, 20, 30]}

    rf_optimized = RandomForestClassifier(random_state=42, n_jobs=-1)
    rscv = RandomizedSearchCV(
        estimator=rf_optimized,
        param_distributions=param_dist,
        n_iter=5,
        scoring="roc_auc",
        cv=3,
        random_state=42,
        n_jobs=-1,
    )

    rscv.fit(train_data, y_train)

    rfo_train_pred = rscv.predict_proba(train_data)[:, 1]
    rfo_test_pred = rscv.predict_proba(test_data)[:, 1]

    rfo_scores = {
        "train_score": roc_auc_score(y_train, rfo_train_pred),
        "test_score": roc_auc_score(y_test, rfo_test_pred),
    }
    rfo_scores
    ```

    πŸ“ˆ The ROC AUC scores obtained:
    """
    )
    return


@app.cell
def _():
    rfo_scores = {
        "train_score": 0.8196620915431655,
        "test_score": 0.7308385425476998,
    }
    rfo_scores
    return


@app.cell
def _(mo):
    mo.md(r"""πŸ₯‡The best results:""")
    return


@app.cell
def _():
    optimized_results = {
        "best_params_": {"n_estimators": 100, "max_depth": 10},
        "best_score_": 0.7296259755147781,
        "best_estimator_": "RandomForestClassifier(max_depth=10, n_jobs=-1, random_state=42)",
    }
    optimized_results
    return


@app.cell
def _(mo):
    mo.md(r"""### 3.4 LightGBM""")
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    We trained our LightGBM Classifier model using the following code:

    ```py
    # πŸ“Œ LightGBM
    import warnings

    warnings.filterwarnings(
        "ignore", message="X does not have valid feature names"
    )

    # πŸ“Œ Get numerical and categorical variables (binary and mutiple)
    num_cols = X_train.select_dtypes(include="number").columns.to_list()
    cat_cols = X_train.select_dtypes(include="object").columns.to_list()

    binary_cols = [col for col in cat_cols if X_train[col].nunique() == 2]
    multi_cols = [col for col in cat_cols if X_train[col].nunique() > 2]

    # πŸ“Œ [1] Create the pipelines for different data types
    numerical_pipeline = Pipeline(
        steps=[
            ("imputer", SimpleImputer(strategy="median")),
            ("scaler", MinMaxScaler()),
        ]
    )

    binary_pipeline = Pipeline(
        steps=[
            ("imputer", SimpleImputer(strategy="most_frequent")),
            ("ordinal", OrdinalEncoder()),
            ("scaler", MinMaxScaler()),
        ]
    )

    multi_pipeline = Pipeline(
        steps=[
            ("imputer", SimpleImputer(strategy="most_frequent")),
            (
                "onehot",
                OneHotEncoder(handle_unknown="ignore", sparse_output=False),
            ),
            ("scaler", MinMaxScaler()),
        ]
    )

    # πŸ“Œ [2] Create the preprocessor using ColumnTransformer
    preprocessor = ColumnTransformer(
        transformers=[
            ("binary", binary_pipeline, binary_cols),
            ("multi", multi_pipeline, multi_cols),
            ("numerical", numerical_pipeline, num_cols),
        ],
        remainder="passthrough",
    )

    # πŸ“Œ [3] Create the Final Pipeline that combines the preprocessor and the model
    lgbm = LGBMClassifier(
        n_estimators=500,
        learning_rate=0.05,
        max_depth=-1,
        random_state=42,
        class_weight="balanced",
        n_jobs=-1,
    )

    lgbm_pipeline = Pipeline(
        steps=[("preprocessor", preprocessor), ("classifier", lgbm)]
    )

    # πŸ“Œ [4] Fit the Final Pipeline on the ORIGINAL, unprocessed data
    # The pipeline takes care of all the preprocessing internally.
    lgbm_pipeline.fit(X_train, y_train)

    lgbm_train_pred = lgbm_pipeline.predict_proba(X_train)[:, 1]
    lgbm_test_pred = lgbm_pipeline.predict_proba(X_test)[:, 1]

    lgbm_scores = {
        "train_score": roc_auc_score(y_train, lgbm_train_pred),
        "test_score": roc_auc_score(y_test, lgbm_test_pred),
    }
    lgbm_scores
    ```

    πŸ“ˆ The ROC AUC scores obtained:
    """
    )
    return


@app.cell
def _():
    lgbm_scores = {
        "train_score": 0.8523466410959462,
        "test_score": 0.7514895868142193,
    }
    lgbm_scores
    return


@app.cell
def _(mo):
    mo.md(r"""## 4. Model Performance Analysis""")
    return


@app.cell
def _(mo):
    lg_stat = mo.stat(
        label="Logistic Regression",
        bordered=True,
        value="πŸ‹οΈ 0.687 πŸ”Ž 0.685",
        caption="Scores are consistent across train and test, indicating no overfitting. However, the overall AUC is low, suggesting underfitting β€” the model is too simple to capture complex patterns.",
        direction="decrease",
    )

    rfc_stat = mo.stat(
        label="Random Forest Classifier",
        bordered=True,
        value="πŸ‹οΈ 1.0 πŸ”Ž 0.707",
        caption="Perfect training AUC indicates severe overfitting β€” the model memorized the training set. While the test score is better than Logistic Regression, the gap is too large for good generalization.",
        direction="decrease",
    )

    rfo_stat = mo.stat(
        label="Random Forest with Randomized Search",
        bordered=True,
        value="πŸ‹οΈ 0.820 πŸ”Ž 0.731",
        caption="Hyperparameter tuning greatly reduced overfitting. The smaller train–test gap and improved test AUC show better generalization and a strong performance.",
        direction="increase",
    )

    lgbm_stat = mo.stat(
        label="LightGBM",
        bordered=True,
        value="πŸ‹οΈ 0.852 πŸ”Ž 0.751",
        caption="Best overall performance. Small train–test gap and highest test AUC indicate a well-balanced model with strong generalization.",
        direction="increase",
    )

    mo.vstack(
        items=[
            mo.hstack(items=[lg_stat, rfc_stat], widths="equal", gap=1),
            mo.hstack(items=[rfo_stat, lgbm_stat], widths="equal", gap=1),
        ],
        gap=1,
        heights="equal",
        align="center",
        justify="center",
    )
    return


@app.cell
def _(mo):
    mo.md(r"""## 5. Model Selection""")
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    Based on a comparison of all the models, the final model selection is clear.

    | Model | Train Score (AUC ROC) | Test Score (AUC ROC) |
    | :--- | :---: | :---: |
    | Logistic Regression | 0.687 | 0.685 |
    | Random Forest Classifier | 1.000 | 0.707 |
    | Randomized Search (Tuned RF) | 0.820 | 0.731 |
    | **LightGBM** | 0.852 | **0.751** |

    * The **Logistic Regression** model performed poorly due to underfitting.
    * The base **Random Forest** model, while better, suffered from severe overfitting.
    * The tuned **Random Forest** model was a significant improvement and a strong contender, achieving a solid `test_score`.
    * However, the **LightGBM** model ultimately demonstrated the best performance, achieving the highest **ROC AUC test score of 0.751**. This indicates that it is the most robust and accurate model for predicting loan repayment risk on unseen data.
    """
    )
    return


@app.cell
def _(mo):
    mo.callout(
        kind="success",
        value="πŸ₯‡ Therefore, we will select the LightGBM model as our final choice for deployment.",
    )
    return


if __name__ == "__main__":
    app.run()