File size: 14,620 Bytes
80e9562
 
25bc9b3
80e9562
 
 
 
25bc9b3
d234096
 
80e9562
d234096
6ff8026
 
d234096
 
7bdd0db
d234096
6ff8026
 
 
 
d234096
6ff8026
 
 
 
 
f429f8e
6ff8026
 
 
 
d234096
 
 
 
 
6ff8026
 
0df7f5d
d234096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff8026
 
 
 
d234096
 
 
 
 
 
 
6ff8026
 
d234096
 
 
 
 
 
6ff8026
 
d234096
 
 
 
 
e39e2ca
0df7f5d
d234096
 
 
 
 
 
 
0df7f5d
d234096
 
 
 
 
 
 
0df7f5d
d234096
 
 
 
 
 
 
0df7f5d
d234096
 
 
 
 
 
0df7f5d
d234096
 
 
 
 
 
0df7f5d
d234096
 
 
 
 
 
0df7f5d
d234096
 
 
 
 
 
 
0df7f5d
d234096
 
 
 
 
 
 
 
 
 
 
 
 
0df7f5d
 
 
d234096
 
 
 
f429f8e
 
 
 
 
 
 
d234096
 
 
 
 
0df7f5d
 
 
d234096
f429f8e
d234096
0df7f5d
d234096
 
 
 
0df7f5d
d234096
 
0df7f5d
d234096
 
0df7f5d
d234096
 
 
 
 
0df7f5d
 
 
d234096
f429f8e
d234096
 
 
0df7f5d
d234096
 
0df7f5d
d234096
 
 
 
 
 
 
 
 
 
 
80e9562
 
bd9910a
d234096
f429f8e
 
bd9910a
 
d234096
f429f8e
d234096
 
 
 
ac8c468
 
d234096
 
 
 
 
 
 
bd9910a
 
f429f8e
 
 
 
 
 
 
 
 
 
 
 
dc5046f
d234096
 
 
 
 
 
 
 
 
c9351e4
dc5046f
 
 
bd9910a
 
f429f8e
 
 
 
 
 
 
ac8c468
 
 
 
 
f429f8e
 
 
 
 
ac8c468
 
 
 
f429f8e
 
 
 
 
 
ac8c468
2a3fc10
d234096
e39e2ca
 
 
 
 
d234096
7bdd0db
 
 
 
 
a76ebf6
 
 
f429f8e
a76ebf6
 
 
11548ed
a76ebf6
 
 
f429f8e
a76ebf6
 
 
11548ed
a76ebf6
 
 
f429f8e
a76ebf6
 
 
11548ed
a76ebf6
 
 
f429f8e
a76ebf6
 
 
11548ed
a76ebf6
 
 
 
 
 
 
 
 
11548ed
 
 
 
 
 
d234096
11548ed
 
 
 
 
 
f429f8e
d234096
 
 
 
 
 
 
 
11548ed
d234096
 
 
 
 
 
11548ed
 
 
 
f429f8e
d234096
 
 
 
 
 
 
 
 
11548ed
d234096
 
 
 
 
11548ed
 
 
 
 
 
7bdd0db
 
 
f429f8e
 
 
 
 
 
 
 
 
 
 
 
 
d77c733
 
d234096
 
 
 
 
 
 
 
 
 
d77c733
 
 
 
80e9562
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import marimo

__generated_with = "0.14.16"
app = marimo.App()


@app.cell
def _():
    import joblib
    import warnings

    import marimo as mo
    import pandas as pd

    warnings.filterwarnings(
        "ignore", message="X does not have valid feature names"
    )
    return joblib, mo, pd


@app.cell
def _(mo):
    mo.center(mo.md("# ๐Ÿฆ Home Credit Default Risk Prediction"))
    return


@app.cell
def _(mo):
    mo.Html("<br>")
    return


@app.cell
def _(joblib, mo):
    # ๐Ÿ“Œ [1] Load the saved model pipeline
    with mo.redirect_stdout():
        loaded_pipeline = joblib.load("./model/lgbm_model.joblib")
    return (loaded_pipeline,)


@app.cell
def _():
    # ๐Ÿ“Œ [2] Define the default values for all other features
    default_values = {
        "SK_ID_CURR": 277659.5,
        "CNT_CHILDREN": 0.0,
        "AMT_INCOME_TOTAL": 147150.0,
        "AMT_CREDIT": 512997.75,
        "AMT_ANNUITY": 24885.0,
        "AMT_GOODS_PRICE": 450000.0,
        "REGION_POPULATION_RELATIVE": 0.01885,
        "DAYS_BIRTH": -15743.5,
        "DAYS_EMPLOYED": -1219.0,
        "DAYS_REGISTRATION": -4492.0,
        "DAYS_ID_PUBLISH": -3254.0,
        "OWN_CAR_AGE": 9.0,
        "FLAG_MOBIL": 1.0,
        "FLAG_EMP_PHONE": 1.0,
        "FLAG_WORK_PHONE": 0.0,
        "FLAG_CONT_MOBILE": 1.0,
        "FLAG_PHONE": 0.0,
        "FLAG_EMAIL": 0.0,
        "CNT_FAM_MEMBERS": 2.0,
        "REGION_RATING_CLIENT": 2.0,
        "REGION_RATING_CLIENT_W_CITY": 2.0,
        "HOUR_APPR_PROCESS_START": 12.0,
        "REG_REGION_NOT_LIVE_REGION": 0.0,
        "REG_REGION_NOT_WORK_REGION": 0.0,
        "LIVE_REGION_NOT_WORK_REGION": 0.0,
        "REG_CITY_NOT_LIVE_CITY": 0.0,
        "REG_CITY_NOT_WORK_CITY": 0.0,
        "LIVE_CITY_NOT_WORK_CITY": 0.0,
        "EXT_SOURCE_1": 0.5068839442599388,
        "EXT_SOURCE_2": 0.5662837032261614,
        "EXT_SOURCE_3": 0.5370699579791587,
        "APARTMENTS_AVG": 0.0876,
        "BASEMENTAREA_AVG": 0.0764,
        "YEARS_BEGINEXPLUATATION_AVG": 0.9816,
        "YEARS_BUILD_AVG": 0.7552,
        "COMMONAREA_AVG": 0.0211,
        "ELEVATORS_AVG": 0.0,
        "ENTRANCES_AVG": 0.1379,
        "FLOORSMAX_AVG": 0.1667,
        "FLOORSMIN_AVG": 0.2083,
        "LANDAREA_AVG": 0.0483,
        "LIVINGAPARTMENTS_AVG": 0.0756,
        "LIVINGAREA_AVG": 0.0746,
        "NONLIVINGAPARTMENTS_AVG": 0.0,
        "NONLIVINGAREA_AVG": 0.0035,
        "APARTMENTS_MODE": 0.084,
        "BASEMENTAREA_MODE": 0.0748,
        "YEARS_BEGINEXPLUATATION_MODE": 0.9816,
        "YEARS_BUILD_MODE": 0.7648,
        "COMMONAREA_MODE": 0.0191,
        "ELEVATORS_MODE": 0.0,
        "ENTRANCES_MODE": 0.1379,
        "FLOORSMAX_MODE": 0.1667,
        "FLOORSMIN_MODE": 0.2083,
        "LANDAREA_MODE": 0.0459,
        "LIVINGAPARTMENTS_MODE": 0.0771,
        "LIVINGAREA_MODE": 0.0731,
        "NONLIVINGAPARTMENTS_MODE": 0.0,
        "NONLIVINGAREA_MODE": 0.0011,
        "APARTMENTS_MEDI": 0.0864,
        "BASEMENTAREA_MEDI": 0.0761,
        "YEARS_BEGINEXPLUATATION_MEDI": 0.9816,
        "YEARS_BUILD_MEDI": 0.7585,
        "COMMONAREA_MEDI": 0.0209,
        "ELEVATORS_MEDI": 0.0,
        "ENTRANCES_MEDI": 0.1379,
        "FLOORSMAX_MEDI": 0.1667,
        "FLOORSMIN_MEDI": 0.2083,
        "LANDAREA_MEDI": 0.0488,
        "LIVINGAPARTMENTS_MEDI": 0.0765,
        "LIVINGAREA_MEDI": 0.0749,
        "NONLIVINGAPARTMENTS_MEDI": 0.0,
        "NONLIVINGAREA_MEDI": 0.003,
        "TOTALAREA_MODE": 0.0687,
        "OBS_30_CNT_SOCIAL_CIRCLE": 0.0,
        "DEF_30_CNT_SOCIAL_CIRCLE": 0.0,
        "OBS_60_CNT_SOCIAL_CIRCLE": 0.0,
        "DEF_60_CNT_SOCIAL_CIRCLE": 0.0,
        "DAYS_LAST_PHONE_CHANGE": -755.0,
        "FLAG_DOCUMENT_2": 0.0,
        "FLAG_DOCUMENT_3": 1.0,
        "FLAG_DOCUMENT_4": 0.0,
        "FLAG_DOCUMENT_5": 0.0,
        "FLAG_DOCUMENT_6": 0.0,
        "FLAG_DOCUMENT_7": 0.0,
        "FLAG_DOCUMENT_8": 0.0,
        "FLAG_DOCUMENT_9": 0.0,
        "FLAG_DOCUMENT_10": 0.0,
        "FLAG_DOCUMENT_11": 0.0,
        "FLAG_DOCUMENT_12": 0.0,
        "FLAG_DOCUMENT_13": 0.0,
        "FLAG_DOCUMENT_14": 0.0,
        "FLAG_DOCUMENT_15": 0.0,
        "FLAG_DOCUMENT_16": 0.0,
        "FLAG_DOCUMENT_17": 0.0,
        "FLAG_DOCUMENT_18": 0.0,
        "FLAG_DOCUMENT_19": 0.0,
        "FLAG_DOCUMENT_20": 0.0,
        "FLAG_DOCUMENT_21": 0.0,
        "AMT_REQ_CREDIT_BUREAU_HOUR": 0.0,
        "AMT_REQ_CREDIT_BUREAU_DAY": 0.0,
        "AMT_REQ_CREDIT_BUREAU_WEEK": 0.0,
        "AMT_REQ_CREDIT_BUREAU_MON": 0.0,
        "AMT_REQ_CREDIT_BUREAU_QRT": 0.0,
        "AMT_REQ_CREDIT_BUREAU_YEAR": 1.0,
        "NAME_CONTRACT_TYPE": "Cash loans",
        "CODE_GENDER": "F",
        "FLAG_OWN_CAR": "N",
        "FLAG_OWN_REALTY": "Y",
        "NAME_TYPE_SUITE": "Unaccompanied",
        "NAME_INCOME_TYPE": "Working",
        "NAME_EDUCATION_TYPE": "Secondary / secondary special",
        "NAME_FAMILY_STATUS": "Married",
        "NAME_HOUSING_TYPE": "House / apartment",
        "OCCUPATION_TYPE": "Laborers",
        "WEEKDAY_APPR_PROCESS_START": "TUESDAY",
        "ORGANIZATION_TYPE": "Business Entity Type 3",
        "FONDKAPREMONT_MODE": "reg oper account",
        "HOUSETYPE_MODE": "block of flats",
        "WALLSMATERIAL_MODE": "Panel",
        "EMERGENCYSTATE_MODE": "No",
    }
    return (default_values,)


@app.cell
def _(mo):
    # ๐Ÿ“Œ [3] Create widgets for the top 10 features
    EXT_SOURCE_3 = mo.ui.slider(
        start=0.00,
        stop=0.90,
        step=0.01,
        value=0.5,
        label="EXT_SOURCE_3",
    )

    EXT_SOURCE_2 = mo.ui.slider(
        start=0.00,
        stop=0.86,
        step=0.01,
        value=0.5,
        label="EXT_SOURCE_2",
    )

    DAYS_BIRTH = mo.ui.slider(
        start=-25229,
        stop=-7673,
        value=-15743,
        label="DAYS_BIRTH",
    )

    EXT_SOURCE_1 = mo.ui.slider(
        start=0.01,
        stop=0.97,
        step=0.01,
        value=0.5,
        label="EXT_SOURCE_1",
    )

    AMT_ANNUITY = mo.ui.slider(
        start=1980,
        stop=258025,
        step=100,
        value=24885,
        label="AMT_ANNUITY",
    )

    AMT_CREDIT = mo.ui.slider(
        start=45000,
        stop=4050000,
        step=50000,
        value=512997,
        label="AMT_CREDIT",
    )

    DAYS_EMPLOYED = mo.ui.slider(
        start=-17583,
        stop=365243,
        value=-1219,
        label="DAYS_EMPLOYED",
    )

    DAYS_ID_PUBLISH = mo.ui.slider(
        start=-7197,
        stop=0,
        value=-3254,
        label="DAYS_ID_PUBLISH",
    )

    DAYS_REGISTRATION = mo.ui.slider(
        start=-24672,
        stop=0,
        value=-4492,
        label="DAYS_REGISTRATION",
    )

    SK_ID_CURR = mo.ui.slider(
        start=100003,
        stop=456253,
        step=100,
        value=277659,
        label="SK_ID_CURR",
    )

    features_widgets = {
        "EXT_SOURCE_3": EXT_SOURCE_3,
        "EXT_SOURCE_2": EXT_SOURCE_2,
        "DAYS_BIRTH": DAYS_BIRTH,
        "EXT_SOURCE_1": EXT_SOURCE_1,
        "AMT_ANNUITY": AMT_ANNUITY,
        "AMT_CREDIT": AMT_CREDIT,
        "DAYS_EMPLOYED": DAYS_EMPLOYED,
        "DAYS_ID_PUBLISH": DAYS_ID_PUBLISH,
        "DAYS_REGISTRATION": DAYS_REGISTRATION,
        "SK_ID_CURR": SK_ID_CURR,
    }
    return (features_widgets,)


@app.cell
def _(features_widgets, mo):
    # ๐Ÿ“Œ [4] Create the form with the sliders
    sliders_form = (
        mo.md("""
        ###Fill in the Client Profile to see the prediction

        {EXT_SOURCE_3}  {EXT_SOURCE_2}
        {DAYS_BIRTH}  {EXT_SOURCE_1}
        {AMT_ANNUITY}  {AMT_CREDIT}
        {DAYS_EMPLOYED}  {DAYS_ID_PUBLISH}
        {DAYS_REGISTRATION} {SK_ID_CURR}
        """)
        .batch(**features_widgets)  # Pass the dict unpacked
        .form(show_clear_button=True, bordered=True)
    )
    return (sliders_form,)


@app.cell
def _(default_values, loaded_pipeline, mo, pd, sliders_form):
    # ๐Ÿ“Œ [5] Get prediction from model
    probability = None

    # Process form submission
    if sliders_form.value is not None:
        # Copy default values
        prediction_data = default_values.copy()

        # Update with sliders' submitted values
        prediction_data.update(sliders_form.value)

        # Create a DataFrame
        predict_df = pd.DataFrame([prediction_data])

        # Predict probability
        probability = loaded_pipeline.predict_proba(predict_df)[:, 1][0]
    else:
        mo.md("Fill in the form and click **Submit** to get a prediction.")
    return (probability,)


@app.cell
def _(probability):
    # ๐Ÿ“Œ [6] Display prediction results
    prob_percent = 70.12
    risk = "High Risk"
    direction = "decrease"

    if probability is not None:
        prob_percent = round(probability * 100, 2)

        # Define risk category
        if probability < 0.34:
            risk = "Low Risk"
            direction = "increase"
        elif probability < 0.67:
            risk = "Medium Risk"
            direction = None
        else:
            risk = "High Risk"
            direction = "decrease"
    return direction, prob_percent, risk


@app.cell
def _(direction, mo, prob_percent, risk):
    interpretation_text = f"""This means there is a {prob_percent}% chance the client will default on their loan.  
    Risk level is categorized as {risk}, which can help guide loan approval decisions.
    """

    result_stat = mo.stat(
        label="โš–๏ธ Probability of Payment Difficulties",
        bordered=True,
        value=f"{prob_percent}%",
        caption=risk,
        direction=direction,
    )

    interpretation_stat = mo.stat(
        label="๐Ÿ’ก Interpretation",
        bordered=True,
        value="",
        caption=interpretation_text,
    )
    return interpretation_stat, result_stat


@app.cell
def _(mo):
    mo.md("""## ๐Ÿ”ฎ Credit Risk Predictor โ€” Try It Yourself!""")
    return


@app.cell
def _(mo):
    mo.Html("<hr><br>")
    return


@app.cell
def _(interpretation_stat, mo, result_stat):
    mo.vstack(
        items=[
            mo.hstack(
                items=[result_stat, interpretation_stat], widths="equal", gap=1
            ),
        ],
        gap=1,
        heights="equal",
    )
    return


@app.cell
def _(mo):
    mo.Html("<br>")
    return


@app.cell
def _(sliders_form):
    sliders_form
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    <small>_(*) Predictions are based on the top 10 most important features. Remaining features are assigned default values (median for numeric, mode for categorical)._</small>

    """
    )
    return


@app.cell
def _(mo):
    mo.Html("<br>")
    return


@app.cell
def _(mo):
    mo.md(r"""## ๐Ÿš€ Model Selection""")
    return


@app.cell
def _(mo):
    mo.Html("<hr><br>")
    return


@app.cell
def _(mo):
    lg_stat = mo.stat(
        label="Logistic Regression",
        bordered=True,
        value="๐Ÿ’ช๐Ÿป 68.7% ๐Ÿ“ 68.5%",
        caption="Scores are consistent across train and test, indicating no overfitting. However, the overall AUC is low, suggesting underfitting โ€” the model is too simple to capture complex patterns.",
        direction="decrease",
    )

    rfc_stat = mo.stat(
        label="Random Forest Classifier",
        bordered=True,
        value="๐Ÿ’ช๐Ÿป 100% ๐Ÿ“ 70.7%",
        caption="Perfect training AUC indicates severe overfitting โ€” the model memorized the training set. While the test score is better than Logistic Regression, the gap is too large for good generalization.",
        direction="decrease",
    )

    rfo_stat = mo.stat(
        label="Random Forest with Randomized Search",
        bordered=True,
        value="๐Ÿ’ช๐Ÿป 82% ๐Ÿ“ 73.1%",
        caption="Hyperparameter tuning greatly reduced overfitting. The smaller trainโ€“test gap and improved test AUC show better generalization and a strong performance.",
        direction="increase",
    )

    lgbm_stat = mo.stat(
        label="LightGBM",
        bordered=True,
        value="๐Ÿ’ช๐Ÿป 85.2% ๐Ÿ“ 75.1%",
        caption="Best overall performance. Small trainโ€“test gap and highest test AUC indicate a well-balanced model with strong generalization.",
        direction="increase",
    )

    mo.vstack(
        items=[
            mo.hstack(items=[lg_stat, rfc_stat], widths="equal", gap=1),
            mo.hstack(items=[rfo_stat, lgbm_stat], widths="equal", gap=1),
        ],
        gap=1,
        heights="equal",
        align="center",
        justify="center",
    )
    return


@app.cell
def _(mo):
    mo.Html("<br>")
    return


@app.cell
def _(mo):
    mo.md(
        r"""Based on a comparison of all the models _(using AUC ROC metric)_, the final model selection is clear:"""
    )
    return


@app.cell
def _(mo):
    mo.Html("<br>")
    return


@app.cell
def _(mo):
    mo.center(
        mo.md(r"""
    | Model | ๐Ÿ’ช๐Ÿป Train Score | ๐Ÿ“ Test Score |
    | :--- | :---: | :---: |
    | Logistic Regression | 0.687 | 0.685 |
    | Random Forest Classifier | 1.000 | 0.707 |
    | Randomized Search (Tuned RF) | 0.820 | 0.731 |
    | **LightGBM** | **0.852** | **0.751** |
    """)
    )
    return


@app.cell
def _(mo):
    mo.Html("<br>")
    return


@app.cell
def _(mo):
    mo.md(
        r"""
    * The **Logistic Regression** model performed poorly due to underfitting.
    * The base **Random Forest** model, while better, suffered from severe overfitting.
    * The tuned **Random Forest** model was a significant improvement and a strong contender, achieving a solid `test_score`.
    * However, the **LightGBM** model ultimately demonstrated the best performance, achieving the highest **ROC AUC test score of 0.751**. This indicates that it is the most robust and accurate model for predicting loan repayment risk on unseen data.
    """
    )
    return


@app.cell
def _(mo):
    mo.callout(
        kind="info",
        value=mo.md(
            """๐Ÿ’ก **Want to explore the process in detail?**
        
                See the full ๐Ÿ‘‰ [Jupyter notebook](https://huggingface.co/spaces/iBrokeTheCode/Home_Credit_Default_Risk_Prediction/blob/main/tutorial_app.ipynb) ๐Ÿ‘ˆ๏ธ for an end-to-end walkthrough, including Exploratory Data Analysis, preprocessing, model training, evaluation, model selection, and saving the final model."""
        ),
    )
    return


@app.cell
def _(mo):
    mo.Html("<br><hr><br>")
    return


@app.cell
def _(mo):
    mo.center(
        mo.md(
            "**Connect with me:** ๐Ÿ’ผ [Linkedin](https://www.linkedin.com/in/alex-turpo/) โ€ข ๐Ÿฑ [GitHub](https://github.com/iBrokeTheCode) โ€ข ๐Ÿค— [Hugging Face](https://huggingface.co/iBrokeTheCode)"
        )
    )
    return


if __name__ == "__main__":
    app.run()