Spaces:
Running
on
Zero
Running
on
Zero
fix fps_cluster
Browse files- fps_cluster.py +8 -7
fps_cluster.py
CHANGED
|
@@ -5,12 +5,7 @@ import torch
|
|
| 5 |
|
| 6 |
def build_tree(all_dots, dist='euclidean'):
|
| 7 |
num_sample = all_dots.shape[0]
|
| 8 |
-
|
| 9 |
-
center = np.median(all_dots, axis=0)
|
| 10 |
-
distances_to_center = np.linalg.norm(all_dots - center, axis=1)
|
| 11 |
-
start_idx = np.argmin(distances_to_center)
|
| 12 |
-
indices = [start_idx]
|
| 13 |
-
distances = [114514,]
|
| 14 |
if dist == 'euclidean':
|
| 15 |
A = all_dots[:, None] - all_dots[None, :]
|
| 16 |
A = (A ** 2).sum(-1)
|
|
@@ -23,6 +18,12 @@ def build_tree(all_dots, dist='euclidean'):
|
|
| 23 |
A = 1 - A
|
| 24 |
else:
|
| 25 |
raise ValueError('dist must be euclidean or cosine')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
for i in range(num_sample - 1):
|
| 27 |
_A = A[indices]
|
| 28 |
min_dist = _A.min(dim=0).values
|
|
@@ -55,7 +56,7 @@ def build_tree(all_dots, dist='euclidean'):
|
|
| 55 |
pi_indices = np.array(pi_indices)
|
| 56 |
|
| 57 |
edges = np.stack([indices, pi_indices], axis=1)
|
| 58 |
-
return edges
|
| 59 |
|
| 60 |
|
| 61 |
def find_connected_component(edges, start_node):
|
|
|
|
| 5 |
|
| 6 |
def build_tree(all_dots, dist='euclidean'):
|
| 7 |
num_sample = all_dots.shape[0]
|
| 8 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
if dist == 'euclidean':
|
| 10 |
A = all_dots[:, None] - all_dots[None, :]
|
| 11 |
A = (A ** 2).sum(-1)
|
|
|
|
| 18 |
A = 1 - A
|
| 19 |
else:
|
| 20 |
raise ValueError('dist must be euclidean or cosine')
|
| 21 |
+
|
| 22 |
+
d_sum = A.mean(dim=1)
|
| 23 |
+
start_idx = torch.argmin(d_sum).item()
|
| 24 |
+
indices = [start_idx]
|
| 25 |
+
distances = [114514,]
|
| 26 |
+
|
| 27 |
for i in range(num_sample - 1):
|
| 28 |
_A = A[indices]
|
| 29 |
min_dist = _A.min(dim=0).values
|
|
|
|
| 56 |
pi_indices = np.array(pi_indices)
|
| 57 |
|
| 58 |
edges = np.stack([indices, pi_indices], axis=1)
|
| 59 |
+
return edges, levels
|
| 60 |
|
| 61 |
|
| 62 |
def find_connected_component(edges, start_node):
|