Spaces:
Running
on
Zero
Running
on
Zero
| # Author: Huzheng Yang | |
| # %% | |
| import copy | |
| from datetime import datetime | |
| import io | |
| import math | |
| import pickle | |
| from functools import partial | |
| from io import BytesIO | |
| import json | |
| import os | |
| import uuid | |
| import zipfile | |
| import multiprocessing as mp | |
| from einops import rearrange | |
| from matplotlib import pyplot as plt | |
| import matplotlib | |
| USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "False").lower() in ["true", "1", "yes"] | |
| DOWNLOAD_ALL_MODELS_DATASETS = os.getenv("DOWNLOAD_ALL_MODELS_DATASETS", "False").lower() in ["true", "1", "yes"] | |
| if USE_HUGGINGFACE_ZEROGPU: # huggingface ZeroGPU, dynamic GPU allocation | |
| try: | |
| import spaces | |
| except: | |
| USE_HUGGINGFACE_ZEROGPU = False | |
| if USE_HUGGINGFACE_ZEROGPU: | |
| BATCH_SIZE = 1 | |
| else: # run on local machine | |
| BATCH_SIZE = 1 | |
| import gradio as gr | |
| import torch | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| import numpy as np | |
| import time | |
| import threading | |
| from ncut_pytorch.backbone import extract_features, load_model | |
| from ncut_pytorch.backbone import MODEL_DICT, LAYER_DICT, RES_DICT | |
| from ncut_pytorch import NCUT | |
| from ncut_pytorch import eigenvector_to_rgb | |
| DATASETS = { | |
| 'Common': [ | |
| ('mrm8488/ImageNet1K-val', 1000), | |
| ('UCSC-VLAA/Recap-COCO-30K', None), | |
| ('nateraw/pascal-voc-2012', None), | |
| ('johnowhitaker/imagenette2-320', 10), | |
| ('Multimodal-Fatima/CUB_train', 200), | |
| ('saragag/FlBirds', 7), | |
| ('microsoft/cats_vs_dogs', None), | |
| ('Robotkid2696/food_classification', 20), | |
| ('JapanDegitalMaterial/Places_in_Japan', None), | |
| ], | |
| 'Ego': [ | |
| ('EgoThink/EgoThink', None), | |
| ], | |
| 'Face': [ | |
| ('nielsr/CelebA-faces', None), | |
| ('huggan/anime-faces', None), | |
| ], | |
| 'Pose': [ | |
| ('sayakpaul/poses-controlnet-dataset', None), | |
| ('razdab/sign_pose_M', None), | |
| ('Marqo/deepfashion-multimodal', None), | |
| ('Fiacre/small-animal-poses-controlnet-dataset', None), | |
| ('junjuice0/vtuber-tachi-e', None), | |
| ], | |
| 'Hand': [ | |
| ('trashsock/hands-images', 8), | |
| ('dduka/guitar-chords-v3', None), | |
| ], | |
| 'Satellite': [ | |
| ('arakesh/deepglobe-2448x2448', None), | |
| ('tanganke/eurosat', 10), | |
| ('wangyi111/EuroSAT-SAR', None), | |
| ('efoley/sar_tile_512', None), | |
| ], | |
| 'Medical': [ | |
| ('Mahadih534/Chest_CT-Scan_images-Dataset', None), | |
| ('TrainingDataPro/chest-x-rays', None), | |
| ('hongrui/mimic_chest_xray_v_1', None), | |
| ('sartajbhuvaji/Brain-Tumor-Classification', 4), | |
| ('Falah/Alzheimer_MRI', 4), | |
| ('Leonardo6/path-vqa', None), | |
| ('Itsunori/path-vqa_jap', None), | |
| ('ruby-jrl/isic-2024-2', None), | |
| ('VRJBro/lung_cancer_dataset', 5), | |
| ('keremberke/blood-cell-object-detection', None) | |
| ], | |
| 'Miscs': [ | |
| ('yashvoladoddi37/kanjienglish', None), | |
| ('Borismile/Anime-dataset', None), | |
| ('jainr3/diffusiondb-pixelart', None), | |
| ('jlbaker361/dcgan-eval-creative_gan_256_256', None), | |
| ('Francesco/csgo-videogame', None), | |
| ('Francesco/apex-videogame', None), | |
| ('huggan/pokemon', None), | |
| ('huggan/few-shot-universe', None), | |
| ('huggan/flowers-102-categories', None), | |
| ('huggan/inat_butterflies_top10k', None), | |
| ] | |
| } | |
| CENTER_CROP_DATASETS = ["razdab/sign_pose_M"] | |
| from datasets import load_dataset | |
| def download_all_datasets(): | |
| for cat in DATASETS.keys(): | |
| for tup in DATASETS[cat]: | |
| name = tup[0] | |
| print(f"Downloading {name}") | |
| try: | |
| load_dataset(name, trust_remote_code=True) | |
| except Exception as e: | |
| print(f"Error downloading {name}: {e}") | |
| def compute_ncut( | |
| features, | |
| num_eig=100, | |
| num_sample_ncut=10000, | |
| affinity_focal_gamma=0.3, | |
| knn_ncut=10, | |
| knn_tsne=10, | |
| embedding_method="UMAP", | |
| embedding_metric='euclidean', | |
| num_sample_tsne=300, | |
| perplexity=150, | |
| n_neighbors=150, | |
| min_dist=0.1, | |
| sampling_method="QuickFPS", | |
| metric="cosine", | |
| indirect_connection=True, | |
| make_orthogonal=False, | |
| progess_start=0.4, | |
| only_eigvecs=False, | |
| ): | |
| progress = gr.Progress() | |
| logging_str = "" | |
| num_nodes = np.prod(features.shape[:-1]) | |
| if num_nodes / 2 < num_eig: | |
| # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.") | |
| gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.") | |
| num_eig = num_nodes // 2 - 1 | |
| logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n" | |
| start = time.time() | |
| progress(progess_start+0.0, desc="NCut") | |
| eigvecs, eigvals = NCUT( | |
| num_eig=num_eig, | |
| num_sample=num_sample_ncut, | |
| device="cuda" if torch.cuda.is_available() else "cpu", | |
| affinity_focal_gamma=affinity_focal_gamma, | |
| knn=knn_ncut, | |
| sample_method=sampling_method, | |
| distance=metric, | |
| normalize_features=False, | |
| indirect_connection=indirect_connection, | |
| make_orthogonal=make_orthogonal, | |
| ).fit_transform(features.reshape(-1, features.shape[-1])) | |
| # print(f"NCUT time: {time.time() - start:.2f}s") | |
| logging_str += f"NCUT time: {time.time() - start:.2f}s\n" | |
| if only_eigvecs: | |
| return None, logging_str, eigvecs | |
| start = time.time() | |
| progress(progess_start+0.01, desc="spectral-tSNE") | |
| _, rgb = eigenvector_to_rgb( | |
| eigvecs, | |
| method=embedding_method, | |
| metric=embedding_metric, | |
| num_sample=num_sample_tsne, | |
| perplexity=perplexity, | |
| n_neighbors=n_neighbors, | |
| min_distance=min_dist, | |
| knn=knn_tsne, | |
| device="cuda" if torch.cuda.is_available() else "cpu", | |
| ) | |
| logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n" | |
| rgb = rgb.reshape(features.shape[:-1] + (3,)) | |
| return rgb, logging_str, eigvecs | |
| def compute_ncut_directed( | |
| features_1, | |
| features_2, | |
| num_eig=100, | |
| num_sample_ncut=10000, | |
| affinity_focal_gamma=0.3, | |
| knn_ncut=10, | |
| knn_tsne=10, | |
| embedding_method="UMAP", | |
| embedding_metric='euclidean', | |
| num_sample_tsne=300, | |
| perplexity=150, | |
| n_neighbors=150, | |
| min_dist=0.1, | |
| sampling_method="QuickFPS", | |
| metric="cosine", | |
| indirect_connection=False, | |
| make_orthogonal=False, | |
| make_symmetric=False, | |
| progess_start=0.4, | |
| ): | |
| # print("Using directed_ncut") | |
| # print("features_1.shape", features_1.shape) | |
| # print("features_2.shape", features_2.shape) | |
| from directed_ncut import nystrom_ncut | |
| progress = gr.Progress() | |
| logging_str = "" | |
| num_nodes = np.prod(features_1.shape[:-2]) | |
| if num_nodes / 2 < num_eig: | |
| # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.") | |
| gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.") | |
| num_eig = num_nodes // 2 - 1 | |
| logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n" | |
| start = time.time() | |
| progress(progess_start+0.0, desc="NCut") | |
| n_features = features_1.shape[-2] | |
| _features_1 = rearrange(features_1, "b h w d c -> (b h w) (d c)") | |
| _features_2 = rearrange(features_2, "b h w d c -> (b h w) (d c)") | |
| eigvecs, eigvals, _ = nystrom_ncut( | |
| _features_1, | |
| features_B=_features_2, | |
| num_eig=num_eig, | |
| num_sample=num_sample_ncut, | |
| device="cuda" if torch.cuda.is_available() else "cpu", | |
| affinity_focal_gamma=affinity_focal_gamma, | |
| knn=knn_ncut, | |
| sample_method=sampling_method, | |
| distance=metric, | |
| normalize_features=False, | |
| indirect_connection=indirect_connection, | |
| make_orthogonal=make_orthogonal, | |
| make_symmetric=make_symmetric, | |
| n_features=n_features, | |
| ) | |
| # print(f"NCUT time: {time.time() - start:.2f}s") | |
| logging_str += f"NCUT time: {time.time() - start:.2f}s\n" | |
| start = time.time() | |
| progress(progess_start+0.01, desc="spectral-tSNE") | |
| _, rgb = eigenvector_to_rgb( | |
| eigvecs, | |
| method=embedding_method, | |
| metric=embedding_metric, | |
| num_sample=num_sample_tsne, | |
| perplexity=perplexity, | |
| n_neighbors=n_neighbors, | |
| min_distance=min_dist, | |
| knn=knn_tsne, | |
| device="cuda" if torch.cuda.is_available() else "cpu", | |
| ) | |
| logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n" | |
| rgb = rgb.reshape(features_1.shape[:3] + (3,)) | |
| return rgb, logging_str, eigvecs | |
| def dont_use_too_much_green(image_rgb): | |
| # make sure the foval 40% of the image is red leading | |
| x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7) | |
| y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7) | |
| sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2)) | |
| sorted_indices = sum_values.argsort(descending=True) | |
| image_rgb = image_rgb[:, :, :, sorted_indices] | |
| return image_rgb | |
| def to_pil_images(images, target_size=512, resize=True, force_size=False): | |
| size = images[0].shape[1] | |
| multiplier = target_size // size | |
| res = int(size * multiplier) | |
| if force_size: | |
| res = target_size | |
| pil_images = [] | |
| for image in images: | |
| if isinstance(image, torch.Tensor): | |
| image = image.cpu().numpy() | |
| if image.dtype == np.float32 or image.dtype == np.float64: | |
| image = (image * 255).astype(np.uint8) | |
| pil_images.append(Image.fromarray(image)) | |
| if resize: | |
| pil_images = [ | |
| image.resize((res, res), Image.Resampling.NEAREST) | |
| for image in pil_images | |
| ] | |
| return pil_images | |
| def pil_images_to_video(images, output_path, fps=5): | |
| # from pil images to numpy | |
| images = [np.array(image) for image in images] | |
| # print("Saving video to", output_path) | |
| import cv2 | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| height, width, _ = images[0].shape | |
| out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
| for image in images: | |
| out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
| out.release() | |
| return output_path | |
| # save up to 100 videos in disk | |
| class VideoCache: | |
| def __init__(self, max_videos=100): | |
| self.max_videos = max_videos | |
| self.videos = {} | |
| def add_video(self, video_path): | |
| if len(self.videos) >= self.max_videos: | |
| pop_path = self.videos.popitem()[0] | |
| try: | |
| os.remove(pop_path) | |
| except: | |
| pass | |
| self.videos[video_path] = video_path | |
| def get_video(self, video_path): | |
| return self.videos.get(video_path, None) | |
| video_cache = VideoCache() | |
| def get_random_path(length=10): | |
| import random | |
| import string | |
| name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length)) | |
| path = f'/tmp/{name}.mp4' | |
| return path | |
| default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/guitar_ego.jpg', './images/image_5.jpg'] | |
| default_outputs = ['./images/image-1.webp', './images/image-2.webp', './images/image-3.webp', './images/image-4.webp', './images/image-5.webp'] | |
| # default_outputs_independent = ['./images/image-6.webp', './images/image-7.webp', './images/image-8.webp', './images/image-9.webp', './images/image-10.webp'] | |
| default_outputs_independent = [] | |
| downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg'] | |
| downscaled_outputs = default_outputs | |
| example_items = downscaled_images[:3] + downscaled_outputs[:3] | |
| def run_alignedthreemodelattnnodes(images, model, batch_size=16): | |
| use_cuda = torch.cuda.is_available() | |
| device = torch.device("cuda" if use_cuda else "cpu") | |
| if use_cuda: | |
| model = model.to(device) | |
| chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size) | |
| outputs = [] | |
| for idxs in chunked_idxs: | |
| inp = images[idxs] | |
| if use_cuda: | |
| inp = inp.to(device) | |
| out = model(inp) | |
| # normalize before save | |
| out = F.normalize(out, dim=-1) | |
| outputs.append(out.cpu().float()) | |
| outputs = torch.cat(outputs, dim=0) | |
| return outputs | |
| def _reds_colormap(image): | |
| # normed_data = image / image.max() # Normalize to [0, 1] | |
| normed_data = image | |
| colormap = matplotlib.colormaps['inferno'] # Get the Reds colormap | |
| colored_image = colormap(normed_data) # Apply colormap | |
| return (colored_image[..., :3] * 255).astype(np.uint8) # Convert to RGB | |
| # heatmap images | |
| def apply_reds_colormap(images, size): | |
| # for i_image in range(images.shape[0]): | |
| # images[i_image] -= images[i_image].min() | |
| # images[i_image] /= images[i_image].max() | |
| # normed_data = [_reds_colormap(images[i]) for i in range(images.shape[0])] | |
| # normed_data = np.stack(normed_data) | |
| normed_data = _reds_colormap(images) | |
| normed_data = torch.tensor(normed_data).float() | |
| normed_data = rearrange(normed_data, "b h w c -> b c h w") | |
| normed_data = torch.nn.functional.interpolate(normed_data, size=size, mode="nearest") | |
| normed_data = rearrange(normed_data, "b c h w -> b h w c") | |
| normed_data = normed_data.cpu().numpy().astype(np.uint8) | |
| return normed_data | |
| # Blend heatmap with the original image | |
| def blend_image_with_heatmap(image, heatmap, opacity1=0.5, opacity2=0.5): | |
| blended = (1 - opacity1) * image + opacity2 * heatmap | |
| return blended.astype(np.uint8) | |
| def segment_fg_bg(images): | |
| images = F.interpolate(images, (224, 224), mode="bilinear") | |
| # model = load_alignedthreemodel() | |
| model = load_model("CLIP(ViT-B-16/openai)") | |
| from ncut_pytorch.backbone import resample_position_embeddings | |
| pos_embed = model.model.visual.positional_embedding | |
| pos_embed = resample_position_embeddings(pos_embed, 14, 14) | |
| model.model.visual.positional_embedding = torch.nn.Parameter(pos_embed) | |
| batch_size = 4 | |
| chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size) | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| model.to(device) | |
| means = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) | |
| stds = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) | |
| fg_acts, bg_acts = [], [] | |
| for chunk_idx in chunk_idxs: | |
| with torch.no_grad(): | |
| input_images = images[chunk_idx].to(device) | |
| # transform the input images | |
| input_images = (input_images - means) / stds | |
| # output = model(input_images)[:, 5] | |
| output = model(input_images)['attn'][6] # [B, H=14, W=14, C] | |
| fg_act = output[:, 6, 6].mean(0) | |
| bg_act = output[:, 0, 0].mean(0) | |
| fg_acts.append(fg_act) | |
| bg_acts.append(bg_act) | |
| fg_act = torch.stack(fg_acts, dim=0).mean(0) | |
| bg_act = torch.stack(bg_acts, dim=0).mean(0) | |
| fg_act = F.normalize(fg_act, dim=-1) | |
| bg_act = F.normalize(bg_act, dim=-1) | |
| # ref_image = default_images[0] | |
| # image = Image.open(ref_image).convert("RGB").resize((224, 224), Image.Resampling.BILINEAR) | |
| # image = torch.tensor(np.array(image)).permute(2, 0, 1).float().to(device) | |
| # image = (image / 255.0 - means) / stds | |
| # output = model(image)['attn'][6][0] | |
| # # print(output.shape) | |
| # # bg on the center | |
| # fg_act = output[5, 5] | |
| # # bg on the bottom left | |
| # bg_act = output[0, 0] | |
| # fg_act = F.normalize(fg_act, dim=-1) | |
| # bg_act = F.normalize(bg_act, dim=-1) | |
| # print(images.mean(), images.std()) | |
| fg_act, bg_act = fg_act.to(device), bg_act.to(device) | |
| chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size) | |
| heatmap_fgs, heatmap_bgs = [], [] | |
| for chunk_idx in chunk_idxs: | |
| with torch.no_grad(): | |
| input_images = images[chunk_idx].to(device) | |
| # transform the input images | |
| input_images = (input_images - means) / stds | |
| # output = model(input_images)[:, 5] | |
| output = model(input_images)['attn'][6] | |
| output = F.normalize(output, dim=-1) | |
| heatmap_fg = output @ fg_act[:, None] # [B, H, W, 1] | |
| heatmap_bg = output @ bg_act[:, None] # [B, H, W, 1] | |
| heatmap_fgs.append(heatmap_fg.cpu()) | |
| heatmap_bgs.append(heatmap_bg.cpu()) | |
| heatmap_fg = torch.cat(heatmap_fgs, dim=0) | |
| heatmap_bg = torch.cat(heatmap_bgs, dim=0) | |
| return heatmap_fg, heatmap_bg | |
| def make_cluster_plot(eigvecs, images, h=64, w=64, progess_start=0.6, advanced=False, clusters=50, eig_idx=None, title='cluster'): | |
| if clusters == 0: | |
| return [], [] | |
| progress = gr.Progress() | |
| progress(progess_start, desc="Finding Clusters by FPS") | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| eigvecs = eigvecs.to(device) | |
| from ncut_pytorch.ncut_pytorch import farthest_point_sampling | |
| magnitude = torch.norm(eigvecs, dim=-1) | |
| # gr.Info("Finding Clusters by FPS, no magnitude filtering") | |
| top_p_idx = torch.arange(eigvecs.shape[0]) | |
| if eig_idx is not None: | |
| top_p_idx = eig_idx | |
| # gr.Info("Finding Clusters by FPS, with magnitude filtering") | |
| # p = 0.8 | |
| # top_p_idx = magnitude.argsort(descending=True)[:int(p * magnitude.shape[0])] | |
| ret_magnitude = magnitude.reshape(-1, h, w) | |
| num_samples = 300 | |
| if num_samples > top_p_idx.shape[0]: | |
| num_samples = top_p_idx.shape[0] | |
| fps_idx = farthest_point_sampling(eigvecs[top_p_idx], num_samples) | |
| fps_idx = top_p_idx[fps_idx] | |
| # fps round 2 on the heatmap | |
| left = eigvecs[fps_idx, :].clone() | |
| right = eigvecs.clone() | |
| left = F.normalize(left, dim=-1) | |
| right = F.normalize(right, dim=-1) | |
| heatmap = left @ right.T | |
| heatmap = F.normalize(heatmap, dim=-1) # [300, N_pixel] PCA-> [300, 8] | |
| num_samples = clusters + 20 # 100/120 | |
| if num_samples > fps_idx.shape[0]: | |
| num_samples = fps_idx.shape[0] | |
| r2_fps_idx = farthest_point_sampling(heatmap, num_samples) | |
| fps_idx = fps_idx[r2_fps_idx] | |
| # downsample to 256x256 | |
| images = F.interpolate(images, (256, 256), mode="bilinear") | |
| images = images.cpu().numpy() | |
| images = images.transpose(0, 2, 3, 1) | |
| images = images * 255 | |
| images = images.astype(np.uint8) | |
| # sort the fps_idx by the mean of the heatmap | |
| fps_heatmaps = {} | |
| sort_values = [] | |
| top3_image_idx = {} | |
| top10_image_idx = {} | |
| for _, idx in enumerate(fps_idx): | |
| heatmap = F.cosine_similarity(eigvecs, eigvecs[idx][None], dim=-1) | |
| # def top_percentile(tensor, p=0.8, max_size=10000): | |
| # tensor = tensor.clone().flatten() | |
| # if tensor.shape[0] > max_size: | |
| # tensor = tensor[torch.randperm(tensor.shape[0])[:max_size]] | |
| # return tensor.quantile(p) | |
| # top_p = top_percentile(heatmap, p=0.5) | |
| top_p = 0.9 | |
| heatmap = heatmap.reshape(-1, h, w) | |
| mask = (heatmap > top_p).float() | |
| # take top 3 masks only | |
| mask_sort_values = mask.mean((1, 2)) | |
| _sort_value2 = (heatmap > 0.1).float().mean((1, 2)) * 0.1 | |
| mask_sort_values += _sort_value2 | |
| mask_sort_idx = torch.argsort(mask_sort_values, descending=True) | |
| mask = mask[mask_sort_idx[:3]] | |
| sort_values.append(mask.mean().item()) | |
| # fps_heatmaps[idx.item()] = heatmap.cpu() | |
| fps_heatmaps[idx.item()] = heatmap[mask_sort_idx[:6]].cpu() | |
| top3_image_idx[idx.item()] = mask_sort_idx[:3] | |
| top10_image_idx[idx.item()] = mask_sort_idx[:6] | |
| # do the sorting | |
| _sort_idx = torch.tensor(sort_values).argsort(descending=True) | |
| fps_idx = fps_idx[_sort_idx] | |
| # reverse the fps_idx | |
| # fps_idx = fps_idx.flip(0) | |
| # discard the big clusters | |
| # gr.Info("Discarding the biggest 10 clusters") | |
| # fps_idx = fps_idx[10:] | |
| # gr.Info("Not discarding the biggest 10 clusters") | |
| # gr.Info("Discarding the smallest 30 out of 80 sampled clusters") | |
| if not advanced: | |
| # shuffle the fps_idx | |
| fps_idx = fps_idx[torch.randperm(fps_idx.shape[0])] | |
| def plot_cluster_images(fps_idx_chunk, chunk_idx): | |
| fig, axs = plt.subplots(3, 5, figsize=(15, 9)) if not advanced else plt.subplots(6, 5, figsize=(15, 18)) | |
| for ax in axs.flatten(): | |
| ax.axis("off") | |
| for j, idx in enumerate(fps_idx_chunk): | |
| heatmap = fps_heatmaps[idx.item()] | |
| size = (images.shape[1], images.shape[2]) | |
| heatmap = apply_reds_colormap(heatmap, size) | |
| image_idxs = top3_image_idx[idx.item()] if not advanced else top10_image_idx[idx.item()] | |
| for i, image_idx in enumerate(image_idxs): | |
| _heatmap = blend_image_with_heatmap(images[image_idx], heatmap[i]) | |
| axs[i, j].imshow(_heatmap) | |
| if i == 0: | |
| axs[i, j].set_title(f"{title} {chunk_idx * 5 + j + 1}", fontsize=24) | |
| plt.tight_layout(h_pad=0.5, w_pad=0.3) | |
| filename = f"{datetime.now():%Y%m%d%H%M%S%f}_{uuid.uuid4().hex}" | |
| tmp_path = f"/tmp/{filename}.png" | |
| plt.savefig(tmp_path, bbox_inches='tight', dpi=72) | |
| img = Image.open(tmp_path).convert("RGB") | |
| os.remove(tmp_path) | |
| plt.close() | |
| return img | |
| fig_images = [] | |
| num_plots = clusters // 5 | |
| plot_step_float = (1.0 - progess_start) / num_plots | |
| fps_idx_chunks = [fps_idx[i*5:(i+1)*5] for i in range(num_plots)] | |
| # with mp.Pool(processes=mp.cpu_count()) as pool: | |
| # results = [pool.apply_async(plot_cluster_images, args=(chunk, i)) for i, chunk in enumerate(fps_idx_chunks)] | |
| # for i, result in enumerate(results): | |
| # progress(progess_start + i * plot_step_float, desc=f"Plotted {title}") | |
| # fig_images.append(result.get()) | |
| for i, chunk in enumerate(fps_idx_chunks): | |
| progress(progess_start + i * plot_step_float, desc=f"Plotted {title}") | |
| fig_images.append(plot_cluster_images(chunk, i)) | |
| return fig_images, ret_magnitude | |
| def make_cluster_plot_advanced(eigvecs, images, h=64, w=64): | |
| heatmap_fg, heatmap_bg = segment_fg_bg(images.clone()) | |
| heatmap_bg = rearrange(heatmap_bg, 'b h w c -> b c h w') | |
| heatmap_fg = rearrange(heatmap_fg, 'b h w c -> b c h w') | |
| heatmap_fg = F.interpolate(heatmap_fg, (h, w), mode="bilinear") | |
| heatmap_bg = F.interpolate(heatmap_bg, (h, w), mode="bilinear") | |
| heatmap_fg = heatmap_fg.flatten() | |
| heatmap_bg = heatmap_bg.flatten() | |
| fg_minus_bg = heatmap_fg - heatmap_bg | |
| fg_mask = fg_minus_bg > fg_minus_bg.quantile(0.8) | |
| bg_mask = fg_minus_bg < fg_minus_bg.quantile(0.2) | |
| # fg_mask = heatmap_fg > heatmap_fg.quantile(0.8) | |
| # bg_mask = heatmap_bg > heatmap_bg.quantile(0.8) | |
| other_mask = ~(fg_mask | bg_mask) | |
| fg_idx = torch.arange(heatmap_fg.shape[0])[fg_mask] | |
| bg_idx = torch.arange(heatmap_bg.shape[0])[bg_mask] | |
| other_idx = torch.arange(heatmap_fg.shape[0])[other_mask] | |
| fg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=100, eig_idx=fg_idx, title="fg") | |
| bg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=20, eig_idx=bg_idx, title="bg") | |
| other_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=0, eig_idx=other_idx, title="other") | |
| cluster_images = fg_images + bg_images + other_images | |
| magitude = torch.norm(eigvecs, dim=-1) | |
| magitude = magitude.reshape(-1, h, w) | |
| # magitude = fg_minus_bg.reshape(-1, h, w) #TODO | |
| return cluster_images, magitude | |
| def ncut_run( | |
| model, | |
| images, | |
| model_name="DiNO(dino_vitb8_448)", | |
| layer=10, | |
| num_eig=100, | |
| node_type="block", | |
| affinity_focal_gamma=0.5, | |
| num_sample_ncut=10000, | |
| knn_ncut=10, | |
| embedding_method="tsne_3d", | |
| embedding_metric='euclidean', | |
| num_sample_tsne=1000, | |
| knn_tsne=10, | |
| perplexity=500, | |
| n_neighbors=500, | |
| min_dist=0.1, | |
| sampling_method="QuickFPS", | |
| ncut_metric="cosine", | |
| indirect_connection=True, | |
| make_orthogonal=False, | |
| old_school_ncut=False, | |
| recursion=False, | |
| recursion_l2_n_eigs=50, | |
| recursion_l3_n_eigs=20, | |
| recursion_metric="euclidean", | |
| recursion_l1_gamma=0.5, | |
| recursion_l2_gamma=0.5, | |
| recursion_l3_gamma=0.5, | |
| video_output=False, | |
| is_lisa=False, | |
| lisa_prompt1="", | |
| lisa_prompt2="", | |
| lisa_prompt3="", | |
| plot_clusters=False, | |
| alignedcut_eig_norm_plot=False, | |
| **kwargs, | |
| ): | |
| advanced = kwargs.get("advanced", False) | |
| directed = kwargs.get("directed", False) | |
| progress = gr.Progress() | |
| progress(0.2, desc="Feature Extraction") | |
| logging_str = "" | |
| if "AlignedThreeModelAttnNodes" == model_name: | |
| # dirty patch for the alignedcut paper | |
| resolution = (224, 224) | |
| else: | |
| resolution = RES_DICT[model_name] | |
| logging_str += f"Resolution: {resolution}\n" | |
| if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne: | |
| # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.") | |
| gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.") | |
| logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n" | |
| perplexity = num_sample_tsne - 1 | |
| n_neighbors = num_sample_tsne - 1 | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| node_type = node_type.split(":")[0].strip() | |
| start = time.time() | |
| if "AlignedThreeModelAttnNodes" == model_name: | |
| # dirty patch for the alignedcut paper | |
| features = run_alignedthreemodelattnnodes(images, model, batch_size=BATCH_SIZE) | |
| elif is_lisa == True: | |
| # dirty patch for the LISA model | |
| features = [] | |
| with torch.no_grad(): | |
| model = model.cuda() | |
| images = images.cuda() | |
| lisa_prompts = [lisa_prompt1, lisa_prompt2, lisa_prompt3] | |
| for prompt in lisa_prompts: | |
| import bleach | |
| prompt = bleach.clean(prompt) | |
| prompt = prompt.strip() | |
| # print(prompt) | |
| # # copy the sting to a new string | |
| # copy_s = copy.copy(prompt) | |
| feature = model(images, input_str=prompt)[node_type][0] | |
| feature = F.normalize(feature, dim=-1) | |
| features.append(feature.cpu().float()) | |
| features = torch.stack(features) | |
| else: | |
| features = extract_features( | |
| images, model, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE | |
| ) | |
| if directed: | |
| node_type2 = kwargs.get("node_type2", None) | |
| features_B = extract_features( | |
| images, model, node_type=node_type2, layer=layer-1, batch_size=BATCH_SIZE | |
| ) | |
| # print(f"Feature extraction time (gpu): {time.time() - start:.2f}s") | |
| logging_str += f"Backbone time: {time.time() - start:.2f}s\n" | |
| del model | |
| progress(0.4, desc="NCut") | |
| if recursion: | |
| rgbs = [] | |
| all_eigvecs = [] | |
| recursion_gammas = [recursion_l1_gamma, recursion_l2_gamma, recursion_l3_gamma] | |
| inp = features | |
| progress_start = 0.4 | |
| for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]): | |
| logging_str += f"Recursion #{i+1}\n" | |
| progress_start += + 0.1 * i | |
| rgb, _logging_str, eigvecs = compute_ncut( | |
| inp, | |
| num_eig=n_eigs, | |
| num_sample_ncut=num_sample_ncut, | |
| affinity_focal_gamma=recursion_gammas[i], | |
| knn_ncut=knn_ncut, | |
| knn_tsne=knn_tsne, | |
| num_sample_tsne=num_sample_tsne, | |
| embedding_method=embedding_method, | |
| embedding_metric=embedding_metric, | |
| perplexity=perplexity, | |
| n_neighbors=n_neighbors, | |
| min_dist=min_dist, | |
| sampling_method=sampling_method, | |
| metric=ncut_metric if i == 0 else recursion_metric, | |
| indirect_connection=indirect_connection, | |
| make_orthogonal=make_orthogonal, | |
| progess_start=progress_start, | |
| ) | |
| logging_str += _logging_str | |
| all_eigvecs.append(eigvecs.cpu().clone()) | |
| if "AlignedThreeModelAttnNodes" == model_name: | |
| # dirty patch for the alignedcut paper | |
| start = time.time() | |
| progress(progress_start + 0.09, desc=f"Plotting Recursion {i+1}") | |
| pil_images = [] | |
| for i_image in range(rgb.shape[0]): | |
| _im = plot_one_image_36_grid(images[i_image], rgb[i_image]) | |
| pil_images.append(_im) | |
| rgbs.append(pil_images) | |
| logging_str += f"plot time: {time.time() - start:.2f}s\n" | |
| else: | |
| rgb = dont_use_too_much_green(rgb) | |
| rgbs.append(to_pil_images(rgb)) | |
| inp = eigvecs.reshape(*features.shape[:-1], -1) | |
| if recursion_metric == "cosine": | |
| inp = F.normalize(inp, dim=-1) | |
| if not advanced: | |
| return rgbs[0], rgbs[1], rgbs[2], logging_str | |
| if "AlignedThreeModelAttnNodes" == model_name: | |
| return rgbs[0], rgbs[1], rgbs[2], logging_str | |
| if advanced: | |
| cluster_plots, norm_plots = [], [] | |
| for i in range(3): | |
| eigvecs = all_eigvecs[i] | |
| # add norm plot, cluster plot | |
| start = time.time() | |
| progress_start = 0.6 | |
| progress(progress_start, desc=f"Plotting Clusters Recursion #{i+1}") | |
| h, w = features.shape[1], features.shape[2] | |
| if torch.cuda.is_available(): | |
| images = images.cuda() | |
| _images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower()) | |
| cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w) | |
| logging_str += f"Recursion #{i+1} plot time: {time.time() - start:.2f}s\n" | |
| norm_images = [] | |
| vmin, vmax = eig_magnitude.min(), eig_magnitude.max() | |
| eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin) | |
| eig_magnitude = eig_magnitude.cpu().numpy() | |
| colormap = matplotlib.colormaps['Reds'] | |
| for i_image in range(eig_magnitude.shape[0]): | |
| norm_image = colormap(eig_magnitude[i_image]) | |
| norm_images.append(torch.tensor(norm_image[..., :3])) | |
| norm_images = to_pil_images(norm_images) | |
| logging_str += f"Recursion #{i+1} Eigenvector Magnitude: [{vmin:.2f}, {vmax:.2f}]\n" | |
| gr.Info(f"Recursion #{i+1} Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10) | |
| cluster_plots.append(cluster_images) | |
| norm_plots.append(norm_images) | |
| return *rgbs, *norm_plots, *cluster_plots, logging_str | |
| if old_school_ncut: # individual images | |
| logging_str += "Running NCut for each image independently\n" | |
| rgb = [] | |
| progress_start = 0.4 | |
| step_float = 0.6 / features.shape[0] | |
| for i_image in range(features.shape[0]): | |
| logging_str += f"Image #{i_image+1}\n" | |
| feature = features[i_image] | |
| _rgb, _logging_str, _ = compute_ncut( | |
| feature[None], | |
| num_eig=num_eig, | |
| num_sample_ncut=30000, | |
| affinity_focal_gamma=affinity_focal_gamma, | |
| knn_ncut=1, | |
| knn_tsne=10, | |
| num_sample_tsne=300, | |
| embedding_method=embedding_method, | |
| embedding_metric=embedding_metric, | |
| perplexity=perplexity, | |
| n_neighbors=n_neighbors, | |
| min_dist=min_dist, | |
| sampling_method=sampling_method, | |
| metric=ncut_metric, | |
| indirect_connection=indirect_connection, | |
| make_orthogonal=make_orthogonal, | |
| progess_start=progress_start+step_float*i_image, | |
| ) | |
| logging_str += _logging_str | |
| rgb.append(_rgb[0]) | |
| return to_pil_images(rgb), logging_str | |
| # ailgnedcut | |
| if not directed: | |
| only_eigvecs = kwargs.get("only_eigvecs", False) | |
| return_eigvec_and_rgb = kwargs.get("return_eigvec_and_rgb", False) | |
| normalize_eigvec_return = kwargs.get("normalize_eigvec_return", False) | |
| rgb, _logging_str, eigvecs = compute_ncut( | |
| features, | |
| num_eig=num_eig, | |
| num_sample_ncut=num_sample_ncut, | |
| affinity_focal_gamma=affinity_focal_gamma, | |
| knn_ncut=knn_ncut, | |
| knn_tsne=knn_tsne, | |
| num_sample_tsne=num_sample_tsne, | |
| embedding_method=embedding_method, | |
| embedding_metric=embedding_metric, | |
| perplexity=perplexity, | |
| n_neighbors=n_neighbors, | |
| min_dist=min_dist, | |
| sampling_method=sampling_method, | |
| indirect_connection=indirect_connection, | |
| make_orthogonal=make_orthogonal, | |
| metric=ncut_metric, | |
| only_eigvecs=only_eigvecs, | |
| ) | |
| if only_eigvecs: | |
| if normalize_eigvec_return: | |
| eigvecs = F.normalize(eigvecs, dim=-1) | |
| eigvecs = eigvecs.to("cpu").reshape(features.shape[:-1] + (num_eig,)) | |
| eigvecs = eigvecs.detach().numpy() | |
| logging_str += _logging_str | |
| return eigvecs, logging_str | |
| if return_eigvec_and_rgb: | |
| if normalize_eigvec_return: | |
| eigvecs = F.normalize(eigvecs, dim=-1) | |
| eigvecs = eigvecs.to("cpu").reshape(features.shape[:-1] + (num_eig,)) | |
| eigvecs = eigvecs.detach().numpy() | |
| rgb = rgb.cpu().numpy() | |
| logging_str += _logging_str | |
| return eigvecs, rgb, logging_str | |
| if directed: | |
| head_index_text = kwargs.get("head_index_text", None) | |
| n_heads = features.shape[-2] # (batch, h, w, n_heads, d) | |
| if head_index_text == 'all': | |
| head_idx = torch.arange(n_heads) | |
| else: | |
| _idxs = head_index_text.split(",") | |
| head_idx = torch.tensor([int(idx) for idx in _idxs]) | |
| features_A = features[:, :, :, head_idx, :] | |
| features_B = features_B[:, :, :, head_idx, :] | |
| rgb, _logging_str, eigvecs = compute_ncut_directed( | |
| features_A, | |
| features_B, | |
| num_eig=num_eig, | |
| num_sample_ncut=num_sample_ncut, | |
| affinity_focal_gamma=affinity_focal_gamma, | |
| knn_ncut=knn_ncut, | |
| knn_tsne=knn_tsne, | |
| num_sample_tsne=num_sample_tsne, | |
| embedding_method=embedding_method, | |
| embedding_metric=embedding_metric, | |
| perplexity=perplexity, | |
| n_neighbors=n_neighbors, | |
| min_dist=min_dist, | |
| sampling_method=sampling_method, | |
| indirect_connection=False, | |
| make_orthogonal=make_orthogonal, | |
| metric=ncut_metric, | |
| make_symmetric=kwargs.get("make_symmetric", None), | |
| ) | |
| logging_str += _logging_str | |
| if "AlignedThreeModelAttnNodes" == model_name: | |
| # dirty patch for the alignedcut paper | |
| start = time.time() | |
| progress(0.6, desc="Plotting") | |
| pil_images = [] | |
| for i_image in range(rgb.shape[0]): | |
| _im = plot_one_image_36_grid(images[i_image], rgb[i_image]) | |
| pil_images.append(_im) | |
| logging_str += f"plot time: {time.time() - start:.2f}s\n" | |
| return pil_images, logging_str | |
| if is_lisa == True: | |
| # dirty patch for the LISA model | |
| galleries = [] | |
| for i_prompt in range(len(lisa_prompts)): | |
| _rgb = rgb[i_prompt] | |
| galleries.append(to_pil_images(_rgb)) | |
| return *galleries, logging_str | |
| rgb = dont_use_too_much_green(rgb) | |
| if video_output: | |
| progress(0.8, desc="Saving Video") | |
| video_path = get_random_path() | |
| video_cache.add_video(video_path) | |
| pil_images_to_video(to_pil_images(rgb), video_path, fps=5) | |
| return video_path, logging_str | |
| cluster_images = None | |
| if plot_clusters and kwargs.get("n_ret", 1) > 1: | |
| start = time.time() | |
| progress_start = 0.6 | |
| progress(progress_start, desc="Plotting Clusters") | |
| h, w = features.shape[1], features.shape[2] | |
| if torch.cuda.is_available(): | |
| images = images.cuda() | |
| _images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower()) | |
| advanced = kwargs.get("advanced", False) | |
| if advanced: | |
| cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w) | |
| else: | |
| cluster_images, eig_magnitude = make_cluster_plot(eigvecs, _images, h=h, w=w, progess_start=progress_start, advanced=False) | |
| logging_str += f"plot time: {time.time() - start:.2f}s\n" | |
| norm_images = None | |
| if alignedcut_eig_norm_plot and kwargs.get("n_ret", 1) > 1: | |
| norm_images = [] | |
| # eig_magnitude = torch.clamp(eig_magnitude, 0, 1) | |
| vmin, vmax = eig_magnitude.min(), eig_magnitude.max() | |
| eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin) | |
| eig_magnitude = eig_magnitude.cpu().numpy() | |
| colormap = matplotlib.colormaps['Reds'] | |
| for i_image in range(eig_magnitude.shape[0]): | |
| norm_image = colormap(eig_magnitude[i_image]) | |
| # norm_image = (norm_image[..., :3] * 255).astype(np.uint8) | |
| # norm_images.append(Image.fromarray(norm_image)) | |
| norm_images.append(torch.tensor(norm_image[..., :3])) | |
| norm_images = to_pil_images(norm_images) | |
| logging_str += "Eigenvector Magnitude\n" | |
| logging_str += f"Min: {vmin:.2f}, Max: {vmax:.2f}\n" | |
| gr.Info(f"Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10) | |
| return to_pil_images(rgb), cluster_images, norm_images, logging_str | |
| def _ncut_run(*args, **kwargs): | |
| n_ret = kwargs.get("n_ret", 1) | |
| try: | |
| gr.Info("NCUT Run Started", 2) | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| ret = ncut_run(*args, **kwargs) | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| ret = list(ret)[:n_ret] + [ret[-1]] | |
| gr.Info("NCUT Run Finished", 2) | |
| return ret | |
| except Exception as e: | |
| gr.Error(str(e)) | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| return *(None for _ in range(n_ret)), "Error: " + str(e) | |
| # ret = ncut_run(*args, **kwargs) | |
| # ret = list(ret)[:n_ret] + [ret[-1]] | |
| # return ret | |
| if USE_HUGGINGFACE_ZEROGPU: | |
| def quick_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def long_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def longer_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def super_duper_long_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def cpu_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| if not USE_HUGGINGFACE_ZEROGPU: | |
| def quick_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def long_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def longer_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def super_duper_long_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def cpu_run(*args, **kwargs): | |
| return _ncut_run(*args, **kwargs) | |
| def extract_video_frames(video_path, max_frames=100): | |
| from decord import VideoReader | |
| vr = VideoReader(video_path) | |
| num_frames = len(vr) | |
| if num_frames > max_frames: | |
| gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.") | |
| frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist() | |
| else: | |
| frame_idx = list(range(num_frames)) | |
| frames = vr.get_batch(frame_idx).asnumpy() | |
| # return as list of PIL images | |
| return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])] | |
| def transform_image(image, resolution=(1024, 1024), stablediffusion=False): | |
| image = image.convert('RGB').resize(resolution, Image.LANCZOS) | |
| # Convert to torch tensor | |
| image = torch.tensor(np.array(image).transpose(2, 0, 1)).float() | |
| image = image / 255 | |
| # Normalize | |
| if not stablediffusion: | |
| mean = [0.485, 0.456, 0.406] | |
| std = [0.229, 0.224, 0.225] | |
| image = (image - torch.tensor(mean).view(3, 1, 1)) / torch.tensor(std).view(3, 1, 1) | |
| if stablediffusion: | |
| image = image * 2 - 1 | |
| return image | |
| def reverse_transform_image(image, stablediffusion=False): | |
| if stablediffusion: | |
| image = (image + 1) / 2 | |
| else: | |
| mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(image.device) | |
| std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1).to(image.device) | |
| image = image * std + mean | |
| image = torch.clamp(image, 0, 1) | |
| return image | |
| def plot_one_image_36_grid(original_image, tsne_rgb_images): | |
| mean = [0.485, 0.456, 0.406] | |
| std = [0.229, 0.224, 0.225] | |
| original_image = original_image * torch.tensor(std).view(3, 1, 1) + torch.tensor(mean).view(3, 1, 1) | |
| original_image = torch.clamp(original_image, 0, 1) | |
| fig = plt.figure(figsize=(20, 4)) | |
| grid = plt.GridSpec(3, 14, hspace=0.1, wspace=0.1) | |
| ax1 = fig.add_subplot(grid[0:2, 0:2]) | |
| img = original_image.cpu().float().numpy().transpose(1, 2, 0) | |
| def convert_and_pad_image(np_array, pad_size=20): | |
| """ | |
| Converts a NumPy array of shape (height, width, 3) to a PNG image | |
| and pads the right and bottom sides with a transparent background. | |
| Args: | |
| np_array (numpy.ndarray): Input NumPy array of shape (height, width, 3) | |
| pad_size (int, optional): Number of pixels to pad on the right and bottom sides. Default is 20. | |
| Returns: | |
| PIL.Image: Padded PNG image with transparent background | |
| """ | |
| # Convert NumPy array to PIL Image | |
| img = Image.fromarray(np_array) | |
| # Get the original size | |
| width, height = img.size | |
| # Create a new image with padding and transparent background | |
| new_width = width + pad_size | |
| new_height = height + pad_size | |
| padded_img = Image.new('RGBA', (new_width, new_height), color=(255, 255, 255, 0)) | |
| # Paste the original image onto the padded image | |
| padded_img.paste(img, (0, 0)) | |
| return padded_img | |
| img = convert_and_pad_image((img*255).astype(np.uint8)) | |
| ax1.imshow(img) | |
| ax1.axis('off') | |
| model_names = ['CLIP', 'DINO', 'MAE'] | |
| for i_model, model_name in enumerate(model_names): | |
| for i_layer in range(12): | |
| ax = fig.add_subplot(grid[i_model, i_layer+2]) | |
| ax.imshow(tsne_rgb_images[i_layer+12*i_model].cpu().float().numpy()) | |
| ax.axis('off') | |
| if i_model == 0: | |
| ax.set_title(f'Layer{i_layer}', fontsize=16) | |
| if i_layer == 0: | |
| ax.text(-0.1, 0.5, model_name, va="center", ha="center", fontsize=16, transform=ax.transAxes, rotation=90,) | |
| plt.tight_layout() | |
| filename = uuid.uuid4() | |
| filename = f"/tmp/{filename}.png" | |
| plt.savefig(filename, bbox_inches='tight', pad_inches=0, dpi=100) | |
| img = Image.open(filename) | |
| img = img.convert("RGB") | |
| img = copy.deepcopy(img) | |
| os.remove(filename) | |
| plt.close() | |
| return img | |
| def load_alignedthreemodel(): | |
| import sys | |
| if "alignedthreeattn" not in sys.path: | |
| for _ in range(3): | |
| os.system("git clone https://huggingface.co/huzey/alignedthreeattn >> /dev/null 2>&1") | |
| os.system("git -C alignedthreeattn pull >> /dev/null 2>&1") | |
| # add to path | |
| sys.path.append("alignedthreeattn") | |
| from alignedthreeattn.alignedthreeattn_model import ThreeAttnNodes | |
| align_weights = torch.load("alignedthreeattn/align_weights.pth") | |
| model = ThreeAttnNodes(align_weights) | |
| return model | |
| try: | |
| # pre-load the alignedthree model in case it fails to load | |
| load_alignedthreemodel() | |
| except Exception as e: | |
| pass | |
| promptable_diffusion_models = ["Diffusion(stabilityai/stable-diffusion-2)", "Diffusion(CompVis/stable-diffusion-v1-4)"] | |
| promptable_segmentation_models = ["LISA(xinlai/LISA-7B-v1)"] | |
| def run_fn( | |
| images, | |
| model_name="DiNO(dino_vitb8_448)", | |
| layer=10, | |
| num_eig=100, | |
| node_type="block", | |
| positive_prompt="", | |
| negative_prompt="", | |
| is_lisa=False, | |
| lisa_prompt1="", | |
| lisa_prompt2="", | |
| lisa_prompt3="", | |
| affinity_focal_gamma=0.5, | |
| num_sample_ncut=10000, | |
| knn_ncut=10, | |
| ncut_indirect_connection=True, | |
| ncut_make_orthogonal=False, | |
| embedding_method="tsne_3d", | |
| embedding_metric='euclidean', | |
| num_sample_tsne=300, | |
| knn_tsne=10, | |
| perplexity=150, | |
| n_neighbors=150, | |
| min_dist=0.1, | |
| sampling_method="QuickFPS", | |
| ncut_metric="cosine", | |
| old_school_ncut=False, | |
| max_frames=100, | |
| recursion=False, | |
| recursion_l2_n_eigs=50, | |
| recursion_l3_n_eigs=20, | |
| recursion_metric="euclidean", | |
| recursion_l1_gamma=0.5, | |
| recursion_l2_gamma=0.5, | |
| recursion_l3_gamma=0.5, | |
| node_type2="k", | |
| head_index_text='all', | |
| make_symmetric=False, | |
| n_ret=1, | |
| plot_clusters=False, | |
| alignedcut_eig_norm_plot=False, | |
| advanced=False, | |
| directed=False, | |
| only_eigvecs=False, | |
| return_eigvec_and_rgb=False, | |
| normalize_eigvec_return=False, | |
| ): | |
| # print(node_type2, head_index_text, make_symmetric) | |
| progress=gr.Progress() | |
| progress(0, desc="Starting") | |
| if images is None: | |
| gr.Warning("No images selected.") | |
| return *(None for _ in range(n_ret)), "No images selected." | |
| progress(0.05, desc="Processing Images") | |
| video_output = False | |
| if isinstance(images, str): | |
| images = extract_video_frames(images, max_frames=max_frames) | |
| video_output = True | |
| if sampling_method == "QuickFPS": | |
| sampling_method = "farthest" | |
| # resize the images before acquiring GPU | |
| if "AlignedThreeModelAttnNodes" == model_name: | |
| # dirty patch for the alignedcut paper | |
| resolution = (224, 224) | |
| else: | |
| resolution = RES_DICT[model_name] | |
| images = [tup[0] for tup in images] | |
| stablediffusion = True if "Diffusion" in model_name else False | |
| images = [transform_image(image, resolution=resolution, stablediffusion=stablediffusion) for image in images] | |
| images = torch.stack(images) | |
| progress(0.1, desc="Downloading Model") | |
| if is_lisa: | |
| import subprocess | |
| import sys | |
| import importlib | |
| gr.Warning("LISA model is not compatible with the current version of transformers. Please contact the LISA and Llava author for update.") | |
| gr.Warning("This is a dirty patch for the LISA model. switch to the old version of transformers.") | |
| gr.Warning("Not garanteed to work.") | |
| # LISA and Llava is not compatible with the current version of transformers | |
| # please contact the author for update | |
| # this is a dirty patch for the LISA model | |
| # pre-import the SD3 pipeline | |
| from diffusers import StableDiffusion3Pipeline | |
| # unloading the current transformers | |
| for module in list(sys.modules.keys()): | |
| if "transformers" in module: | |
| del sys.modules[module] | |
| def install_transformers_version(version, target_dir): | |
| """Install a specific version of transformers to a target directory.""" | |
| if not os.path.exists(target_dir): | |
| os.makedirs(target_dir) | |
| # Use subprocess to run the pip command | |
| # subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'transformers=={version}', '-t', target_dir]) | |
| os.system(f"{sys.executable} -m pip install transformers=={version} -t {target_dir} >> /dev/null 2>&1") | |
| target_dir = '/tmp/lisa_transformers_v433' | |
| if not os.path.exists(target_dir): | |
| install_transformers_version('4.33.0', target_dir) | |
| # Add the new version path to sys.path | |
| sys.path.insert(0, target_dir) | |
| transformers = importlib.import_module("transformers") | |
| if not is_lisa: | |
| import subprocess | |
| import sys | |
| import importlib | |
| # remove the LISA model from the sys.path | |
| if "/tmp/lisa_transformers_v433" in sys.path: | |
| sys.path.remove("/tmp/lisa_transformers_v433") | |
| transformers = importlib.import_module("transformers") | |
| if "AlignedThreeModelAttnNodes" == model_name: | |
| # dirty patch for the alignedcut paper | |
| model = load_alignedthreemodel() | |
| else: | |
| model = load_model(model_name) | |
| if directed: # save qkv for directed, need more memory | |
| model.enable_save_qkv() | |
| if "stable" in model_name.lower() and "diffusion" in model_name.lower(): | |
| model.timestep = layer | |
| layer = 1 | |
| if model_name in promptable_diffusion_models: | |
| model.positive_prompt = positive_prompt | |
| model.negative_prompt = negative_prompt | |
| kwargs = { | |
| "model_name": model_name, | |
| "layer": layer, | |
| "num_eig": num_eig, | |
| "node_type": node_type, | |
| "affinity_focal_gamma": affinity_focal_gamma, | |
| "num_sample_ncut": num_sample_ncut, | |
| "knn_ncut": knn_ncut, | |
| "embedding_method": embedding_method, | |
| "embedding_metric": embedding_metric, | |
| "num_sample_tsne": num_sample_tsne, | |
| "knn_tsne": knn_tsne, | |
| "perplexity": perplexity, | |
| "n_neighbors": n_neighbors, | |
| "min_dist": min_dist, | |
| "sampling_method": sampling_method, | |
| "ncut_metric": ncut_metric, | |
| "indirect_connection": ncut_indirect_connection, | |
| "make_orthogonal": ncut_make_orthogonal, | |
| "old_school_ncut": old_school_ncut, | |
| "recursion": recursion, | |
| "recursion_l2_n_eigs": recursion_l2_n_eigs, | |
| "recursion_l3_n_eigs": recursion_l3_n_eigs, | |
| "recursion_metric": recursion_metric, | |
| "recursion_l1_gamma": recursion_l1_gamma, | |
| "recursion_l2_gamma": recursion_l2_gamma, | |
| "recursion_l3_gamma": recursion_l3_gamma, | |
| "video_output": video_output, | |
| "lisa_prompt1": lisa_prompt1, | |
| "lisa_prompt2": lisa_prompt2, | |
| "lisa_prompt3": lisa_prompt3, | |
| "is_lisa": is_lisa, | |
| "n_ret": n_ret, | |
| "plot_clusters": plot_clusters, | |
| "alignedcut_eig_norm_plot": alignedcut_eig_norm_plot, | |
| "advanced": advanced, | |
| "directed": directed, | |
| "node_type2": node_type2, | |
| "head_index_text": head_index_text, | |
| "make_symmetric": make_symmetric, | |
| "only_eigvecs": only_eigvecs, | |
| "return_eigvec_and_rgb": return_eigvec_and_rgb, | |
| "normalize_eigvec_return": normalize_eigvec_return, | |
| } | |
| # print(kwargs) | |
| try: | |
| # try to aquiare GPU, can fail if the user is out of GPU quota | |
| if old_school_ncut: | |
| return super_duper_long_run(model, images, **kwargs) | |
| if is_lisa: | |
| return super_duper_long_run(model, images, **kwargs) | |
| num_images = len(images) | |
| if num_images >= 100: | |
| return super_duper_long_run(model, images, **kwargs) | |
| if 'diffusion' in model_name.lower(): | |
| return super_duper_long_run(model, images, **kwargs) | |
| if recursion: | |
| return longer_run(model, images, **kwargs) | |
| if num_images >= 50: | |
| return longer_run(model, images, **kwargs) | |
| if old_school_ncut: | |
| return longer_run(model, images, **kwargs) | |
| if num_images >= 10: | |
| return long_run(model, images, **kwargs) | |
| if embedding_method == "UMAP": | |
| if perplexity >= 250 or num_sample_tsne >= 500: | |
| return longer_run(model, images, **kwargs) | |
| return long_run(model, images, **kwargs) | |
| if embedding_method == "t-SNE": | |
| if perplexity >= 250 or num_sample_tsne >= 500: | |
| return long_run(model, images, **kwargs) | |
| return quick_run(model, images, **kwargs) | |
| return quick_run(model, images, **kwargs) | |
| except gr.Error as e: | |
| # I assume this is a GPU quota error | |
| info1 = 'Running out of HuggingFace GPU Quota?</br> Please try <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/demo/">Demo hosted at UPenn</a></br>' | |
| info2 = 'Or try use the Python package that powers this app: <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/">ncut-pytorch</a>' | |
| info = info1 + info2 | |
| message = "<b>HuggingFace: </b></br>" + e.message + "</br></br>---------</br>" + "<b>`ncut-pytorch` Developer: </b></br>" + info | |
| raise gr.Error(message, duration=0) | |
| import torch | |
| from torch import nn | |
| from torch.utils.data import Dataset, DataLoader | |
| import pytorch_lightning as pl | |
| # Custom Dataset | |
| class TwoTensorDataset(Dataset): | |
| def __init__(self, A, B): | |
| self.A = A | |
| self.B = B | |
| def __len__(self): | |
| return len(self.A) | |
| def __getitem__(self, idx): | |
| return self.A[idx], self.B[idx] | |
| # MLP model | |
| class MLP(pl.LightningModule): | |
| def __init__(self, num_layer=3, width=512, lr=3e-4, fitting_steps=10000, seg_loss_lambda=1.0): | |
| super().__init__() | |
| layers = [nn.Linear(3, width), nn.GELU()] | |
| for _ in range(num_layer - 1): | |
| layers.append(nn.Linear(width, width)) | |
| layers.append(nn.GELU()) | |
| layers.append(nn.Linear(width, 3)) | |
| self.layers = nn.Sequential(*layers) | |
| self.mse_loss = nn.MSELoss() | |
| self.lr = lr | |
| self.fitting_steps = fitting_steps | |
| self.seg_loss_lambda = seg_loss_lambda | |
| self.progress = gr.Progress() | |
| def forward(self, x): | |
| return self.layers(x) | |
| def training_step(self, batch, batch_idx): | |
| x, y = batch | |
| y_hat = self.forward(x) | |
| loss = self.mse_loss(y_hat, y) | |
| # loss = torch.nn.functional.mse_loss(torch.log(y_hat), torch.log(y)) | |
| self.log("train_loss", loss) | |
| # add segmentation constraint | |
| bsz = x.shape[0] | |
| sample_size = 1000 | |
| if bsz > sample_size: | |
| idx = torch.randperm(bsz)[:sample_size] | |
| x = x[idx] | |
| y_hat = y_hat[idx] | |
| old_dist = torch.pdist(x, p=2) | |
| new_dist = torch.pdist(y_hat, p=2) | |
| # seg_loss = torch.log((old_dist - new_dist)).pow(2).mean() | |
| seg_loss = self.mse_loss(old_dist, new_dist) | |
| self.log("seg_loss", seg_loss) | |
| loss += seg_loss * self.seg_loss_lambda | |
| step = self.global_step | |
| if step % 100 == 0: | |
| self.progress(step / self.fitting_steps, desc="Fitting MLP") | |
| return loss | |
| def predict_step(self, batch, batch_idx, dataloader_idx=None): | |
| x = batch[0] | |
| y_hat = self.forward(x) | |
| return y_hat | |
| def configure_optimizers(self): | |
| optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) | |
| return optimizer | |
| def fit_trans(rgb1, rgb2, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0): | |
| A = rgb1.clone() | |
| B = rgb2.clone() | |
| # FPS sample on the data | |
| from ncut_pytorch.ncut_pytorch import farthest_point_sampling | |
| A_idx = farthest_point_sampling(A, fps_sample) | |
| B_idx = farthest_point_sampling(B, fps_sample) | |
| A_B_idx = np.concatenate([A_idx, B_idx]) | |
| A = A[A_B_idx] | |
| B = B[A_B_idx] | |
| from torch.utils.data import DataLoader, TensorDataset | |
| # Dataset and DataLoader | |
| dataset = TwoTensorDataset(A, B) | |
| dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | |
| # Initialize model and trainer | |
| mlp = MLP(num_layer=num_layer, width=width, lr=lr, fitting_steps=fitting_steps, seg_loss_lambda=seg_loss_lambda) | |
| trainer = pl.Trainer( | |
| max_epochs=100000, | |
| gpus=1, | |
| max_steps=fitting_steps, | |
| enable_checkpointing=False, | |
| enable_progress_bar=False, | |
| gradient_clip_val=1.0 | |
| ) | |
| # Create a DataLoader for tensor A | |
| batch_size = 256 # Define your batch size | |
| data_loader = DataLoader(TensorDataset(rgb1), batch_size=batch_size, shuffle=False) | |
| # Train the model | |
| trainer.fit(mlp, dataloader) | |
| mlp.progress(0.99, desc="Applying MLP") | |
| results = trainer.predict(mlp, data_loader) | |
| A_transformed = torch.cat(results, dim=0) | |
| return A_transformed | |
| if USE_HUGGINGFACE_ZEROGPU: | |
| def _run_mlp_fit(*args, **kwargs): | |
| return fit_trans(*args, **kwargs) | |
| else: | |
| def _run_mlp_fit(*args, **kwargs): | |
| return fit_trans(*args, **kwargs) | |
| def run_mlp_fit(input_gallery, target_gallery, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0): | |
| # print("Fitting MLP") | |
| # print("Target Gallery Length:", len(target_gallery)) | |
| # print("Input Gallery Length:", len(input_gallery)) | |
| if target_gallery is None or len(target_gallery) == 0: | |
| raise gr.Error("No target images selected. Please use the Mark button to select the target images.") | |
| if input_gallery is None or len(input_gallery) == 0: | |
| raise gr.Error("No input images selected.") | |
| def gallery_to_rgb(gallery): | |
| images = [tup[0] for tup in gallery] | |
| rgb = [] | |
| for image in images: | |
| if isinstance(image, str): | |
| image = Image.open(image) | |
| image = image.convert('RGB') | |
| image = torch.tensor(np.array(image)).float() | |
| image = image / 255 | |
| rgb.append(image) | |
| rgb = torch.stack(rgb) | |
| shape = rgb.shape | |
| rgb = rgb.reshape(-1, 3) | |
| return rgb, shape | |
| target_rgb, target_shape = gallery_to_rgb(target_gallery) | |
| input_rgb, input_shape = gallery_to_rgb(input_gallery) | |
| input_transformed = _run_mlp_fit(input_rgb, target_rgb, num_layer=num_layer, width=width, batch_size=batch_size, lr=lr, | |
| fitting_steps=fitting_steps, fps_sample=fps_sample, seg_loss_lambda=seg_loss_lambda) | |
| input_transformed = input_transformed.reshape(*input_shape) | |
| pil_images = to_pil_images(input_transformed, resize=False) | |
| return pil_images | |
| def make_input_video_section(): | |
| # gr.Markdown('### Input Video') | |
| input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False, interactive=True) | |
| gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_') | |
| max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames") | |
| # max_frames_number = gr.Slider(1, 200, step=1, label="Max frames", value=100, elem_id="max_frames") | |
| submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') | |
| clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop') | |
| return input_gallery, submit_button, clear_images_button, max_frames_number | |
| def load_dataset_images(is_advanced, dataset_name, num_images=10, | |
| is_filter=False, filter_by_class_text="0,1,2", | |
| is_random=False, seed=1): | |
| progress = gr.Progress() | |
| progress(0, desc="Loading Images") | |
| if dataset_name == "EgoExo": | |
| is_advanced = "Basic" | |
| if is_advanced == "Basic": | |
| gr.Info(f"Loaded images from EgoExo", duration=5) | |
| return default_images | |
| try: | |
| progress(0.5, desc="Downloading Dataset") | |
| if 'EgoThink' in dataset_name: | |
| dataset = load_dataset(dataset_name, 'Activity', trust_remote_code=True) | |
| else: | |
| dataset = load_dataset(dataset_name, trust_remote_code=True) | |
| key = list(dataset.keys())[0] | |
| dataset = dataset[key] | |
| except Exception as e: | |
| raise gr.Error(f"Error loading dataset {dataset_name}: {e}") | |
| if num_images > len(dataset): | |
| num_images = len(dataset) | |
| if len(filter_by_class_text) == 0: | |
| is_filter = False | |
| if is_filter: | |
| progress(0.8, desc="Filtering Images") | |
| classes = [int(i) for i in filter_by_class_text.split(",")] | |
| labels = np.array(dataset['label']) | |
| unique_labels = np.unique(labels) | |
| valid_classes = [i for i in classes if i in unique_labels] | |
| invalid_classes = [i for i in classes if i not in unique_labels] | |
| if len(invalid_classes) > 0: | |
| gr.Warning(f"Classes {invalid_classes} not found in the dataset.") | |
| if len(valid_classes) == 0: | |
| raise gr.Error(f"Classes {classes} not found in the dataset.") | |
| # shuffle each class | |
| chunk_size = num_images // len(valid_classes) | |
| image_idx = [] | |
| for i in valid_classes: | |
| idx = np.where(labels == i)[0] | |
| if is_random: | |
| if chunk_size < len(idx): | |
| idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False) | |
| else: | |
| gr.Warning(f"Class {i} has less than {chunk_size} images.") | |
| idx = idx[:chunk_size] | |
| else: | |
| idx = idx[:chunk_size] | |
| image_idx.extend(idx.tolist()) | |
| if not is_filter: | |
| if is_random: | |
| if num_images <= len(dataset): | |
| image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist() | |
| else: | |
| gr.Warning(f"Dataset has less than {num_images} images.") | |
| image_idx = list(range(num_images)) | |
| else: | |
| image_idx = list(range(num_images)) | |
| key = 'image' if 'image' in dataset[0] else list(dataset[0].keys())[0] | |
| images = [dataset[i][key] for i in image_idx] | |
| gr.Info(f"Loaded {len(images)} images from {dataset_name}", duration=5) | |
| del dataset | |
| if dataset_name in CENTER_CROP_DATASETS: | |
| def center_crop_image(img): | |
| # image: PIL image | |
| w, h = img.size | |
| min_hw = min(h, w) | |
| # center crop | |
| left = (w - min_hw) // 2 | |
| top = (h - min_hw) // 2 | |
| right = left + min_hw | |
| bottom = top + min_hw | |
| img = img.crop((left, top, right, bottom)) | |
| return img | |
| images = [center_crop_image(image) for image in images] | |
| return images | |
| def load_and_append(existing_images, *args, **kwargs): | |
| new_images = load_dataset_images(*args, **kwargs) | |
| if new_images is None: | |
| return existing_images | |
| if len(new_images) == 0: | |
| return existing_images | |
| if existing_images is None: | |
| existing_images = [] | |
| existing_images += new_images | |
| gr.Info(f"Total images: {len(existing_images)}") | |
| return existing_images | |
| def make_input_images_section(rows=1, cols=3, height="450px", advanced=False, is_random=False, allow_download=False, markdown=True, n_example_images=100): | |
| if markdown: | |
| gr.Markdown('### Input Images') | |
| input_gallery = gr.Gallery(value=None, label="Input images", show_label=True, elem_id="input_images", columns=[cols], rows=[rows], object_fit="contain", height=height, type="pil", show_share_button=False, | |
| format="webp") | |
| submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') | |
| with gr.Row(): | |
| clear_images_button = gr.Button("🗑️ Clear", elem_id='clear_button', variant='stop') | |
| clear_images_button.click(fn=lambda: gr.update(value=None), outputs=[input_gallery]) | |
| upload_button = gr.UploadButton(elem_id="upload_button", label="⬆️ Upload", variant='secondary', file_types=["image"], file_count="multiple") | |
| def convert_to_pil_and_append(images, new_images): | |
| if images is None: | |
| images = [] | |
| if new_images is None: | |
| return images | |
| if isinstance(new_images, Image.Image): | |
| images.append(new_images) | |
| if isinstance(new_images, list): | |
| images += [Image.open(new_image) for new_image in new_images] | |
| if isinstance(new_images, str): | |
| images.append(Image.open(new_images)) | |
| gr.Info(f"Total images: {len(images)}") | |
| return images | |
| upload_button.upload(convert_to_pil_and_append, inputs=[input_gallery, upload_button], outputs=[input_gallery]) | |
| if allow_download: | |
| create_file_button, download_button = add_download_button(input_gallery, "input_images") | |
| gr.Markdown('### Load Datasets') | |
| advanced_radio = gr.Radio(["Basic", "Advanced"], label="Datasets Menu", value="Advanced" if advanced else "Basic", elem_id="advanced-radio", show_label=True) | |
| with gr.Column() as basic_block: | |
| # gr.Markdown('### Example Image Sets') | |
| def make_example(name, images, dataset_name): | |
| with gr.Row(): | |
| button = gr.Button("Load\n"+name, elem_id=f"example-{name}", elem_classes="small-button", variant='secondary', size="sm", scale=1, min_width=60) | |
| gallery = gr.Gallery(value=images, label=name, show_label=True, columns=[3], rows=[1], interactive=False, height=80, scale=8, object_fit="cover", min_width=140, allow_preview=False) | |
| button.click(fn=lambda: gr.update(value=load_dataset_images(True, dataset_name, n_example_images, is_random=True, seed=42)), outputs=[input_gallery]) | |
| return gallery, button | |
| example_items = [ | |
| ("EgoExo", ['./images/egoexo1.jpg', './images/egoexo3.jpg', './images/egoexo2.jpg'], "EgoExo"), | |
| ("Ego", ['./images/egothink1.jpg', './images/egothink2.jpg', './images/egothink3.jpg'], "EgoThink/EgoThink"), | |
| ("Face", ['./images/face1.jpg', './images/face2.jpg', './images/face3.jpg'], "nielsr/CelebA-faces"), | |
| ("Pose", ['./images/pose1.jpg', './images/pose2.jpg', './images/pose3.jpg'], "sayakpaul/poses-controlnet-dataset"), | |
| # ("CatDog", ['./images/catdog1.jpg', './images/catdog2.jpg', './images/catdog3.jpg'], "microsoft/cats_vs_dogs"), | |
| # ("Bird", ['./images/bird1.jpg', './images/bird2.jpg', './images/bird3.jpg'], "Multimodal-Fatima/CUB_train"), | |
| # ("ChestXray", ['./images/chestxray1.jpg', './images/chestxray2.jpg', './images/chestxray3.jpg'], "hongrui/mimic_chest_xray_v_1"), | |
| ("MRI", ['./images/brain1.jpg', './images/brain2.jpg', './images/brain3.jpg'], "sartajbhuvaji/Brain-Tumor-Classification"), | |
| ("Kanji", ['./images/kanji1.jpg', './images/kanji2.jpg', './images/kanji3.jpg'], "yashvoladoddi37/kanjienglish"), | |
| ] | |
| for name, images, dataset_name in example_items: | |
| make_example(name, images, dataset_name) | |
| with gr.Column() as advanced_block: | |
| load_images_button = gr.Button("🔴 Load Images", elem_id="load-images-button", variant='primary') | |
| # dataset_names = DATASET_NAMES | |
| # dataset_classes = DATASET_CLASSES | |
| dataset_categories = list(DATASETS.keys()) | |
| defualt_cat = dataset_categories[0] | |
| def get_choices(cat): | |
| return [tup[0] for tup in DATASETS[cat]] | |
| defualt_choices = get_choices(defualt_cat) | |
| with gr.Row(): | |
| dataset_radio = gr.Radio(dataset_categories, label="Dataset Category", value=defualt_cat, elem_id="dataset-radio", show_label=True, min_width=600) | |
| # dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset", min_width=300) | |
| dataset_dropdown = gr.Dropdown(defualt_choices, label="Dataset name", value=defualt_choices[0], elem_id="dataset", min_width=400) | |
| dataset_radio.change(fn=lambda x: gr.update(choices=get_choices(x), value=get_choices(x)[0]), inputs=dataset_radio, outputs=dataset_dropdown) | |
| # num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images") | |
| num_images_slider = gr.Slider(1, 1000, step=1, label="Number of images", value=10, elem_id="num_images", min_width=200) | |
| if not is_random: | |
| filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox") | |
| filter_by_class_text = gr.Textbox(label="Class to select", value="97,0", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True) | |
| # is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox") | |
| # random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False) | |
| is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox") | |
| random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=True) | |
| if is_random: | |
| filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox") | |
| filter_by_class_text = gr.Textbox(label="Class to select", value="97,0", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=False) | |
| is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox") | |
| random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=42, elem_id="random_seed", visible=True) | |
| # add functionality, save and load images to profile | |
| with gr.Accordion("Saved Image Profiles", open=False) as profile_accordion: | |
| with gr.Row(): | |
| profile_text = gr.Textbox(label="Profile name", placeholder="Type here: Profile name to save/load/delete", elem_id="profile-name", scale=6, show_label=False) | |
| list_profiles_button = gr.Button("📋 List", elem_id="list-profile-button", variant='secondary', scale=3) | |
| with gr.Row(): | |
| save_profile_button = gr.Button("💾 Save", elem_id="save-profile-button", variant='secondary') | |
| load_profile_button = gr.Button("📂 Load", elem_id="load-profile-button", variant='secondary') | |
| delete_profile_button = gr.Button("🗑️ Delete", elem_id="delete-profile-button", variant='secondary') | |
| class OnDiskProfiles: | |
| def __init__(self, profile_dir="demo_profiles"): | |
| if not os.path.exists(profile_dir): | |
| os.makedirs(profile_dir) | |
| self.profile_dir = profile_dir | |
| def list_profiles(self): | |
| profiles = os.listdir(self.profile_dir) | |
| # remove hidden files | |
| profiles = [p for p in profiles if not p.startswith(".")] | |
| if len(profiles) == 0: | |
| return "No profiles found." | |
| profile_text = "</br>".join(profiles) | |
| n_files = len(profiles) | |
| profile_text = f"Number of profiles: {n_files}</br>---------</br>" + profile_text | |
| return profile_text | |
| def save_profile(self, profile_name, images): | |
| profile_path = os.path.join(self.profile_dir, profile_name) | |
| if os.path.exists(profile_path): | |
| raise gr.Error(f"Profile {profile_name} already exists.") | |
| with open(profile_path, "wb") as f: | |
| pickle.dump(images, f) | |
| gr.Info(f"Profile {profile_name} saved.") | |
| return profile_path | |
| def load_profile(self, profile_name, existing_images): | |
| profile_path = os.path.join(self.profile_dir, profile_name) | |
| if not os.path.exists(profile_path): | |
| raise gr.Error(f"Profile {profile_name} not found.") | |
| with open(profile_path, "rb") as f: | |
| images = pickle.load(f) | |
| gr.Info(f"Profile {profile_name} loaded.") | |
| if existing_images is None: | |
| existing_images = [] | |
| return existing_images + images | |
| def delete_profile(self, profile_name): | |
| profile_path = os.path.join(self.profile_dir, profile_name) | |
| os.remove(profile_path) | |
| gr.Info(f"Profile {profile_name} deleted.") | |
| return profile_path | |
| home_dir = os.path.expanduser("~") | |
| defualt_dir = os.path.join(home_dir, ".cache") | |
| cache_dir = os.environ.get("DEMO_PROFILE_CACHE_DIR", defualt_dir) | |
| cache_dir = os.path.join(cache_dir, "demo_profiles") | |
| on_disk_profiles = OnDiskProfiles(cache_dir) | |
| save_profile_button.click(fn=lambda name, images: on_disk_profiles.save_profile(name, images), inputs=[profile_text, input_gallery]) | |
| load_profile_button.click(fn=lambda name, existing_images: gr.update(value=on_disk_profiles.load_profile(name, existing_images)), inputs=[profile_text, input_gallery], outputs=[input_gallery]) | |
| delete_profile_button.click(fn=lambda name: on_disk_profiles.delete_profile(name), inputs=profile_text) | |
| list_profiles_button.click(fn=lambda: gr.Info(on_disk_profiles.list_profiles(), duration=0)) | |
| if advanced: | |
| advanced_block.visible = True | |
| basic_block.visible = False | |
| else: | |
| advanced_block.visible = False | |
| basic_block.visible = True | |
| # change visibility | |
| advanced_radio.change(fn=lambda x: gr.update(visible=x=="Advanced"), inputs=advanced_radio, outputs=[advanced_block]) | |
| advanced_radio.change(fn=lambda x: gr.update(visible=x=="Basic"), inputs=advanced_radio, outputs=[basic_block]) | |
| def find_num_classes(dataset_name): | |
| num_classes = None | |
| for cat, datasets in DATASETS.items(): | |
| datasets = [tup[0] for tup in datasets] | |
| if dataset_name in datasets: | |
| num_classes = DATASETS[cat][datasets.index(dataset_name)][1] | |
| break | |
| return num_classes | |
| def change_filter_options(dataset_name): | |
| num_classes = find_num_classes(dataset_name) | |
| if num_classes is None: | |
| return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False), | |
| gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False)) | |
| return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True), | |
| gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True)) | |
| dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text]) | |
| def change_filter_by_class(is_filter, dataset_name): | |
| num_classes = find_num_classes(dataset_name) | |
| return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter) | |
| filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text) | |
| def change_random_seed(is_random): | |
| return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random) | |
| is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider) | |
| load_images_button.click(load_and_append, | |
| inputs=[input_gallery, advanced_radio, dataset_dropdown, num_images_slider, | |
| filter_by_class_checkbox, filter_by_class_text, | |
| is_random_checkbox, random_seed_slider], | |
| outputs=[input_gallery]) | |
| return input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button | |
| # def random_rotate_rgb_gallery(images): | |
| # if images is None or len(images) == 0: | |
| # gr.Warning("No images selected.") | |
| # return [] | |
| # # read webp images | |
| # images = [Image.open(image[0]).convert("RGB") for image in images] | |
| # images = [np.array(image).astype(np.float32) for image in images] | |
| # images = np.stack(images) | |
| # images = torch.tensor(images) / 255 | |
| # position = np.random.choice([1, 2, 4, 5, 6]) | |
| # images = rotate_rgb_cube(images, position) | |
| # images = to_pil_images(images, resize=False) | |
| # return images | |
| def protect_original_image_in_plot(original_image, rotated_images): | |
| plot_h, plot_w = 332, 1542 | |
| image_h, image_w = original_image.shape[1], original_image.shape[2] | |
| if not (plot_h == image_h and plot_w == image_w): | |
| return rotated_images | |
| protection_w = 190 | |
| rotated_images[:, :, :protection_w] = original_image[:, :, :protection_w] | |
| return rotated_images | |
| def sequence_rotate_rgb_gallery(images): | |
| if images is None or len(images) == 0: | |
| gr.Warning("No images selected.") | |
| return [] | |
| # read webp images | |
| images = [Image.open(image[0]).convert("RGB") for image in images] | |
| images = [np.array(image).astype(np.float32) for image in images] | |
| images = np.stack(images) | |
| images = torch.tensor(images) / 255 | |
| original_images = images.clone() | |
| rotation_matrix = torch.tensor([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).float() | |
| images = images @ rotation_matrix | |
| images = protect_original_image_in_plot(original_images, images) | |
| images = to_pil_images(images, resize=False) | |
| return images | |
| def flip_rgb_gallery(images, axis=0): | |
| if images is None or len(images) == 0: | |
| gr.Warning("No images selected.") | |
| return [] | |
| # read webp images | |
| images = [Image.open(image[0]).convert("RGB") for image in images] | |
| images = [np.array(image).astype(np.float32) for image in images] | |
| images = np.stack(images) | |
| images = torch.tensor(images) / 255 | |
| original_images = images.clone() | |
| images = 1 - images | |
| images = protect_original_image_in_plot(original_images, images) | |
| images = to_pil_images(images, resize=False) | |
| return images | |
| def add_rotate_flip_buttons(output_gallery): | |
| with gr.Row(): | |
| rotate_button = gr.Button("🔄 Rotate", elem_id="rotate_button", variant='secondary') | |
| rotate_button.click(sequence_rotate_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) | |
| flip_button = gr.Button("🔃 Flip", elem_id="flip_button", variant='secondary') | |
| flip_button.click(flip_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) | |
| return rotate_button, flip_button | |
| def add_download_button(gallery, filename_prefix="output"): | |
| def make_3x5_plot(images): | |
| plot_list = [] | |
| # Split the list of images into chunks of 15 | |
| chunks = [images[i:i + 15] for i in range(0, len(images), 15)] | |
| for chunk in chunks: | |
| fig, axs = plt.subplots(3, 4, figsize=(12, 9)) | |
| for ax in axs.flatten(): | |
| ax.axis("off") | |
| for ax, img in zip(axs.flatten(), chunk): | |
| img = img.convert("RGB") | |
| ax.imshow(img) | |
| plt.tight_layout(h_pad=0.5, w_pad=0.3) | |
| # Generate a unique filename | |
| filename = uuid.uuid4() | |
| tmp_path = f"/tmp/{filename}.png" | |
| # Save the plot to the temporary file | |
| plt.savefig(tmp_path, bbox_inches='tight', dpi=144) | |
| # Open the saved image | |
| img = Image.open(tmp_path) | |
| img = img.convert("RGB") | |
| img = copy.deepcopy(img) | |
| # Remove the temporary file | |
| os.remove(tmp_path) | |
| plot_list.append(img) | |
| plt.close() | |
| return plot_list | |
| def delete_file_after_delay(file_path, delay): | |
| def delete_file(): | |
| if os.path.exists(file_path): | |
| os.remove(file_path) | |
| timer = threading.Timer(delay, delete_file) | |
| timer.start() | |
| def create_zip_file(images, filename_prefix=filename_prefix): | |
| if images is None or len(images) == 0: | |
| gr.Warning("No images selected.") | |
| return None | |
| gr.Info("Creating zip file for download...") | |
| images = [image[0] for image in images] | |
| if isinstance(images[0], str): | |
| images = [Image.open(image) for image in images] | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| zip_filename = f"/tmp/gallery_download/{filename_prefix}_{timestamp}.zip" | |
| os.makedirs(os.path.dirname(zip_filename), exist_ok=True) | |
| plots = make_3x5_plot(images) | |
| with zipfile.ZipFile(zip_filename, 'w') as zipf: | |
| # Create a temporary directory to store images and plots | |
| temp_dir = f"/tmp/gallery_download/images/{uuid.uuid4()}" | |
| os.makedirs(temp_dir) | |
| try: | |
| # Save images to the temporary directory | |
| for i, img in enumerate(images): | |
| img = img.convert("RGB") | |
| img_path = os.path.join(temp_dir, f"single_{i:04d}.jpg") | |
| img.save(img_path) | |
| zipf.write(img_path, f"single_{i:04d}.jpg") | |
| # Save plots to the temporary directory | |
| for i, plot in enumerate(plots): | |
| plot = plot.convert("RGB") | |
| plot_path = os.path.join(temp_dir, f"grid_{i:04d}.jpg") | |
| plot.save(plot_path) | |
| zipf.write(plot_path, f"grid_{i:04d}.jpg") | |
| finally: | |
| # Clean up the temporary directory | |
| for file in os.listdir(temp_dir): | |
| os.remove(os.path.join(temp_dir, file)) | |
| os.rmdir(temp_dir) | |
| # Schedule the deletion of the zip file after 24 hours (86400 seconds) | |
| delete_file_after_delay(zip_filename, 86400) | |
| gr.Info(f"File is ready for download: {os.path.basename(zip_filename)}") | |
| return gr.update(value=zip_filename, interactive=True) | |
| with gr.Row(): | |
| create_file_button = gr.Button("📦 Pack", elem_id="create_file_button", variant='secondary') | |
| download_button = gr.DownloadButton(label="📥 Download", value=None, variant='secondary', elem_id="download_button", interactive=False) | |
| create_file_button.click(create_zip_file, inputs=[gallery], outputs=[download_button]) | |
| def warn_on_click(filename): | |
| if filename is None: | |
| gr.Warning("No file to download, please `📦 Pack` first.") | |
| interactive = filename is not None | |
| return gr.update(interactive=interactive) | |
| download_button.click(warn_on_click, inputs=[download_button], outputs=[download_button]) | |
| return create_file_button, download_button | |
| def make_output_images_section(markdown=True, button=True): | |
| if markdown: | |
| gr.Markdown('### Output Images') | |
| output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, interactive=False) | |
| if button: | |
| add_rotate_flip_buttons(output_gallery) | |
| return output_gallery | |
| def make_parameters_section(is_lisa=False, model_ratio=True, ncut_parameter_dropdown=True, tsne_parameter_dropdown=True): | |
| gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>") | |
| from ncut_pytorch.backbone import list_models, get_demo_model_names | |
| model_names = list_models() | |
| model_names = sorted(model_names) | |
| def get_filtered_model_names(name): | |
| return [m for m in model_names if name.lower() in m.lower()] | |
| def get_default_model_name(name): | |
| lst = get_filtered_model_names(name) | |
| if len(lst) > 1: | |
| return lst[1] | |
| return lst[0] | |
| if is_lisa: | |
| model_dropdown = gr.Dropdown(["LISA(xinlai/LISA-7B-v1)"], label="Backbone", value="LISA(xinlai/LISA-7B-v1)", elem_id="model_name") | |
| layer_slider = gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False) | |
| layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] | |
| positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False) | |
| negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False) | |
| node_type_dropdown = gr.Dropdown(layer_names, label="LISA (SAM) decoder: Layer and Node", value="dec_1_block", elem_id="node_type") | |
| else: | |
| model_radio = gr.Radio(["CLIP", "DiNO", "Diffusion", "ImageNet", "MAE", "SAM", "Rand"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio) | |
| model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False) | |
| model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown]) | |
| layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer") | |
| positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'") | |
| positive_prompt.visible = False | |
| negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'") | |
| negative_prompt.visible = False | |
| node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type") | |
| num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters') | |
| def change_layer_slider(model_name): | |
| # SD2, UNET | |
| if "stable" in model_name.lower() and "diffusion" in model_name.lower(): | |
| from ncut_pytorch.backbone import SD_KEY_DICT | |
| default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23' | |
| return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"), | |
| gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)")) | |
| if model_name == "LISSL(xinlai/LISSL-7B-v1)": | |
| layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] | |
| default_layer = "dec_1_block" | |
| return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""), | |
| gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type")) | |
| layer_dict = LAYER_DICT | |
| if model_name in layer_dict: | |
| value = layer_dict[model_name] | |
| return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""), | |
| gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")) | |
| else: | |
| value = 12 | |
| return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""), | |
| gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")) | |
| model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown]) | |
| def change_prompt_text(model_name): | |
| if model_name in promptable_diffusion_models: | |
| return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True), | |
| gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True)) | |
| return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False), | |
| gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)) | |
| model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt]) | |
| with gr.Accordion("Advanced Parameters: NCUT", open=False, visible=ncut_parameter_dropdown): | |
| gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>") | |
| affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation") | |
| num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation") | |
| # sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation") | |
| sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method") | |
| # ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
| ncut_metric_dropdown = gr.Radio(["euclidean", "cosine", "rbf"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
| ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation") | |
| ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=True, elem_id="ncut_indirect_connection", info="Add indirect connection to the sub-sampled graph") | |
| ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization") | |
| with gr.Accordion("Advanced Parameters: Visualization", open=False, visible=tsne_parameter_dropdown): | |
| # embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
| embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
| # embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric") | |
| embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="cosine", elem_id="embedding_metric") | |
| num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation") | |
| knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation") | |
| perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity") | |
| n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors") | |
| min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist") | |
| return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt] | |
| custom_css = """ | |
| #unlock_button { | |
| all: unset !important; | |
| } | |
| .form:has(#unlock_button) { | |
| all: unset !important; | |
| } | |
| """ | |
| demo = gr.Blocks( | |
| theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'), | |
| # fill_width=False, | |
| # title="ncut-pytorch", | |
| css=custom_css, | |
| ) | |
| with demo: | |
| with gr.Tab('PlayGround'): | |
| eigvecs = gr.State(np.array([])) | |
| tsne3d_rgb = gr.State(np.array([])) | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| # gr.Markdown("### Step 1: Load Images") | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(n_example_images=100, markdown=False) | |
| submit_button.value = "🔴 RUN NCUT" | |
| num_images_slider.value = 100 | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| with gr.Column(scale=5, min_width=200): | |
| # gr.Markdown("### Step 2a: Run Backbone and NCUT") | |
| # with gr.Accordion(label="Backbone Parameters", visible=True, open=False): | |
| output_gallery = gr.Gallery(format='png', value=[], label="NCUT spectral-tSNE", show_label=True, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, interactive=False) | |
| def add_rotate_flip_buttons_with_state(output_gallery, tsne3d_rgb): | |
| with gr.Row(): | |
| rotate_button = gr.Button("🔄 Rotate", elem_id="rotate_button", variant='secondary') | |
| rotate_button.click(sequence_rotate_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) | |
| def rotate_state(arr): | |
| rotation_matrix = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32) | |
| return arr @ rotation_matrix | |
| rotate_button.click(rotate_state, inputs=[tsne3d_rgb], outputs=[tsne3d_rgb]) | |
| flip_button = gr.Button("🔃 Flip", elem_id="flip_button", variant='secondary') | |
| flip_button.click(flip_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) | |
| def flip_state(arr): | |
| return 1 - arr | |
| flip_button.click(flip_state, inputs=[tsne3d_rgb], outputs=[tsne3d_rgb]) | |
| return rotate_button, flip_button | |
| add_rotate_flip_buttons_with_state(output_gallery, tsne3d_rgb) | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section(ncut_parameter_dropdown=True, tsne_parameter_dropdown=True) | |
| # submit_button = gr.Button("🔴 RUN NCUT", elem_id="run_ncut", variant='primary') | |
| logging_text = gr.Textbox("Logging information", lines=3, label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
| def __run_fn(*args, **kwargs): | |
| eigvecs, rgb, logging_str = run_fn(*args, **kwargs) | |
| rgb_gallery = to_pil_images(rgb) | |
| # # normalize the eigvecs | |
| # eigvecs = torch.tensor(eigvecs) | |
| # if torch.cuda.is_available(): | |
| # eigvecs = eigvecs.cuda() | |
| # eigvecs = F.normalize(eigvecs, p=2, dim=-1) | |
| # eigvecs = eigvecs.cpu().numpy() | |
| return eigvecs, rgb, rgb_gallery, logging_str | |
| submit_button.click( | |
| partial(__run_fn, n_ret=2, return_eigvec_and_rgb=True, normalize_eigvec_return=True), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=[eigvecs, tsne3d_rgb, output_gallery, logging_text], | |
| ) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('---') | |
| gr.Markdown('<h3 style="text-align: center;">Help</h3>') | |
| gr.Markdown('---') | |
| with gr.Accordion("Instructions", open=True): | |
| gr.Markdown(""" | |
| 1. Load Dataset (left). | |
| 2. Choose parameters (middle). | |
| 3. 🔴 RUN NCUT. | |
| 4. 🔴 RUN tree. | |
| 5. Interact and Inspect (scroll down). | |
| """) | |
| with gr.Accordion("Methods: NCUT Embedding", open=False): | |
| gr.Markdown("### <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_ncut_works/' target='_blank'>Documentation: How NCUT works</a>") | |
| gr.Markdown(""" | |
| 1. Run Backbone, feature extraction for each image. | |
| 2. Vectorize latent-pixels, concatenate all the images. | |
| 3. Run NCUT, on one big graph of all the images. | |
| 4. Run spectral-tSNE on the NCUT eigenvectors. | |
| 5. Plot the 3D spectral-tSNE as RGB. | |
| """) | |
| with gr.Accordion("Methods: spectral-tSNE tree", open=False): | |
| gr.Markdown(""" | |
| 1. Farthest Point Sampling (FPS) on the eigenvectors. | |
| 2. spectral-tSNE (2D) on the FPS sampled points. | |
| 3. Hierarchical clustering (tree) on the FPS sampled points. | |
| """) | |
| gr.Markdown('---') | |
| run_hierarchical_button = gr.Button("🔴 RUN tree", elem_id="run_hierarchical", variant='primary') | |
| with gr.Accordion("Hierarchical Structure Parameters:", open=True): | |
| num_sample_fps_slider = gr.Slider(1, 5000, step=1, label="FPS: num_sample", value=1000, elem_id="num_sample_fps") | |
| tsne_perplexity_slider = gr.Slider(1, 1000, step=1, label="t-SNE: perplexity", value=500, elem_id="perplexity_tsne") | |
| fps_hc_seed_slider = gr.Slider(0, 1000, step=1, label="Seed", value=0, elem_id="fps_hc_seed") | |
| tsne_plot = gr.Image(label="spectral-tSNE tree", elem_id="tsne_plot", interactive=False, format='png') | |
| tsne_2d_points = gr.State(np.array([])) | |
| edges = gr.State(np.array([])) | |
| fps_eigvecs = gr.State(np.array([])) | |
| fps_indices = gr.State(np.array([])) | |
| fps_tsne_rgb = gr.State(np.array([])) | |
| def plot_tsne_tree(tsne_embed, edges, fps_tsne3d_rgb, k, hightlight_idx=None, highlight_connections=False): | |
| # Plot the t-SNE points | |
| fig, ax = plt.subplots(1, 1, figsize=(6, 6)) | |
| ax.scatter(tsne_embed[:, 0], tsne_embed[:, 1], s=20, c=fps_tsne3d_rgb) | |
| # draw the edges | |
| for i_edge in range(k, len(edges)): | |
| edge = edges[i_edge] | |
| ax.plot(tsne_embed[edge, 0], tsne_embed[edge, 1], 'k-', lw=1, alpha=0.7) | |
| # highlight the selected node | |
| if hightlight_idx is not None: | |
| if highlight_connections: | |
| from fps_cluster import find_connected_component | |
| _edges = edges[k:, :] | |
| connected_nodes = find_connected_component(_edges, hightlight_idx) | |
| ax.scatter(tsne_embed[connected_nodes, 0], tsne_embed[connected_nodes, 1], s=50, c=fps_tsne3d_rgb[connected_nodes], marker='D', edgecolor='deeppink', linewidth=1) | |
| # ax.scatter(tsne_embed[hightlight_idx, 0], tsne_embed[hightlight_idx, 1], s=300, c='r', marker='x') | |
| ax.scatter(tsne_embed[hightlight_idx, 0], tsne_embed[hightlight_idx, 1], s=200, c='cyan', marker='o', edgecolor='black', linewidth=1) | |
| ax.set_xticks([]) | |
| ax.set_yticks([]) | |
| ax.axis('off') | |
| ax.set_xlim(tsne_embed[:, 0].min()*1.1, tsne_embed[:, 0].max()*1.1) | |
| ax.set_ylim(tsne_embed[:, 1].min()*1.1, tsne_embed[:, 1].max()*1.1) | |
| # Remove the white space around the plot | |
| fig.tight_layout(pad=0) | |
| # Save the plot to an in-memory buffer | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) | |
| buf.seek(0) | |
| # Load the image into a NumPy array | |
| image = np.array(Image.open(buf)) | |
| # Close the buffer and plot | |
| buf.close() | |
| plt.close(fig) | |
| pil_image = Image.fromarray(image) | |
| return pil_image | |
| def run_fps_tsne_hierarchical(eigvecs, num_sample_fps, perplexity_tsne, tsne3d_rgb, seed=0): | |
| if len(eigvecs) == 0: | |
| gr.Warning("Please run NCUT first.") | |
| return | |
| eigvecs = torch.tensor(eigvecs) | |
| eigvecs = eigvecs.reshape(-1, eigvecs.shape[-1]) | |
| gr.Info("Running FPS, t-SNE, and Hierarchical Clustering...", 3) | |
| from ncut_pytorch.ncut_pytorch import farthest_point_sampling | |
| from sklearn.manifold import TSNE | |
| from fps_cluster import build_tree | |
| torch.manual_seed(seed) | |
| np.random.seed(seed) | |
| fps_idx = farthest_point_sampling(eigvecs, num_sample_fps) | |
| fps_eigvecs = eigvecs[fps_idx] | |
| fps_eigvecs = fps_eigvecs.numpy() | |
| tsne3d_rgb = tsne3d_rgb.reshape(-1, 3) | |
| fps_tsne3d_rgb = tsne3d_rgb[fps_idx] | |
| np.random.seed(seed) | |
| tsne_embed = TSNE( | |
| n_components=2, | |
| perplexity=perplexity_tsne, | |
| metric='cosine', | |
| random_state=seed, | |
| ).fit_transform(fps_eigvecs) | |
| edges = build_tree(tsne_embed) | |
| # Plot the t-SNE points | |
| pil_image = plot_tsne_tree(tsne_embed, edges, fps_tsne3d_rgb, 0) | |
| return tsne_embed, edges, fps_eigvecs, fps_tsne3d_rgb, fps_idx, pil_image | |
| run_hierarchical_button.click( | |
| run_fps_tsne_hierarchical, | |
| inputs=[eigvecs, num_sample_fps_slider, tsne_perplexity_slider, tsne3d_rgb, fps_hc_seed_slider], | |
| outputs=[tsne_2d_points, edges, fps_eigvecs, fps_tsne_rgb, fps_indices, tsne_plot], | |
| ) | |
| gr.Markdown('---') | |
| gr.Markdown('<h3 style="text-align: center;">↓ interactively inspect the hierarchical structure</h3>') | |
| gr.Markdown('---') | |
| with gr.Row(): | |
| from gradio_image_prompter import ImagePrompter | |
| with gr.Column(scale=5, min_width=200) as tsne_select: | |
| tsne_prompt_image = ImagePrompter(show_label=True, elem_id="tsne_prompt_image", interactive=False, label="spectral-tSNE tree") | |
| # copy plot to tsne_prompt_image on change | |
| # tsne_plot.change(fn=lambda x: gr.update(value={'image': x}, interactive=True), | |
| # inputs=[tsne_plot], outputs=[tsne_prompt_image]) | |
| with gr.Column(scale=5, min_width=200) as image_select: | |
| image_plot = ImagePrompter(show_label=True, elem_id="image_plot", interactive=False, label="NCUT spectral-tSNE") | |
| image_slider = gr.Slider(0, 100, step=1, label="Image Index", value=0, elem_id="image_slider", interactive=True) | |
| def update_image_prompt(image_slider, output_gallery): | |
| if output_gallery is None: | |
| return gr.update(value=None, interactive=False) | |
| if len(output_gallery) == 0: | |
| return gr.update(value=None, interactive=False) | |
| image_idx = int(image_slider) | |
| image = output_gallery[image_idx][0] | |
| return gr.update(value={'image': image}, interactive=True) | |
| image_slider.change(fn=update_image_prompt, inputs=[image_slider, output_gallery], outputs=[image_plot]) | |
| output_gallery.change(fn=update_image_prompt, inputs=[image_slider, output_gallery], outputs=[image_plot]) | |
| output_gallery.change(fn=lambda x: gr.update(maximum=len(x)-1, interactive=True), inputs=[output_gallery], outputs=[image_slider]) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('<h3 style="text-align: center;">Help</h3>') | |
| with gr.Accordion("Instructions", open=True): | |
| gr.Markdown(""" | |
| 1. Click one dot on the left-side image. | |
| - Only the last clicked dot will be used | |
| - Eraser is at top-right corner | |
| - Use the right-side Radio to switch tree/image | |
| 2. Choose a granularity (right-side). | |
| 3. 🔴 RUN Inspection. | |
| 4. Output will be shown below. | |
| """) | |
| gr.Markdown("Known Issue: Resize the browser window will break the clicking, please refresh the page.") | |
| with gr.Accordion("Outputs", open=True): | |
| gr.Markdown(""" | |
| 1. spectral-tSNE tree: ◆ marker is the N points, connected components to the clicked . | |
| 2. Cluster Heatmap: max of N cosine similarity to N points in the connected components. | |
| """) | |
| with gr.Column(scale=5, min_width=200): | |
| prompt_radio = gr.Radio(["Tree", "Image"], label="Where to click on?", value="Tree", elem_id="prompt_radio", show_label=True) | |
| granularity_slider = gr.Slider(1, 1000, step=1, label="Cluster Granularity (k)", value=100, elem_id="granularity") | |
| num_sample_fps_slider.change(fn=lambda x: gr.update(maximum=x, interactive=True), inputs=[num_sample_fps_slider], outputs=[granularity_slider]) | |
| def updaste_tsne_plot_change_granularity(granularity, tsne_embed, edges, fps_tsne_rgb, tsne_prompt_image): | |
| # Plot the t-SNE points | |
| pil_image = plot_tsne_tree(tsne_embed, edges, fps_tsne_rgb, granularity) | |
| if tsne_prompt_image is None: | |
| return gr.update(value={'image': pil_image}, interactive=True) | |
| return gr.update(value={'image': pil_image, 'points': tsne_prompt_image['points']}, interactive=True) | |
| granularity_slider.change(updaste_tsne_plot_change_granularity, | |
| inputs=[granularity_slider, tsne_2d_points, edges, fps_tsne_rgb, tsne_prompt_image], | |
| outputs=[tsne_prompt_image]) | |
| tsne_plot.change(updaste_tsne_plot_change_granularity, | |
| inputs=[granularity_slider, tsne_2d_points, edges, fps_tsne_rgb], | |
| outputs=[tsne_prompt_image]) | |
| prompt_radio.change(update_image_prompt, inputs=[image_slider, output_gallery], outputs=[image_plot]) | |
| run_inspection_button = gr.Button("🔴 RUN Inspection", elem_id="run_inspection", variant='primary') | |
| inspect_logging_text = gr.Textbox("Logging information", lines=3, label="Logging", elem_id="inspect_logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
| # output_slot_radio = gr.Radio([1, 2, 3], label="Output Row", value=1, elem_id="output_slot", show_label=True) | |
| delete_all_output_button = gr.Button("❌ Delete All Output", elem_id="delete_all_output", variant='secondary') | |
| image_select.visible = False | |
| tsne_select.visible = True | |
| prompt_radio.change(fn=lambda x: gr.update(visible=x=="Tree"), inputs=prompt_radio, outputs=[tsne_select]) | |
| prompt_radio.change(fn=lambda x: gr.update(visible=x=="Image"), inputs=prompt_radio, outputs=[image_select]) | |
| MAX_ROWS = 20 | |
| current_output_row = gr.State(0) | |
| output_row_occupy = gr.State([False] * MAX_ROWS) | |
| def make_one_output_row(output_row_occupy, i_row=1): | |
| with gr.Row() as inspect_output_row: | |
| with gr.Column(scale=5, min_width=200): | |
| output_tree_image = gr.Image(label=f"spectral-tSNE tree [row#{i_row}]", elem_id="output_image", interactive=False) | |
| text_block = gr.Textbox("", label="Logging", elem_id=f"logging_{i_row}", type="text", placeholder="Logging information", autofocus=False, autoscroll=False, lines=2, show_label=False) | |
| delete_button = gr.Button("❌ Delete", elem_id=f"delete_button_{i_row}", variant='secondary') | |
| with gr.Column(scale=10, min_width=200): | |
| heatmap_gallery = gr.Gallery(format='png', value=[], label=f"Cluster Heatmap [row#{i_row}]", show_label=True, elem_id="heatmap", columns=[6], rows=[1], object_fit="contain", height="500px", show_share_button=True, interactive=False) | |
| def delete_a_row(output_row_occupy, i_row=1): | |
| # output_row_occupy[i_row-1] = False | |
| return output_row_occupy, gr.update(visible=False) | |
| delete_button.click(partial(delete_a_row, i_row=i_row), output_row_occupy, outputs=[output_row_occupy, inspect_output_row]) | |
| return inspect_output_row, output_tree_image, heatmap_gallery, text_block | |
| gr.Markdown('---') | |
| inspect_output_rows, output_tree_images, heatmap_galleries, text_blocks = [], [], [], [] | |
| for i_row in range(MAX_ROWS, 0, -1): | |
| inspect_output_row, output_tree_image, heatmap_gallery, text_block = make_one_output_row(output_row_occupy, i_row) | |
| inspect_output_row.visible = False | |
| inspect_output_rows.append(inspect_output_row) | |
| output_tree_images.append(output_tree_image) | |
| heatmap_galleries.append(heatmap_gallery) | |
| text_blocks.append(text_block) | |
| def delete_all_output(output_row_occupy): | |
| n_rows = len(output_row_occupy) | |
| output_row_occupy = [False] * n_rows | |
| return output_row_occupy, 0, *[gr.update(visible=False) for _ in range(n_rows)] | |
| delete_all_output_button.click(delete_all_output, inputs=[output_row_occupy], outputs=[output_row_occupy, current_output_row, *inspect_output_rows]) | |
| def relative_xy_last_positive(prompts): | |
| image = prompts['image'] | |
| points = np.asarray(prompts['points']) | |
| if points.shape[0] == 0: | |
| return [], [] | |
| is_point = points[:, 5] == 4.0 | |
| points = points[is_point] | |
| is_positive = points[:, 2] == 1.0 | |
| if is_positive.sum() == 0: | |
| raise Exception("No blue point is selected.") | |
| is_negative = points[:, 2] == 0.0 | |
| xy = points[:, :2].tolist() | |
| if isinstance(image, str): | |
| image = Image.open(image) | |
| image = np.array(image) | |
| h, w = image.shape[:2] | |
| new_xy = [(x/w, y/h) for x, y in xy] | |
| last_positive_idx = np.where(is_positive)[0][-1] | |
| x, y = new_xy[last_positive_idx] | |
| return x, y | |
| def find_closest_fps_point_for_tsne_tree_plot(tsne_prompt, tsne2d_embed): | |
| x, y = relative_xy_last_positive(tsne_prompt) | |
| x_vmax = tsne2d_embed[:, 0].max() * 1.1 | |
| x_vmin = tsne2d_embed[:, 0].min() * 1.1 | |
| y_vmax = tsne2d_embed[:, 1].max() * 1.1 | |
| y_vmin = tsne2d_embed[:, 1].min() * 1.1 | |
| x = x * (x_vmax - x_vmin) + x_vmin | |
| y = 1 - y | |
| y = y * (y_vmax - y_vmin) + y_vmin | |
| dist = np.linalg.norm(tsne2d_embed - np.array([x, y]), axis=1) | |
| closest_idx = np.argmin(dist) | |
| return closest_idx | |
| def find_closest_fps_point_for_image_prompt(image_prompt, i_image, eigvecs, fps_eigvecs): | |
| x, y = relative_xy_last_positive(image_prompt) | |
| _eigvec = eigvecs[i_image] | |
| h, w = _eigvec.shape[:2] | |
| x = int(x * w) | |
| y = int(y * h) | |
| eigvec = _eigvec[y, x] | |
| sim = fps_eigvecs @ eigvec | |
| closest_idx = np.argmax(sim) | |
| return closest_idx | |
| def find_closest_fps_point(prompt_radio, tsne_prompt, image_prompt, i_image, tsne2d_embed, eigvecs, fps_eigvecs): | |
| try: | |
| if prompt_radio == "Tree": | |
| return find_closest_fps_point_for_tsne_tree_plot(tsne_prompt, tsne2d_embed) | |
| if prompt_radio == "Image": | |
| return find_closest_fps_point_for_image_prompt(image_prompt, i_image, eigvecs, fps_eigvecs) | |
| except: | |
| raise gr.Error("""No blue point is selected. <br/>Please left-click on the image to select a blue point. <br/>After reloading the image (e.g., change granularity), please use the eraser to remove the previous point, then click on the image to select a blue point.""") | |
| def run_inspection(tsne_prompt, image_prompt, prompt_radio, current_output_row, tsne2d_embed, edges, fps_eigvecs, fps_tsne_rgb, fps_indices, granularity, eigvecs, i_image, tsne3d_rgb, input_gallery, output_row_occupy, max_rows=MAX_ROWS): | |
| if len(tsne2d_embed) == 0: | |
| raise gr.Error("Please run FPS+Cluster first.") | |
| closest_idx = find_closest_fps_point(prompt_radio, tsne_prompt, image_prompt, i_image, tsne2d_embed, eigvecs, fps_eigvecs) | |
| closest_rgb = fps_tsne_rgb[closest_idx] | |
| closest_rgb = (closest_rgb * 255).astype(np.uint8) | |
| from fps_cluster import find_connected_component | |
| connected_idxs = find_connected_component(edges[granularity:], closest_idx) | |
| logging_text = f"Clicked: idx={closest_idx}, RGB: {closest_rgb.tolist()}\n" | |
| logging_text += f"Granularity: k={granularity}, Connected: n={len(connected_idxs)}" | |
| output_tsne_plot = plot_tsne_tree(tsne2d_embed, edges, fps_tsne_rgb, granularity, closest_idx, highlight_connections=True) | |
| # draw heatmap for the connected components | |
| ## cosine distance | |
| connected_eigvecs = fps_eigvecs[connected_idxs] | |
| left = eigvecs.astype(np.float32) # B H W C | |
| right = connected_eigvecs.astype(np.float32) # N C | |
| # left = F.normalize(left, p=2, dim=-1) | |
| # right = F.normalize(right, p=2, dim=-1) | |
| # eigvec is already normalized when saved to gr.State | |
| similarity = left @ right.T | |
| similarity = similarity.max(axis=-1) # B H W N | |
| ## euclidean distance | |
| # b, h, w = tsne3d_rgb.shape[:3] | |
| # tsne3d_rgb = tsne3d_rgb.reshape(b*h*w, 3) | |
| # connected_rgb = tsne3d_rgb[fps_indices][connected_idxs] | |
| # left = torch.tensor(tsne3d_rgb).float() # (B H W) 3 | |
| # right = torch.tensor(connected_rgb).float() # N 3 | |
| # # dist B H W N | |
| # dist = left[:, None] - right[None] | |
| # dist = torch.sqrt((dist ** 2).sum(dim=-1)) | |
| # dist = dist.min(dim=-1).values # B H W | |
| # dist = dist.reshape(b, h, w) | |
| # gr.Info(f"dist: min={dist.min().item()}, max={dist.max().item()}, mean={dist.mean().item()}", 3) | |
| # similarity = 1 - dist | |
| hot_map = matplotlib.colormaps['hot'] | |
| heatmap = hot_map(similarity)[..., :3] # B H W 3 | |
| heatmap_images = to_pil_images(torch.tensor(heatmap), target_size=256, force_size=True) | |
| # overlay input images on the heatmap | |
| input_images = [x[0] for x in input_gallery] | |
| if isinstance(input_images[0], str): | |
| input_images = [Image.open(x) for x in input_images] | |
| for i, img in enumerate(input_images): | |
| _img = img.resize((256, 256)).convert('RGB') | |
| _heatmap = heatmap_images[i].resize((256, 256)).convert('RGB') | |
| blend = np.array(_img) * 0.5 + np.array(_heatmap) * 0.5 | |
| blend = Image.fromarray(blend.astype(np.uint8)) | |
| heatmap_images[i] = blend | |
| # find the output slot | |
| # search from the last row | |
| found_flag = False | |
| for i_slot in range(max_rows-1, -1, -1): | |
| if not output_row_occupy[i_slot]: | |
| found_flag = True | |
| break | |
| if not found_flag: | |
| i_slot = 0 | |
| gr.Warning("Output slots are full, Overwriting the first row. Please use '❌ Delete All Output' to clear all outputs.") | |
| output_row_occupy[i_slot] = True | |
| # tree_label = f"spectral-tSNE tree [row#{max_rows-output_slot}] k={granularity} idx={closest_idx} n={len(connected_idxs)}" | |
| tree_label = f"spectral-tSNE tree [row#{current_output_row+1}]" | |
| heatmap_label = f"Cluster Heatmap [row#{current_output_row+1}] k={granularity} idx={closest_idx} n={len(connected_idxs)}" | |
| # update the output slots | |
| output_rows = [gr.update() for _ in range(max_rows)] | |
| output_tsne_plots = [gr.update() for _ in range(max_rows)] | |
| output_heatmaps = [gr.update() for _ in range(max_rows)] | |
| output_texts = [gr.update() for _ in range(max_rows)] | |
| output_rows[i_slot] = gr.update(visible=True) | |
| output_tsne_plots[i_slot] = gr.update(value=output_tsne_plot, label=tree_label) | |
| output_heatmaps[i_slot] = gr.update(value=heatmap_images, label=heatmap_label) | |
| output_texts[i_slot] = gr.update(value=logging_text) | |
| # gr.Info(f"Output in [row#{max_rows-output_slot}]", 3) | |
| logging_text += f"\nOutput: [row#{current_output_row+1}]" | |
| current_output_row += 1 | |
| return *output_rows, *output_tsne_plots, *output_heatmaps, *output_texts, current_output_row, output_row_occupy, logging_text | |
| run_inspection_button.click( | |
| run_inspection, | |
| inputs=[tsne_prompt_image, image_plot, prompt_radio, current_output_row, tsne_2d_points, edges, fps_eigvecs, fps_tsne_rgb, fps_indices, granularity_slider, eigvecs, image_slider, tsne3d_rgb, input_gallery, output_row_occupy], | |
| outputs=inspect_output_rows + output_tree_images + heatmap_galleries + text_blocks + [current_output_row, output_row_occupy, inspect_logging_text], | |
| ) | |
| with gr.Tab('PlayGround (eig)', visible=True) as test_playground_tab2: | |
| eigvecs = gr.State(np.array([])) | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown("### Step 1: Load Images") | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(n_example_images=10) | |
| submit_button.visible = False | |
| num_images_slider.value = 30 | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown("### Step 2a: Run Backbone and NCUT") | |
| with gr.Accordion(label="Backbone Parameters", visible=True, open=False): | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section(ncut_parameter_dropdown=False, tsne_parameter_dropdown=False) | |
| num_eig_slider.value = 1024 | |
| num_eig_slider.visible = False | |
| submit_button = gr.Button("🔴 RUN NCUT", elem_id="run_ncut", variant='primary') | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=1, only_eigvecs=True), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=[eigvecs, logging_text], | |
| ) | |
| gr.Markdown("### Step 2b: Pick an Image and Draw a Point") | |
| from gradio_image_prompter import ImagePrompter | |
| image1_slider = gr.Slider(0, 100, step=1, label="Image#1 Index", value=0, elem_id="image1_slider", interactive=True) | |
| load_one_image_button = gr.Button("🔴 Load Image", elem_id="load_one_image_button", variant='primary') | |
| gr.Markdown(""" | |
| <h5> | |
| 🖱️ Left Click: Foreground </br> | |
| </h5> | |
| """) | |
| prompt_image1 = ImagePrompter(show_label=False, elem_id="prompt_image1", interactive=False) | |
| def update_prompt_image(original_images, index): | |
| images = original_images | |
| if images is None: | |
| return gr.update() | |
| total_len = len(images) | |
| if total_len == 0: | |
| return gr.update() | |
| if index >= total_len: | |
| index = total_len - 1 | |
| return gr.update(value={'image': images[index][0], 'points': []}, interactive=True) | |
| load_one_image_button.click(update_prompt_image, inputs=[input_gallery, image1_slider], outputs=[prompt_image1]) | |
| input_gallery.change(update_prompt_image, inputs=[input_gallery, image1_slider], outputs=[prompt_image1]) | |
| input_gallery.change(fn=lambda x: gr.update(maximum=len(x)-1), inputs=[input_gallery], outputs=[image1_slider]) | |
| image1_slider.change(update_prompt_image, inputs=[input_gallery, image1_slider], outputs=[prompt_image1]) | |
| child_idx = gr.State([]) | |
| current_idx = gr.State(None) | |
| n_eig = gr.State(64) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown("### Step 3: Check groupping") | |
| child_distance_slider = gr.Slider(0, 0.5, step=0.001, label="Child Distance", value=0.1, elem_id="child_distance_slider", interactive=True) | |
| child_distance_slider.visible = False | |
| overlay_image_checkbox = gr.Checkbox(label="Overlay Image", value=True, elem_id="overlay_image_checkbox", interactive=True) | |
| n_eig_slider = gr.Slider(0, 1024, step=1, label="Number of Eigenvectors", value=256, elem_id="n_eig_slider", interactive=True) | |
| run_button = gr.Button("🔴 RUN", elem_id="run_groupping", variant='primary') | |
| gr.Markdown("1. 🔴 RUN </br>2. repeat: [+num_eigvecs] / [-num_eigvecs]") | |
| with gr.Row(): | |
| doublue_eigs_button = gr.Button("[+num_eigvecs]", elem_id="doublue_eigs_button", variant='secondary') | |
| half_eigs_button = gr.Button("[-num_eigvecs]", elem_id="half_eigs_button", variant='secondary') | |
| current_plot = gr.Gallery(value=None, label="Current", show_label=True, elem_id="current_plot", interactive=False, rows=[1], columns=[2]) | |
| def relative_xy(prompts): | |
| image = prompts['image'] | |
| points = np.asarray(prompts['points']) | |
| if points.shape[0] == 0: | |
| return [], [] | |
| is_point = points[:, 5] == 4.0 | |
| points = points[is_point] | |
| is_positive = points[:, 2] == 1.0 | |
| is_negative = points[:, 2] == 0.0 | |
| xy = points[:, :2].tolist() | |
| if isinstance(image, str): | |
| image = Image.open(image) | |
| image = np.array(image) | |
| h, w = image.shape[:2] | |
| new_xy = [(x/w, y/h) for x, y in xy] | |
| # print(new_xy) | |
| return new_xy, is_positive | |
| def xy_eigvec(prompts, image_idx, eigvecs): | |
| eigvec = eigvecs[image_idx] | |
| xy, is_positive = relative_xy(prompts) | |
| for i, (x, y) in enumerate(xy): | |
| if not is_positive[i]: | |
| continue | |
| x = int(x * eigvec.shape[1]) | |
| y = int(y * eigvec.shape[0]) | |
| return eigvec[y, x], (y, x) | |
| from ncut_pytorch.ncut_pytorch import _transform_heatmap | |
| def _run_heatmap_fn(images, eigvecs, prompt_image_idx, prompt_points, n_eig, flat_idx=None, raw_heatmap=False, overlay_image=True): | |
| left = eigvecs[..., :n_eig] | |
| if flat_idx is not None: | |
| right = eigvecs.reshape(-1, eigvecs.shape[-1])[flat_idx] | |
| y, x = None, None | |
| else: | |
| right, (y, x) = xy_eigvec(prompt_points, prompt_image_idx, eigvecs) | |
| right = right[:n_eig] | |
| left = F.normalize(left, p=2, dim=-1) | |
| _right = F.normalize(right, p=2, dim=-1) | |
| heatmap = left @ _right.unsqueeze(-1) | |
| heatmap = heatmap.squeeze(-1) | |
| # heatmap = 1 - heatmap | |
| # heatmap = _transform_heatmap(heatmap) | |
| if raw_heatmap: | |
| return heatmap | |
| # apply hot colormap and covert to PIL image 256x256 | |
| # gr.Info(f"heatmap vmin: {heatmap.min()}, vmax: {heatmap.max()}, mean: {heatmap.mean()}") | |
| heatmap = heatmap.cpu().numpy() | |
| hot_map = matplotlib.colormaps['hot'] | |
| heatmap = hot_map(heatmap) | |
| pil_images = to_pil_images(torch.tensor(heatmap), target_size=256, force_size=True) | |
| if overlay_image: | |
| overlaied_images = [] | |
| for i_image in range(len(images)): | |
| rgb_image = images[i_image].resize((256, 256)) | |
| rgb_image = np.array(rgb_image) | |
| heatmap_image = np.array(pil_images[i_image])[..., :3] | |
| blend_image = 0.5 * rgb_image + 0.5 * heatmap_image | |
| blend_image = Image.fromarray(blend_image.astype(np.uint8)) | |
| overlaied_images.append(blend_image) | |
| pil_images = overlaied_images | |
| return pil_images, (y, x) | |
| def run_heatmap(images, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, flat_idx=None, overlay_image=True): | |
| gr.Info(f"current number of eigenvectors: {n_eig}", 2) | |
| eigvecs = torch.tensor(eigvecs) | |
| image1_slider = min(image1_slider, len(images)-1) | |
| images = [image[0] for image in images] | |
| if isinstance(images[0], str): | |
| images = [Image.open(image[0]).convert("RGB").resize((256, 256)) for image in images] | |
| current_heatmap, (y, x) = _run_heatmap_fn(images, eigvecs, image1_slider, prompt_image1, n_eig, flat_idx, overlay_image=overlay_image) | |
| return current_heatmap | |
| def doublue_eigs_wrapper(images, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, flat_idx=None, overlay_image=True): | |
| n_eig = int(n_eig*2) | |
| n_eig = min(n_eig, eigvecs.shape[-1]) | |
| n_eig = max(n_eig, 1) | |
| return gr.update(value=n_eig), run_heatmap(images, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, flat_idx, overlay_image=overlay_image) | |
| def half_eigs_wrapper(images, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, current_idx=None, overlay_image=True): | |
| n_eig = int(n_eig/2) | |
| n_eig = min(n_eig, eigvecs.shape[-1]) | |
| n_eig = max(n_eig, 1) | |
| return gr.update(value=n_eig), run_heatmap(images, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, current_idx, overlay_image=overlay_image) | |
| none_placeholder = gr.State(None) | |
| run_button.click( | |
| run_heatmap, | |
| inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig_slider, child_distance_slider, none_placeholder, overlay_image_checkbox], | |
| outputs=[current_plot], | |
| ) | |
| doublue_eigs_button.click( | |
| doublue_eigs_wrapper, | |
| inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig_slider, child_distance_slider, none_placeholder, overlay_image_checkbox], | |
| outputs=[n_eig_slider, current_plot], | |
| ) | |
| half_eigs_button.click( | |
| half_eigs_wrapper, | |
| inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig_slider, child_distance_slider, current_idx, overlay_image_checkbox], | |
| outputs=[n_eig_slider, current_plot], | |
| ) | |
| with gr.Tab('AlignedCut'): | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
| num_images_slider.value = 30 | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
| with gr.Column(scale=5, min_width=200): | |
| output_gallery = make_output_images_section() | |
| # cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[2], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False) | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=1, plot_clusters=False), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=[output_gallery, logging_text], | |
| api_name="API_AlignedCut", | |
| scroll_to_output=True, | |
| ) | |
| with gr.Tab('AlignedCut (Advanced)', visible=False) as tab_alignedcut_advanced: | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
| num_images_slider.value = 100 | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False, lines=20) | |
| with gr.Column(scale=5, min_width=200): | |
| output_gallery = make_output_images_section() | |
| add_download_button(output_gallery, "ncut_embed") | |
| norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(norm_gallery, "eig_norm") | |
| cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(cluster_gallery, "clusters") | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| num_eig_slider.value = 100 | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text], | |
| scroll_to_output=True, | |
| ) | |
| with gr.Tab('NCut'): | |
| gr.Markdown('#### NCut (Legacy), not aligned, no Nyström approximation') | |
| gr.Markdown('Each image is solved independently, <em>color is <b>not</b> aligned across images</em>') | |
| gr.Markdown('---') | |
| gr.Markdown('<p style="text-align: center;"><b>NCut vs. AlignedCut</b></p>') | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('#### Pros') | |
| gr.Markdown('- Easy Solution. Use less eigenvectors.') | |
| gr.Markdown('- Exact solution. No Nyström approximation.') | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('#### Cons') | |
| gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.') | |
| gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.') | |
| gr.Markdown('---') | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown(' ') | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('<em>color is <b>not</b> aligned across images</em> 👇') | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
| with gr.Column(scale=5, min_width=200): | |
| output_gallery = make_output_images_section() | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut") | |
| invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown, ncut_metric_dropdown] | |
| for item in invisible_list: | |
| item.visible = False | |
| # logging text box | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| run_fn, | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
| old_school_ncut_checkbox | |
| ], | |
| outputs=[output_gallery, logging_text], | |
| api_name="API_NCut", | |
| ) | |
| with gr.Tab('RecursiveCut'): | |
| gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ') | |
| gr.Markdown('__Recursive NCUT__ can amplify or weaken the connections, depending on the `affinity_focal_gamma` setting, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)') | |
| gr.Markdown('---') | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
| num_images_slider.value = 100 | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Recursion #1)') | |
| l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_rotate_flip_buttons(l1_gallery) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Recursion #2)') | |
| l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_rotate_flip_buttons(l2_gallery) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Recursion #3)') | |
| l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_rotate_flip_buttons(l3_gallery) | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| with gr.Accordion("➡️ Recursion config", open=True): | |
| l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") | |
| l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") | |
| l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") | |
| metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") | |
| l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma") | |
| l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma") | |
| l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") | |
| with gr.Column(scale=5, min_width=200): | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| num_eig_slider.visible = False | |
| affinity_focal_gamma_slider.visible = False | |
| true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") | |
| true_placeholder.visible = False | |
| false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") | |
| false_placeholder.visible = False | |
| number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") | |
| number_placeholder.visible = False | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=3), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
| false_placeholder, number_placeholder, true_placeholder, | |
| l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, | |
| l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider | |
| ], | |
| outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text], | |
| api_name="API_RecursiveCut" | |
| ) | |
| with gr.Tab('RecursiveCut (Advanced)', visible=False) as tab_recursivecut_advanced: | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
| num_images_slider.value = 100 | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", lines=20) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Recursion #1)') | |
| l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_rotate_flip_buttons(l1_gallery) | |
| add_download_button(l1_gallery, "ncut_embed_recur1") | |
| l1_norm_gallery = gr.Gallery(value=[], label="Recursion #1 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(l1_norm_gallery, "eig_norm_recur1") | |
| l1_cluster_gallery = gr.Gallery(value=[], label="Recursion #1 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='450px', show_share_button=True, preview=False, interactive=False) | |
| add_download_button(l1_cluster_gallery, "clusters_recur1") | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Recursion #2)') | |
| l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_rotate_flip_buttons(l2_gallery) | |
| add_download_button(l2_gallery, "ncut_embed_recur2") | |
| l2_norm_gallery = gr.Gallery(value=[], label="Recursion #2 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(l2_norm_gallery, "eig_norm_recur2") | |
| l2_cluster_gallery = gr.Gallery(value=[], label="Recursion #2 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='450px', show_share_button=True, preview=False, interactive=False) | |
| add_download_button(l2_cluster_gallery, "clusters_recur2") | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Recursion #3)') | |
| l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_rotate_flip_buttons(l3_gallery) | |
| add_download_button(l3_gallery, "ncut_embed_recur3") | |
| l3_norm_gallery = gr.Gallery(value=[], label="Recursion #3 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(l3_norm_gallery, "eig_norm_recur3") | |
| l3_cluster_gallery = gr.Gallery(value=[], label="Recursion #3 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='450px', show_share_button=True, preview=False, interactive=False) | |
| add_download_button(l3_cluster_gallery, "clusters_recur3") | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| with gr.Accordion("➡️ Recursion config", open=True): | |
| l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") | |
| l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") | |
| l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") | |
| metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") | |
| l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma") | |
| l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma") | |
| l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") | |
| with gr.Column(scale=5, min_width=200): | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| num_eig_slider.visible = False | |
| affinity_focal_gamma_slider.visible = False | |
| true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") | |
| true_placeholder.visible = False | |
| false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") | |
| false_placeholder.visible = False | |
| number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") | |
| number_placeholder.visible = False | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=9, advanced=True), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
| false_placeholder, number_placeholder, true_placeholder, | |
| l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, | |
| l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider | |
| ], | |
| outputs=[l1_gallery, l2_gallery, l3_gallery, l1_norm_gallery, l2_norm_gallery, l3_norm_gallery, l1_cluster_gallery, l2_cluster_gallery, l3_cluster_gallery, logging_text], | |
| ) | |
| with gr.Tab('Video', visible=True) as tab_video: | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| video_input_gallery, submit_button, clear_video_button, max_frame_number = make_input_video_section() | |
| with gr.Column(scale=5, min_width=200): | |
| video_output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False) | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| num_sample_tsne_slider.value = 1000 | |
| perplexity_slider.value = 500 | |
| n_neighbors_slider.value = 500 | |
| knn_tsne_slider.value = 20 | |
| # logging text box | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| clear_video_button.click(lambda x: (None, None), outputs=[video_input_gallery, video_output_gallery]) | |
| place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false") | |
| place_holder_false.visible = False | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| run_fn, | |
| inputs=[ | |
| video_input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
| place_holder_false, max_frame_number | |
| ], | |
| outputs=[video_output_gallery, logging_text], | |
| api_name="API_VideoCut", | |
| ) | |
| with gr.Tab('Text'): | |
| try: | |
| from app_text import make_demo | |
| except ImportError: | |
| print("Debugging") | |
| from draft_gradio_app_text import make_demo | |
| make_demo() | |
| with gr.Tab('Vision-Language', visible=False) as tab_lisa: | |
| gr.Markdown('[LISA](https://arxiv.org/pdf/2308.00692) is a vision-language model. Input a text prompt and image, LISA generate segmentation masks.') | |
| gr.Markdown('In the mask decoder layers, LISA updates the image features w.r.t. the text prompt') | |
| gr.Markdown('This page aims to see how the text prompt affects the image features') | |
| gr.Markdown('---') | |
| gr.Markdown('<p style="text-align: center;">Color is <b>aligned</b> across 3 prompts. NCUT is computed on the concatenated features from 3 prompts.</p>') | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Prompt #1)') | |
| l1_gallery = gr.Gallery(format='png', value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Prompt #2)') | |
| l2_gallery = gr.Gallery(format='png', value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown('### Output (Prompt #3)') | |
| l3_gallery = gr.Gallery(format='png', value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3) | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
| with gr.Column(scale=5, min_width=200): | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section(is_lisa=True) | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| galleries = [l1_gallery, l2_gallery, l3_gallery] | |
| true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=len(galleries)), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| true_placeholder, prompt1, prompt2, prompt3, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=galleries + [logging_text], | |
| ) | |
| with gr.Tab('Model Aligned', visible=False) as tab_aligned: | |
| gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)') | |
| gr.Markdown('---') | |
| gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.') | |
| gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.') | |
| gr.Markdown('') | |
| gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") | |
| gr.Markdown('---') | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
| num_images_slider.value = 100 | |
| with gr.Column(scale=5, min_width=200): | |
| output_gallery = make_output_images_section() | |
| gr.Markdown('### TIP1: use the `full-screen` button, and use `arrow keys` to navigate') | |
| gr.Markdown('---') | |
| gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)') | |
| gr.Markdown('Layer type: attention output (attn), without sum of residual') | |
| gr.Markdown('### TIP2: for large image set, please increase the `num_sample` for t-SNE and NCUT') | |
| gr.Markdown('---') | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section(model_ratio=False) | |
| model_dropdown.value = "AlignedThreeModelAttnNodes" | |
| model_dropdown.visible = False | |
| layer_slider.visible = False | |
| node_type_dropdown.visible = False | |
| num_sample_ncut_slider.value = 10000 | |
| num_sample_tsne_slider.value = 1000 | |
| # logging text box | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| run_fn, | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| # outputs=galleries + [logging_text], | |
| outputs=[output_gallery, logging_text], | |
| ) | |
| with gr.Tab('Model Aligned (Advanced)', visible=False) as tab_model_aligned_advanced: | |
| gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)') | |
| gr.Markdown('---') | |
| gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.') | |
| gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.') | |
| gr.Markdown('') | |
| gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") | |
| gr.Markdown('---') | |
| gr.Markdown('### Output (Recursion #1)') | |
| l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[100], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False, preview=True) | |
| add_rotate_flip_buttons(l1_gallery) | |
| add_download_button(l1_gallery, "modelaligned_recur1") | |
| gr.Markdown('### Output (Recursion #2)') | |
| l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[100], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False, preview=True) | |
| add_rotate_flip_buttons(l2_gallery) | |
| add_download_button(l2_gallery, "modelaligned_recur2") | |
| gr.Markdown('### Output (Recursion #3)') | |
| l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[100], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False, preview=True) | |
| add_rotate_flip_buttons(l3_gallery) | |
| add_download_button(l3_gallery, "modelaligned_recur3") | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
| num_images_slider.value = 100 | |
| with gr.Column(scale=5, min_width=200): | |
| with gr.Accordion("➡️ Recursion config", open=True): | |
| l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") | |
| l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") | |
| l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") | |
| metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") | |
| l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.5, elem_id="recursion_l1_gamma") | |
| l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.5, elem_id="recursion_l2_gamma") | |
| l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") | |
| gr.Markdown('---') | |
| gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)') | |
| gr.Markdown('Layer type: attention output (attn), without sum of residual') | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section(model_ratio=False) | |
| num_eig_slider.visible = False | |
| affinity_focal_gamma_slider.visible = False | |
| model_dropdown.value = "AlignedThreeModelAttnNodes" | |
| model_dropdown.visible = False | |
| layer_slider.visible = False | |
| node_type_dropdown.visible = False | |
| num_sample_ncut_slider.value = 10000 | |
| num_sample_tsne_slider.value = 1000 | |
| # logging text box | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") | |
| true_placeholder.visible = False | |
| false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") | |
| false_placeholder.visible = False | |
| number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") | |
| number_placeholder.visible = False | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=3, advanced=True), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
| false_placeholder, number_placeholder, true_placeholder, | |
| l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, | |
| l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider | |
| ], | |
| outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text], | |
| ) | |
| with gr.Tab('Compare Models'): | |
| def add_one_model(i_model=1): | |
| with gr.Column(scale=5, min_width=200) as col: | |
| gr.Markdown(f'### Output Images') | |
| output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary') | |
| add_rotate_flip_buttons(output_gallery) | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| # logging text box | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| run_fn, | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=[output_gallery, logging_text] | |
| ) | |
| return col | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section() | |
| submit_button.visible = False | |
| for i in range(3): | |
| add_one_model() | |
| # Create rows and buttons in a loop | |
| rows = [] | |
| buttons = [] | |
| for i in range(4): | |
| row = gr.Row(visible=False) | |
| rows.append(row) | |
| with row: | |
| for j in range(4): | |
| with gr.Column(scale=5, min_width=200): | |
| add_one_model() | |
| button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3) | |
| buttons.append(button) | |
| if i > 0: | |
| # Reveal the current row and next button | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row) | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button) | |
| # Hide the current button | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1]) | |
| # Last button only reveals the last row and hides itself | |
| buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1]) | |
| buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1]) | |
| with gr.Tab('Compare Models (Advanced)', visible=False) as tab_compare_models_advanced: | |
| target_images = gr.State([]) | |
| input_images = gr.State([]) | |
| def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images): | |
| with gr.Row(): | |
| # mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
| # mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary') | |
| mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
| fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary') | |
| def mark_fn(images, text="target"): | |
| if images is None: | |
| raise gr.Error("No images selected") | |
| if len(images) == 0: | |
| raise gr.Error("No images selected") | |
| num_images = len(images) | |
| gr.Info(f"Marked {num_images} images as {text}") | |
| images = [(Image.open(tup[0]), []) for tup in images] | |
| return images | |
| mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images]) | |
| # mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images]) | |
| with gr.Accordion("➡️ MLP Parameters", open=False): | |
| num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}") | |
| width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}") | |
| batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}") | |
| lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}") | |
| fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}") | |
| fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}") | |
| segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}") | |
| fit_to_target_button.click( | |
| run_mlp_fit, | |
| inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider], | |
| outputs=[mlp_gallery], | |
| ) | |
| def add_one_model(i_model=1): | |
| with gr.Column(scale=5, min_width=200) as col: | |
| gr.Markdown(f'### Output Images') | |
| output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary') | |
| add_rotate_flip_buttons(output_gallery) | |
| add_download_button(output_gallery, f"ncut_embed") | |
| mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_mlp_fitting_buttons(output_gallery, mlp_gallery) | |
| add_download_button(mlp_gallery, f"mlp_color_align") | |
| norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(norm_gallery, f"eig_norm") | |
| cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(cluster_gallery, f"clusters") | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| # logging text box | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text] | |
| ) | |
| output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery]) | |
| return output_gallery | |
| galleries = [] | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
| submit_button.visible = False | |
| for i in range(3): | |
| g = add_one_model() | |
| galleries.append(g) | |
| # Create rows and buttons in a loop | |
| rows = [] | |
| buttons = [] | |
| for i in range(4): | |
| row = gr.Row(visible=False) | |
| rows.append(row) | |
| with row: | |
| for j in range(4): | |
| with gr.Column(scale=5, min_width=200): | |
| g = add_one_model() | |
| galleries.append(g) | |
| button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3) | |
| buttons.append(button) | |
| if i > 0: | |
| # Reveal the current row and next button | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row) | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button) | |
| # Hide the current button | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1]) | |
| # Last button only reveals the last row and hides itself | |
| buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1]) | |
| buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1]) | |
| with gr.Tab('Directed (dev)', visible=False) as tab_directed_ncut: | |
| target_images = gr.State([]) | |
| input_images = gr.State([]) | |
| def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images): | |
| with gr.Row(): | |
| # mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
| # mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary') | |
| mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary') | |
| fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary') | |
| def mark_fn(images, text="target"): | |
| if images is None: | |
| raise gr.Error("No images selected") | |
| if len(images) == 0: | |
| raise gr.Error("No images selected") | |
| num_images = len(images) | |
| gr.Info(f"Marked {num_images} images as {text}") | |
| images = [(Image.open(tup[0]), []) for tup in images] | |
| return images | |
| mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images]) | |
| # mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images]) | |
| with gr.Accordion("➡️ MLP Parameters", open=False): | |
| num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}") | |
| width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}") | |
| batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}") | |
| lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}") | |
| fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}") | |
| fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}") | |
| segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}") | |
| fit_to_target_button.click( | |
| run_mlp_fit, | |
| inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider], | |
| outputs=[mlp_gallery], | |
| ) | |
| def make_parameters_section_2model(model_ratio=True): | |
| gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>") | |
| from ncut_pytorch.backbone import list_models, get_demo_model_names | |
| model_names = list_models() | |
| model_names = sorted(model_names) | |
| # only CLIP DINO MAE is implemented for q k v | |
| ok_models = ["CLIP(ViT", "DiNO(", "MAE("] | |
| model_names = [m for m in model_names if any(ok in m for ok in ok_models)] | |
| def get_filtered_model_names(name): | |
| return [m for m in model_names if name.lower() in m.lower()] | |
| def get_default_model_name(name): | |
| lst = get_filtered_model_names(name) | |
| if len(lst) > 1: | |
| return lst[1] | |
| return lst[0] | |
| model_radio = gr.Radio(["CLIP", "DiNO", "MAE"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio) | |
| model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False) | |
| model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown]) | |
| layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer") | |
| positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'") | |
| positive_prompt.visible = False | |
| negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'") | |
| negative_prompt.visible = False | |
| node_type_dropdown = gr.Dropdown(['q', 'k', 'v'], | |
| label="Left-side Node Type", value="q", elem_id="node_type", info="In directed case, left-side SVD eigenvector is taken") | |
| node_type_dropdown2 = gr.Dropdown(['q', 'k', 'v'], | |
| label="Right-side Node Type", value="k", elem_id="node_type2") | |
| head_index_text = gr.Textbox(value='all', label="Head Index", elem_id="head_index", type="text", info="which attention heads to use, comma separated, e.g. 0,1,2") | |
| make_symmetric = gr.Checkbox(label="Make Symmetric", value=False, elem_id="make_symmetric", info="make the graph symmetric by A = (A + A.T) / 2") | |
| num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters') | |
| def change_layer_slider(model_name): | |
| # SD2, UNET | |
| if "stable" in model_name.lower() and "diffusion" in model_name.lower(): | |
| from ncut_pytorch.backbone import SD_KEY_DICT | |
| default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23' | |
| return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"), | |
| gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)")) | |
| if model_name == "LISSL(xinlai/LISSL-7B-v1)": | |
| layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] | |
| default_layer = "dec_1_block" | |
| return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""), | |
| gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type")) | |
| layer_dict = LAYER_DICT | |
| if model_name in layer_dict: | |
| value = layer_dict[model_name] | |
| return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="") | |
| else: | |
| value = 12 | |
| return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="") | |
| model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=layer_slider) | |
| def change_prompt_text(model_name): | |
| if model_name in promptable_diffusion_models: | |
| return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True), | |
| gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True)) | |
| return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False), | |
| gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)) | |
| model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt]) | |
| with gr.Accordion("Advanced Parameters: NCUT", open=False): | |
| gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>") | |
| affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation") | |
| num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation") | |
| # sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation") | |
| sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method") | |
| # ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
| ncut_metric_dropdown = gr.Radio(["euclidean", "cosine", "rbf"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric") | |
| ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation") | |
| ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=False, elem_id="ncut_indirect_connection", info="TODO: Indirect connection is not implemented for directed NCUT", interactive=False) | |
| ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization") | |
| with gr.Accordion("Advanced Parameters: Visualization", open=False): | |
| # embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
| embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") | |
| # embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric") | |
| embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="cosine", elem_id="embedding_metric") | |
| num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation") | |
| knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation") | |
| perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity") | |
| n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors") | |
| min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist") | |
| return [model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt] | |
| def add_one_model(i_model=1): | |
| with gr.Column(scale=5, min_width=200) as col: | |
| gr.Markdown(f'### Output Images') | |
| output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary') | |
| add_rotate_flip_buttons(output_gallery) | |
| add_download_button(output_gallery, f"ncut_embed") | |
| mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="450px", show_fullscreen_button=True, interactive=False) | |
| add_mlp_fitting_buttons(output_gallery, mlp_gallery) | |
| add_download_button(mlp_gallery, f"mlp_color_align") | |
| norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(norm_gallery, f"eig_norm") | |
| cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="450px", show_share_button=True, preview=False, interactive=False) | |
| add_download_button(cluster_gallery, f"clusters") | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section_2model() | |
| # logging text box | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True, directed=True), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown, | |
| *[false_placeholder for _ in range(9)], | |
| node_type_dropdown2, head_index_text, make_symmetric | |
| ], | |
| outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text] | |
| ) | |
| output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery]) | |
| return output_gallery | |
| galleries = [] | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True) | |
| submit_button.visible = False | |
| for i in range(3): | |
| g = add_one_model() | |
| galleries.append(g) | |
| # Create rows and buttons in a loop | |
| rows = [] | |
| buttons = [] | |
| for i in range(4): | |
| row = gr.Row(visible=False) | |
| rows.append(row) | |
| with row: | |
| for j in range(4): | |
| with gr.Column(scale=5, min_width=200): | |
| g = add_one_model() | |
| galleries.append(g) | |
| button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3) | |
| buttons.append(button) | |
| if i > 0: | |
| # Reveal the current row and next button | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row) | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button) | |
| # Hide the current button | |
| buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1]) | |
| # Last button only reveals the last row and hides itself | |
| buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1]) | |
| buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1]) | |
| with gr.Tab('Application'): | |
| gr.Markdown("Draw some points on the image to find corrsponding segments in other images. E.g. click on one face to segment all the face. [Video Tutorial](https://ncut-pytorch.readthedocs.io/en/latest/gallery_application/)") | |
| with gr.Row(): | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown("### Step 0: Load Images") | |
| input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(markdown=False) | |
| submit_button.visible = False | |
| num_images_slider.value = 30 | |
| logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown("### Step 1: NCUT Embedding") | |
| output_gallery = make_output_images_section(markdown=False, button=False) | |
| submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') | |
| add_rotate_flip_buttons(output_gallery) | |
| [ | |
| model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| ] = make_parameters_section() | |
| false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| submit_button.click( | |
| partial(run_fn, n_ret=1), | |
| inputs=[ | |
| input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| positive_prompt, negative_prompt, | |
| false_placeholder, no_prompt, no_prompt, no_prompt, | |
| affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| ], | |
| outputs=[output_gallery, logging_text], | |
| ) | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown("### Step 2a: Pick an Image") | |
| from gradio_image_prompter import ImagePrompter | |
| image_type_radio = gr.Radio(["Original", "NCUT"], label="Image Display Type", value="Original", elem_id="image_type_radio") | |
| with gr.Row(): | |
| image1_slider = gr.Slider(0, 100, step=1, label="Image#1 Index", value=0, elem_id="image1_slider", interactive=True) | |
| image2_slider = gr.Slider(0, 100, step=1, label="Image#2 Index", value=1, elem_id="image2_slider", interactive=True) | |
| image3_slider = gr.Slider(0, 100, step=1, label="Image#3 Index", value=2, elem_id="image3_slider", interactive=True) | |
| load_one_image_button = gr.Button("🔴 Load", elem_id="load_one_image_button", variant='primary') | |
| gr.Markdown("### Step 2b: Draw Points") | |
| gr.Markdown(""" | |
| <h5> | |
| 🖱️ Left Click: Foreground </br> | |
| 🖱️ Middle Click: Background </br></br> | |
| Top Right Buttons: </br> | |
| <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" | |
| stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" | |
| style="vertical-align: middle; height: 1em; width: 1em; display: inline;"> | |
| <polyline points="1 4 1 10 7 10"></polyline> | |
| <path d="M3.51 15a9 9 0 1 0 2.13-9.36L1 10"></path> | |
| </svg> : | |
| Remove Last Point | |
| </br> | |
| <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" | |
| style="vertical-align: middle; height: 1em; width: 1em; display: inline;"> | |
| <g fill="none"> | |
| <path fill="currentColor" d="m5.505 11.41l.53.53l-.53-.53ZM3 14.952h-.75H3ZM9.048 21v.75V21ZM11.41 5.505l-.53-.53l.53.53Zm1.831 12.34a.75.75 0 0 0 1.06-1.061l-1.06 1.06ZM7.216 9.697a.75.75 0 1 0-1.06 1.061l1.06-1.06Zm10.749 2.362l-5.905 5.905l1.06 1.06l5.905-5.904l-1.06-1.06Zm-11.93-.12l5.905-5.905l-1.06-1.06l-5.905 5.904l1.06 1.06Zm0 6.025c-.85-.85-1.433-1.436-1.812-1.933c-.367-.481-.473-.79-.473-1.08h-1.5c0 .749.312 1.375.78 1.99c.455.596 1.125 1.263 1.945 2.083l1.06-1.06Zm-1.06-7.086c-.82.82-1.49 1.488-1.945 2.084c-.468.614-.78 1.24-.78 1.99h1.5c0-.29.106-.6.473-1.08c.38-.498.962-1.083 1.812-1.933l-1.06-1.06Zm7.085 7.086c-.85.85-1.435 1.433-1.933 1.813c-.48.366-.79.472-1.08.472v1.5c.75 0 1.376-.312 1.99-.78c.596-.455 1.264-1.125 2.084-1.945l-1.06-1.06Zm-7.085 1.06c.82.82 1.487 1.49 2.084 1.945c.614.468 1.24.78 1.989.78v-1.5c-.29 0-.599-.106-1.08-.473c-.497-.38-1.083-.962-1.933-1.812l-1.06 1.06Zm12.99-12.99c.85.85 1.433 1.436 1.813 1.933c.366.481.472.79.472 1.08h1.5c0-.749-.312-1.375-.78-1.99c-.455-.596-1.125-1.263-1.945-2.083l-1.06 1.06Zm1.06 7.086c.82-.82 1.49-1.488 1.945-2.084c.468-.614.78-1.24.78-1.99h-1.5c0 .29-.106.6-.473 1.08c-.38.498-.962 1.083-1.812 1.933l1.06 1.06Zm0-8.146c-.82-.82-1.487-1.49-2.084-1.945c-.614-.468-1.24-.78-1.989-.78v1.5c.29 0 .599.106 1.08.473c.497.38 1.083.962 1.933 1.812l1.06-1.06Zm-7.085 1.06c.85-.85 1.435-1.433 1.933-1.812c.48-.367.79-.473 1.08-.473v-1.5c-.75 0-1.376.312-1.99.78c-.596.455-1.264 1.125-2.084 1.945l1.06 1.06Zm2.362 10.749L7.216 9.698l-1.06 1.061l7.085 7.085l1.06-1.06Z"></path> | |
| <path stroke="currentColor" stroke-linecap="round" stroke-width="1.5" d="M9 21h12"></path></g> | |
| </svg> : | |
| Clear All Points | |
| </br> | |
| (Known issue: please manually clear the points after loading new image) | |
| </h5> | |
| """) | |
| prompt_image1 = ImagePrompter(show_label=False, elem_id="prompt_image1", interactive=False) | |
| prompt_image2 = ImagePrompter(show_label=False, elem_id="prompt_image2", interactive=False) | |
| prompt_image3 = ImagePrompter(show_label=False, elem_id="prompt_image3", interactive=False) | |
| # def update_number_of_images(images): | |
| # if images is None: | |
| # return gr.update(max=0, value=0) | |
| # return gr.update(max=len(images)-1, value=1) | |
| # input_gallery.change(update_number_of_images, inputs=input_gallery, outputs=image1_slider) | |
| def update_prompt_image(original_images, ncut_images, image_type, index): | |
| if image_type == "Original": | |
| images = original_images | |
| else: | |
| images = ncut_images | |
| if images is None: | |
| return | |
| total_len = len(images) | |
| if total_len == 0: | |
| return | |
| if index >= total_len: | |
| index = total_len - 1 | |
| return ImagePrompter(value={'image': images[index][0], 'points': []}, interactive=True) | |
| # return gr.Image(value=images[index][0], elem_id=f"prompt_image{randint}", interactive=True) | |
| load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image1_slider], outputs=[prompt_image1]) | |
| load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image2_slider], outputs=[prompt_image2]) | |
| load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image3_slider], outputs=[prompt_image3]) | |
| image3_slider.visible = False | |
| prompt_image3.visible = False | |
| with gr.Column(scale=5, min_width=200): | |
| gr.Markdown("### Step 3: Segment and Crop") | |
| mask_gallery = gr.Gallery(value=[], label="Segmentation Masks", show_label=True, elem_id="mask_gallery", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, interactive=False) | |
| run_crop_button = gr.Button("🔴 RUN", elem_id="run_crop_button", variant='primary') | |
| add_download_button(mask_gallery, "mask") | |
| distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (FG)", value=0.9, elem_id="distance_threshold", info="increase for smaller FG mask") | |
| fg_contrast_slider = gr.Slider(0, 2, step=0.01, label="Mask Scaling (FG)", value=1, elem_id="distance_focal", info="increase for smaller FG mask", visible=True) | |
| negative_distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (BG)", value=0.9, elem_id="distance_threshold", info="increase for less BG removal") | |
| bg_contrast_slider = gr.Slider(0, 2, step=0.01, label="Mask Scaling (BG)", value=1, elem_id="distance_focal", info="increase for less BG removal", visible=True) | |
| overlay_image_checkbox = gr.Checkbox(label="Overlay Original Image", value=True, elem_id="overlay_image_checkbox") | |
| # filter_small_area_checkbox = gr.Checkbox(label="Noise Reduction", value=True, elem_id="filter_small_area_checkbox") | |
| distance_power_slider = gr.Slider(-3, 3, step=0.01, label="Distance Power", value=0.5, elem_id="distance_power", info="d = d^p", visible=False) | |
| crop_gallery = gr.Gallery(value=[], label="Cropped Images", show_label=True, elem_id="crop_gallery", columns=[3], rows=[1], object_fit="contain", height="450px", show_share_button=True, interactive=False) | |
| add_download_button(crop_gallery, "cropped") | |
| crop_expand_slider = gr.Slider(1.0, 2.0, step=0.1, label="Crop bbox Expand Factor", value=1.0, elem_id="crop_expand", info="increase for larger crop", visible=True) | |
| area_threshold_slider = gr.Slider(0, 100, step=0.1, label="Area Threshold (%)", value=3, elem_id="area_threshold", info="for noise filtering (area of connected components)", visible=False) | |
| # logging_image = gr.Image(value=None, label="Logging Image", elem_id="logging_image", interactive=False) | |
| # prompt_image.change(lambda x: gr.update(value=x.get('image', None)), inputs=prompt_image, outputs=[logging_image]) | |
| def relative_xy(prompts): | |
| image = prompts['image'] | |
| points = np.asarray(prompts['points']) | |
| if points.shape[0] == 0: | |
| return [], [] | |
| is_point = points[:, 5] == 4.0 | |
| points = points[is_point] | |
| is_positive = points[:, 2] == 1.0 | |
| is_negative = points[:, 2] == 0.0 | |
| xy = points[:, :2].tolist() | |
| if isinstance(image, str): | |
| image = Image.open(image) | |
| image = np.array(image) | |
| h, w = image.shape[:2] | |
| new_xy = [(x/w, y/h) for x, y in xy] | |
| # print(new_xy) | |
| return new_xy, is_positive | |
| def xy_rgb(prompts, image_idx, ncut_images): | |
| image = ncut_images[image_idx] | |
| xy, is_positive = relative_xy(prompts) | |
| rgbs = [] | |
| for i, (x, y) in enumerate(xy): | |
| rgb = image.getpixel((int(x*image.width), int(y*image.height))) | |
| rgbs.append((rgb, is_positive[i])) | |
| return rgbs | |
| def run_crop(original_images, ncut_images, prompts1, prompts2, prompts3, image_idx1, image_idx2, image_idx3, | |
| crop_expand, distance_threshold, distance_power, area_threshold, overlay_image, negative_distance_threshold, | |
| fg_contrast, bg_contrast): | |
| ncut_images = [image[0] for image in ncut_images] | |
| if len(ncut_images) == 0: | |
| return [] | |
| if isinstance(ncut_images[0], str): | |
| ncut_images = [Image.open(image) for image in ncut_images] | |
| rgbs = xy_rgb(prompts1, image_idx1, ncut_images) + \ | |
| xy_rgb(prompts2, image_idx2, ncut_images) + \ | |
| xy_rgb(prompts3, image_idx3, ncut_images) | |
| # print(rgbs) | |
| ncut_images = [np.array(image).astype(np.float32) for image in ncut_images] | |
| ncut_pixels = [image.reshape(-1, 3) for image in ncut_images] | |
| h, w = ncut_images[0].shape[:2] | |
| ncut_pixels = torch.tensor(np.array(ncut_pixels).reshape(-1, 3)) / 255 | |
| # normalized_ncut_pixels = F.normalize(ncut_pixels, p=2, dim=-1) | |
| def to_mask(heatmap, threshold, gamma): | |
| heatmap = (heatmap - heatmap.mean()) / heatmap.std() | |
| heatmap = heatmap.double() | |
| heatmap = torch.exp(heatmap) | |
| # heatmap = 1 / (heatmap + 1e-6) | |
| heatmap = 1 / heatmap ** gamma | |
| # import math | |
| # heatmap = 1 / heatmap ** math.log(6.1 - gamma) | |
| if heatmap.shape[0] > 10000: | |
| np.random.seed(0) | |
| random_idx = np.random.choice(heatmap.shape[0], 10000, replace=False) | |
| vmin, vmax = heatmap[random_idx].quantile(0.01), heatmap[random_idx].quantile(0.99) | |
| else: | |
| vmin, vmax = heatmap.quantile(0.01), heatmap.quantile(0.99) | |
| heatmap = (heatmap - vmin) / (vmax - vmin) | |
| heatmap = heatmap.reshape(len(ncut_images), h, w) | |
| mask = heatmap > threshold | |
| return mask | |
| positive_masks, negative_masks = [], [] | |
| for rgb, is_positive in rgbs: | |
| rgb = torch.tensor(rgb).float() / 255 | |
| distance = (ncut_pixels - rgb[None]).norm(dim=-1) | |
| distance = distance.squeeze(-1) | |
| if is_positive: | |
| positive_masks.append(to_mask(distance, distance_threshold, fg_contrast)) | |
| else: | |
| negative_masks.append(to_mask(distance, negative_distance_threshold, bg_contrast)) | |
| if len(positive_masks) == 0: | |
| raise gr.Error("No prompt points. Please draw some points on the image.") | |
| positive_masks = torch.stack(positive_masks) | |
| positive_mask = positive_masks.any(dim=0) | |
| if len(negative_masks) > 0: | |
| negative_masks = torch.stack(negative_masks) | |
| negative_mask = negative_masks.any(dim=0) | |
| positive_mask = positive_mask & ~negative_mask | |
| # convert to PIL | |
| mask = positive_mask.cpu().numpy() | |
| mask = mask.astype(np.uint8) * 255 | |
| import cv2 | |
| def get_bboxes_and_clean_mask(mask, min_area=500): | |
| """ | |
| Args: | |
| - mask: A numpy image of a binary mask with 255 for the object and 0 for the background. | |
| - min_area: Minimum area for a connected component to be considered valid (default 500). | |
| Returns: | |
| - bounding_boxes: List of bounding boxes for valid objects (x, y, width, height). | |
| - cleaned_pil_mask: A Pillow image of the cleaned mask, with small components removed. | |
| """ | |
| # Ensure the mask is binary (0 or 255) | |
| mask = np.where(mask > 127, 255, 0).astype(np.uint8) | |
| # Remove small noise using morphological operations (denoising) | |
| kernel = np.ones((5, 5), np.uint8) | |
| cleaned_mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) | |
| # Find connected components in the cleaned mask | |
| num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(cleaned_mask, connectivity=8) | |
| # Initialize an empty mask to store the final cleaned mask | |
| final_cleaned_mask = np.zeros_like(cleaned_mask) | |
| # Collect bounding boxes for components that are larger than the threshold and update the cleaned mask | |
| bounding_boxes = [] | |
| for i in range(1, num_labels): # Skip label 0 (background) | |
| x, y, w, h, area = stats[i] | |
| if area >= min_area: | |
| # Add the bounding box of the valid component | |
| bounding_boxes.append((x, y, w, h)) | |
| # Keep the valid components in the final cleaned mask | |
| final_cleaned_mask[labels == i] = 255 | |
| # Convert the final cleaned mask back to a Pillow image | |
| cleaned_pil_mask = Image.fromarray(final_cleaned_mask) | |
| return bounding_boxes, cleaned_pil_mask | |
| bboxs, filtered_masks = zip(*[get_bboxes_and_clean_mask(_mask) for _mask in mask]) | |
| original_images = [image[0] for image in original_images] | |
| if isinstance(original_images[0], str): | |
| original_images = [Image.open(image) for image in original_images] | |
| # combine the masks, also draw the bounding boxes | |
| combined_masks = [] | |
| for i_image in range(len(mask)): | |
| noisy_mask = np.array(mask[i_image]) | |
| bbox = bboxs[i_image] | |
| clean_mask = np.array(filtered_masks[i_image]) | |
| combined_mask = noisy_mask * 0.4 + clean_mask | |
| combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8) | |
| if overlay_image: | |
| # add empty red and green channel | |
| combined_mask = np.stack([np.zeros_like(combined_mask), np.zeros_like(combined_mask), combined_mask], axis=-1) | |
| _image = original_images[i_image].convert("RGB").resize((combined_mask.shape[1], combined_mask.shape[0])) | |
| _image = np.array(_image) | |
| combined_mask = 0.5 * combined_mask + 0.5 * _image | |
| combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8) | |
| for x, y, w, h in bbox: | |
| cv2.rectangle(combined_mask, (x-1, y-1), (x + w+2, y + h+2), (255, 0, 0), 2) | |
| combined_mask = Image.fromarray(combined_mask) | |
| combined_masks.append(combined_mask) | |
| def extend_the_mask(xywh, factor=1.5): | |
| x, y, w, h = xywh | |
| x -= w * (factor - 1) / 2 | |
| y -= h * (factor - 1) / 2 | |
| w *= factor | |
| h *= factor | |
| return x, y, w, h | |
| def resize_the_mask(xywh, original_size, target_size): | |
| x, y, w, h = xywh | |
| x *= target_size[0] / original_size[0] | |
| y *= target_size[1] / original_size[1] | |
| w *= target_size[0] / original_size[0] | |
| h *= target_size[1] / original_size[1] | |
| x, y, w, h = int(x), int(y), int(w), int(h) | |
| return x, y, w, h | |
| def crop_image(image, xywh, mask_h, mask_w, factor=1.0): | |
| x, y, w, h = xywh | |
| x, y, w, h = resize_the_mask((x, y, w, h), (mask_h, mask_w), image.size) | |
| _x, _y, _w, _h = extend_the_mask((x, y, w, h), factor=factor) | |
| crop = image.crop((_x, _y, _x + _w, _y + _h)) | |
| return crop | |
| mask_h, mask_w = filtered_masks[0].size | |
| cropped_images = [] | |
| for _image, _bboxs in zip(original_images, bboxs): | |
| for _bbox in _bboxs: | |
| cropped_images.append(crop_image(_image, _bbox, mask_h, mask_w, factor=crop_expand)) | |
| return combined_masks, cropped_images | |
| run_crop_button.click(run_crop, | |
| inputs=[input_gallery, output_gallery, prompt_image1, prompt_image2, prompt_image3, image1_slider, image2_slider, image3_slider, | |
| crop_expand_slider, distance_threshold_slider, distance_power_slider, | |
| area_threshold_slider, overlay_image_checkbox, negative_distance_threshold_slider, | |
| fg_contrast_slider, bg_contrast_slider], | |
| outputs=[mask_gallery, crop_gallery]) | |
| # with gr.Tab('PlayGround (test)', visible=False) as test_playground_tab: | |
| # eigvecs = gr.State(np.array([])) | |
| # with gr.Row(): | |
| # with gr.Column(scale=5, min_width=200): | |
| # gr.Markdown("### Step 1: Load Images and Run NCUT") | |
| # input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(n_example_images=100) | |
| # # submit_button.visible = False | |
| # num_images_slider.value = 30 | |
| # [ | |
| # model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, | |
| # affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| # embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| # perplexity_slider, n_neighbors_slider, min_dist_slider, | |
| # sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt | |
| # ] = make_parameters_section(ncut_parameter_dropdown=False) | |
| # num_eig_slider.value = 1000 | |
| # num_eig_slider.visible = False | |
| # logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) | |
| # false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) | |
| # no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) | |
| # submit_button.click( | |
| # partial(run_fn, n_ret=1, only_eigvecs=True), | |
| # inputs=[ | |
| # input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, | |
| # positive_prompt, negative_prompt, | |
| # false_placeholder, no_prompt, no_prompt, no_prompt, | |
| # affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, | |
| # embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, | |
| # perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown | |
| # ], | |
| # outputs=[eigvecs, logging_text], | |
| # ) | |
| # with gr.Column(scale=5, min_width=200): | |
| # gr.Markdown("### Step 2a: Pick an Image") | |
| # from gradio_image_prompter import ImagePrompter | |
| # with gr.Row(): | |
| # image1_slider = gr.Slider(0, 100, step=1, label="Image#1 Index", value=0, elem_id="image1_slider", interactive=True) | |
| # load_one_image_button = gr.Button("🔴 Load", elem_id="load_one_image_button", variant='primary') | |
| # gr.Markdown("### Step 2b: Draw a Point") | |
| # gr.Markdown(""" | |
| # <h5> | |
| # 🖱️ Left Click: Foreground </br> | |
| # </h5> | |
| # """) | |
| # prompt_image1 = ImagePrompter(show_label=False, elem_id="prompt_image1", interactive=False) | |
| # def update_prompt_image(original_images, index): | |
| # images = original_images | |
| # if images is None: | |
| # return | |
| # total_len = len(images) | |
| # if total_len == 0: | |
| # return | |
| # if index >= total_len: | |
| # index = total_len - 1 | |
| # return ImagePrompter(value={'image': images[index][0], 'points': []}, interactive=True) | |
| # # return gr.Image(value=images[index][0], elem_id=f"prompt_image{randint}", interactive=True) | |
| # load_one_image_button.click(update_prompt_image, inputs=[input_gallery, image1_slider], outputs=[prompt_image1]) | |
| # child_idx = gr.State([]) | |
| # current_idx = gr.State(None) | |
| # n_eig = gr.State(64) | |
| # with gr.Column(scale=5, min_width=200): | |
| # gr.Markdown("### Step 3: Check groupping") | |
| # child_distance_slider = gr.Slider(0, 0.5, step=0.001, label="Child Distance", value=0.1, elem_id="child_distance_slider", interactive=True) | |
| # overlay_image_checkbox = gr.Checkbox(label="Overlay Image", value=True, elem_id="overlay_image_checkbox", interactive=True) | |
| # run_button = gr.Button("🔴 RUN", elem_id="run_groupping", variant='primary') | |
| # parent_plot = gr.Gallery(value=None, label="Parent", show_label=True, elem_id="parent_plot", interactive=False, rows=[1], columns=[2]) | |
| # parent_button = gr.Button("Use Parent", elem_id="run_parent") | |
| # current_plot = gr.Gallery(value=None, label="Current", show_label=True, elem_id="current_plot", interactive=False, rows=[1], columns=[2]) | |
| # with gr.Column(scale=5, min_width=200): | |
| # child_plots = [] | |
| # child_buttons = [] | |
| # for i in range(4): | |
| # child_plots.append(gr.Gallery(value=None, label=f"Child {i}", show_label=True, elem_id=f"child_plot_{i}", interactive=False, rows=[1], columns=[2])) | |
| # child_buttons.append(gr.Button(f"Use Child {i}", elem_id=f"run_child_{i}")) | |
| # def relative_xy(prompts): | |
| # image = prompts['image'] | |
| # points = np.asarray(prompts['points']) | |
| # if points.shape[0] == 0: | |
| # return [], [] | |
| # is_point = points[:, 5] == 4.0 | |
| # points = points[is_point] | |
| # is_positive = points[:, 2] == 1.0 | |
| # is_negative = points[:, 2] == 0.0 | |
| # xy = points[:, :2].tolist() | |
| # if isinstance(image, str): | |
| # image = Image.open(image) | |
| # image = np.array(image) | |
| # h, w = image.shape[:2] | |
| # new_xy = [(x/w, y/h) for x, y in xy] | |
| # # print(new_xy) | |
| # return new_xy, is_positive | |
| # def xy_eigvec(prompts, image_idx, eigvecs): | |
| # eigvec = eigvecs[image_idx] | |
| # xy, is_positive = relative_xy(prompts) | |
| # for i, (x, y) in enumerate(xy): | |
| # if not is_positive[i]: | |
| # continue | |
| # x = int(x * eigvec.shape[1]) | |
| # y = int(y * eigvec.shape[0]) | |
| # return eigvec[y, x], (y, x) | |
| # from ncut_pytorch.ncut_pytorch import _transform_heatmap | |
| # def _run_heatmap_fn(images, eigvecs, prompt_image_idx, prompt_points, n_eig, flat_idx=None, raw_heatmap=False, overlay_image=True): | |
| # left = eigvecs[..., :n_eig] | |
| # if flat_idx is not None: | |
| # right = eigvecs.reshape(-1, eigvecs.shape[-1])[flat_idx] | |
| # y, x = None, None | |
| # else: | |
| # right, (y, x) = xy_eigvec(prompt_points, prompt_image_idx, eigvecs) | |
| # right = right[:n_eig] | |
| # left = F.normalize(left, p=2, dim=-1) | |
| # _right = F.normalize(right, p=2, dim=-1) | |
| # heatmap = left @ _right.unsqueeze(-1) | |
| # heatmap = heatmap.squeeze(-1) | |
| # heatmap = 1 - heatmap | |
| # heatmap = _transform_heatmap(heatmap) | |
| # if raw_heatmap: | |
| # return heatmap | |
| # # apply hot colormap and covert to PIL image 256x256 | |
| # heatmap = heatmap.cpu().numpy() | |
| # hot_map = matplotlib.colormaps['hot'] | |
| # heatmap = hot_map(heatmap) | |
| # pil_images = to_pil_images(torch.tensor(heatmap), target_size=256, force_size=True) | |
| # if overlay_image: | |
| # overlaied_images = [] | |
| # for i_image in range(len(images)): | |
| # rgb_image = images[i_image].resize((256, 256)) | |
| # rgb_image = np.array(rgb_image) | |
| # heatmap_image = np.array(pil_images[i_image])[..., :3] | |
| # blend_image = 0.5 * rgb_image + 0.5 * heatmap_image | |
| # blend_image = Image.fromarray(blend_image.astype(np.uint8)) | |
| # overlaied_images.append(blend_image) | |
| # pil_images = overlaied_images | |
| # return pil_images, (y, x) | |
| # def _farthest_point_sampling( | |
| # features, | |
| # start_feature, | |
| # num_sample=300, | |
| # h=9, | |
| # ): | |
| # import fpsample | |
| # h = min(h, int(np.log2(features.shape[0]))) | |
| # inp = features.cpu().numpy() | |
| # inp = np.concatenate([inp, start_feature[None, :]], axis=0) | |
| # kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling( | |
| # inp, num_sample, h, start_idx=inp.shape[0] - 1 | |
| # ).astype(np.int64) | |
| # return kdline_fps_samples_idx | |
| # @torch.no_grad() | |
| # def run_heatmap(images, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, flat_idx=None, overlay_image=True): | |
| # gr.Info(f"current number of eigenvectors: {n_eig}") | |
| # eigvecs = torch.tensor(eigvecs) | |
| # image1_slider = min(image1_slider, len(images)-1) | |
| # images = [image[0] for image in images] | |
| # if isinstance(images[0], str): | |
| # images = [Image.open(image[0]).convert("RGB").resize((256, 256)) for image in images] | |
| # current_heatmap, (y, x) = _run_heatmap_fn(images, eigvecs, image1_slider, prompt_image1, n_eig, flat_idx, overlay_image=overlay_image) | |
| # parent_heatmap, _ = _run_heatmap_fn(images, eigvecs, image1_slider, prompt_image1, int(n_eig/2), flat_idx, overlay_image=overlay_image) | |
| # # find childs | |
| # # pca_eigvecs | |
| # _eigvecs = eigvecs.reshape(-1, eigvecs.shape[-1]) | |
| # u, s, v = torch.pca_lowrank(_eigvecs, q=8) | |
| # _n = _eigvecs.shape[0] | |
| # s /= math.sqrt(_n) | |
| # _eigvecs = u @ torch.diag(s) | |
| # if flat_idx is None: | |
| # _picked_eigvec = _eigvecs.reshape(*eigvecs.shape[:-1], 8)[image1_slider, y, x] | |
| # else: | |
| # _picked_eigvec = _eigvecs[flat_idx] | |
| # l2_distance = torch.norm(_eigvecs - _picked_eigvec, dim=-1) | |
| # average_distance = l2_distance.mean() | |
| # distance_threshold = distance_slider * average_distance | |
| # distance_mask = l2_distance < distance_threshold | |
| # masked_eigvecs = _eigvecs[distance_mask] | |
| # num_childs = min(4, masked_eigvecs.shape[0]) | |
| # assert num_childs > 0 | |
| # child_idx = _farthest_point_sampling(masked_eigvecs, _picked_eigvec, num_sample=num_childs+1) | |
| # child_idx = np.sort(child_idx)[:-1] | |
| # # convert child_idx to flat_idx | |
| # dummy_idx = torch.zeros(_eigvecs.shape[0], dtype=torch.bool) | |
| # dummy_idx2 = torch.zeros(int(distance_mask.sum().item()), dtype=torch.bool) | |
| # dummy_idx2[child_idx] = True | |
| # dummy_idx[distance_mask] = dummy_idx2 | |
| # child_idx = torch.where(dummy_idx)[0] | |
| # # current_child heatmap, for contrast | |
| # current_child_heatmap = _run_heatmap_fn(images,eigvecs, image1_slider, prompt_image1, int(n_eig*2), flat_idx, raw_heatmap=True, overlay_image=overlay_image) | |
| # # child_heatmaps, contrast mean of current clicked point | |
| # child_heatmaps = [] | |
| # for idx in child_idx: | |
| # child_heatmap = _run_heatmap_fn(images,eigvecs, image1_slider, prompt_image1, int(n_eig*2), idx, raw_heatmap=True, overlay_image=overlay_image) | |
| # heatmap = child_heatmap - current_child_heatmap | |
| # # convert [-1, 1] to [0, 1] | |
| # heatmap = (heatmap + 1) / 2 | |
| # heatmap = heatmap.cpu().numpy() | |
| # cm = matplotlib.colormaps['bwr'] | |
| # heatmap = cm(heatmap) | |
| # # bwr with contrast | |
| # pil_images1 = to_pil_images(torch.tensor(heatmap), resize=256) | |
| # # no contrast | |
| # pil_images2, _ = _run_heatmap_fn(images, eigvecs, image1_slider, prompt_image1, int(n_eig*2), idx, overlay_image=overlay_image) | |
| # # combine contrast and no contrast | |
| # pil_images = [] | |
| # for i in range(len(pil_images1)): | |
| # pil_images.append(pil_images2[i]) | |
| # pil_images.append(pil_images1[i]) | |
| # child_heatmaps.append(pil_images) | |
| # return parent_heatmap, current_heatmap, *child_heatmaps, child_idx.tolist() | |
| # # def debug_fn(eigvecs): | |
| # # shape = eigvecs.shape | |
| # # gr.Info(f"eigvecs shape: {shape}") | |
| # # run_button.click( | |
| # # debug_fn, | |
| # # inputs=[eigvecs], | |
| # # outputs=[], | |
| # # ) | |
| # none_placeholder = gr.State(None) | |
| # run_button.click( | |
| # run_heatmap, | |
| # inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, child_distance_slider, none_placeholder, overlay_image_checkbox], | |
| # outputs=[parent_plot, current_plot, *child_plots, child_idx], | |
| # ) | |
| # def run_paraent(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, current_idx=None, overlay_image=True): | |
| # n_eig = int(n_eig/2) | |
| # return n_eig, *run_heatmap(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, current_idx, overlay_image) | |
| # parent_button.click( | |
| # run_paraent, | |
| # inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, child_distance_slider, current_idx, overlay_image_checkbox], | |
| # outputs=[n_eig, parent_plot, current_plot, *child_plots, child_idx], | |
| # ) | |
| # def run_child(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, child_idx=[], overlay_image=True, i_child=0): | |
| # n_eig = int(n_eig*2) | |
| # flat_idx = child_idx[i_child] | |
| # return n_eig, flat_idx, *run_heatmap(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, flat_idx, overlay_image) | |
| # for i in range(4): | |
| # child_buttons[i].click( | |
| # partial(run_child, i_child=i), | |
| # inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, child_distance_slider, child_idx, overlay_image_checkbox], | |
| # outputs=[n_eig, current_idx, parent_plot, current_plot, *child_plots, child_idx], | |
| # ) | |
| with gr.Tab('📄About'): | |
| with gr.Column(): | |
| gr.Markdown("**This demo is for Python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/)**") | |
| gr.Markdown("**All the models and functions used for this demo are in the Python package `ncut-pytorch`**") | |
| gr.Markdown("---") | |
| gr.Markdown("---") | |
| gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.") | |
| gr.Markdown("*Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000*") | |
| gr.Markdown("---") | |
| gr.Markdown("**We have improved NCut, with some advanced features:**") | |
| gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).") | |
| gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.") | |
| gr.Markdown("*paper in prep, Yang 2024*") | |
| gr.Markdown("*AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee\*, and Jianbo Shi\*, 2024*") | |
| gr.Markdown("---") | |
| gr.Markdown("---") | |
| gr.Markdown('<p style="text-align: center;">We thank HuggingFace for hosting this demo.</p>') | |
| # unlock the hidden tab | |
| with gr.Row(): | |
| with gr.Column(scale=5): | |
| gr.Markdown("") | |
| with gr.Column(scale=5): | |
| hidden_button = gr.Checkbox(label="🤗", value=False, elem_id="unlock_button", visible=True, interactive=True) | |
| with gr.Column(scale=5): | |
| gr.Markdown("") | |
| n_smiles = gr.State(0) | |
| unlock_value = 6 | |
| def update_smile(n_smiles): | |
| n_smiles = n_smiles + 1 | |
| n_smiles = unlock_value if n_smiles > unlock_value else n_smiles | |
| if n_smiles == unlock_value - 2: | |
| gr.Info("click one more time to unlock", 2) | |
| if n_smiles == unlock_value: | |
| label = "🔓 unlocked" | |
| return n_smiles, gr.update(label=label, value=True, interactive=False) | |
| label = ["😊"] * n_smiles | |
| label = "".join(label) | |
| return n_smiles, gr.update(label=label, value=False) | |
| def unlock_tabs(n_smiles, n_tab=1): | |
| if n_smiles == unlock_value: | |
| gr.Info("🔓 unlocked tabs", 2) | |
| return [gr.update(visible=True)] * n_tab | |
| return [gr.update()] * n_tab | |
| hidden_button.change(update_smile, [n_smiles], [n_smiles, hidden_button]) | |
| hidden_tabs = [tab_alignedcut_advanced, tab_model_aligned_advanced, tab_recursivecut_advanced, | |
| tab_compare_models_advanced, tab_directed_ncut, tab_aligned, tab_lisa] | |
| hidden_button.change(partial(unlock_tabs, n_tab=len(hidden_tabs)), [n_smiles], hidden_tabs) | |
| with gr.Row(): | |
| gr.Markdown("**This demo is for Python package `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/)**") | |
| # for local development | |
| if os.path.exists("/hf_token.txt"): | |
| os.environ["HF_ACCESS_TOKEN"] = open("/hf_token.txt").read().strip() | |
| if DOWNLOAD_ALL_MODELS_DATASETS: | |
| from ncut_pytorch.backbone import download_all_models | |
| # t1 = threading.Thread(target=download_all_models).start() | |
| # t1.join() | |
| # t3 = threading.Thread(target=download_all_datasets).start() | |
| # t3.join() | |
| download_all_models() | |
| download_all_datasets() | |
| from ncut_pytorch.backbone_text import download_all_models | |
| # t2 = threading.Thread(target=download_all_models).start() | |
| # t2.join() | |
| download_all_models() | |
| demo.launch(share=True) | |
| # # %% | |
| # # debug | |
| # # change working directory to "/" | |
| # os.chdir("/") | |
| # images = [(Image.open(image), None) for image in default_images] | |
| # ret = run_fn(images, num_eig=30) | |
| # # %% | |
| # %% | |
| # %% | |
| # %% | |
| # %% | |
| # %% | |
| # %% | |
| # %% | |
| # %% | |
| # %% | |
| # %% | |