Spaces:
Running
on
Zero
Running
on
Zero
handle gpu quota
Browse files
app.py
CHANGED
|
@@ -961,41 +961,43 @@ def run_fn(
|
|
| 961 |
}
|
| 962 |
# print(kwargs)
|
| 963 |
|
| 964 |
-
try:
|
| 965 |
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 982 |
return longer_run(model, images, **kwargs)
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
if
|
| 986 |
-
if perplexity >= 250 or num_sample_tsne >= 500:
|
| 987 |
-
return longer_run(model, images, **kwargs)
|
| 988 |
return long_run(model, images, **kwargs)
|
| 989 |
-
if embedding_method == "t-SNE":
|
| 990 |
-
if perplexity >= 250 or num_sample_tsne >= 500:
|
| 991 |
-
return long_run(model, images, **kwargs)
|
| 992 |
-
return quick_run(model, images, **kwargs)
|
| 993 |
-
|
| 994 |
return quick_run(model, images, **kwargs)
|
| 995 |
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 999 |
|
| 1000 |
|
| 1001 |
|
|
|
|
| 961 |
}
|
| 962 |
# print(kwargs)
|
| 963 |
|
| 964 |
+
# try:
|
| 965 |
|
| 966 |
+
if old_school_ncut:
|
| 967 |
+
return super_duper_long_run(model, images, **kwargs)
|
| 968 |
+
|
| 969 |
+
if is_lisa:
|
| 970 |
+
return super_duper_long_run(model, images, **kwargs)
|
| 971 |
+
|
| 972 |
+
num_images = len(images)
|
| 973 |
+
if num_images >= 100:
|
| 974 |
+
return super_duper_long_run(model, images, **kwargs)
|
| 975 |
+
if 'diffusion' in model_name.lower():
|
| 976 |
+
return super_duper_long_run(model, images, **kwargs)
|
| 977 |
+
if recursion:
|
| 978 |
+
return longer_run(model, images, **kwargs)
|
| 979 |
+
if num_images >= 50:
|
| 980 |
+
return longer_run(model, images, **kwargs)
|
| 981 |
+
if old_school_ncut:
|
| 982 |
+
return longer_run(model, images, **kwargs)
|
| 983 |
+
if num_images >= 10:
|
| 984 |
+
return long_run(model, images, **kwargs)
|
| 985 |
+
if embedding_method == "UMAP":
|
| 986 |
+
if perplexity >= 250 or num_sample_tsne >= 500:
|
| 987 |
return longer_run(model, images, **kwargs)
|
| 988 |
+
return long_run(model, images, **kwargs)
|
| 989 |
+
if embedding_method == "t-SNE":
|
| 990 |
+
if perplexity >= 250 or num_sample_tsne >= 500:
|
|
|
|
|
|
|
| 991 |
return long_run(model, images, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 992 |
return quick_run(model, images, **kwargs)
|
| 993 |
|
| 994 |
+
return quick_run(model, images, **kwargs)
|
| 995 |
+
|
| 996 |
+
# except spaces.GPUError as e:
|
| 997 |
+
# print(e)
|
| 998 |
+
# gr.Error(str(e))
|
| 999 |
+
# gr.Info("Running out of GPU Quota? Try this demo hosted at UPenn.\n https://ncut-pytorch.readthedocs.io/en/latest/demo/")
|
| 1000 |
+
|
| 1001 |
|
| 1002 |
|
| 1003 |
|