Spaces:
Running
Running
File size: 6,127 Bytes
6ab17a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Common Training Patterns
This guide provides common training patterns and use cases for TRL on Hugging Face Jobs.
## Multi-GPU Training
Automatic distributed training across multiple GPUs. TRL/Accelerate handles distribution automatically:
```python
hf_jobs("uv", {
"script": """
# Your training script here (same as single GPU)
# No changes needed - Accelerate detects multiple GPUs
""",
"flavor": "a10g-largex2", # 2x A10G GPUs
"timeout": "4h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
**Tips for multi-GPU:**
- No code changes needed
- Use `per_device_train_batch_size` (per GPU, not total)
- Effective batch size = `per_device_train_batch_size` Γ `num_gpus` Γ `gradient_accumulation_steps`
- Monitor GPU utilization to ensure both GPUs are being used
## DPO Training (Preference Learning)
Train with preference data for alignment:
```python
hf_jobs("uv", {
"script": """
# /// script
# dependencies = ["trl>=0.12.0", "trackio"]
# ///
from datasets import load_dataset
from trl import DPOTrainer, DPOConfig
import trackio
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Create train/eval split
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
config = DPOConfig(
output_dir="dpo-model",
push_to_hub=True,
hub_model_id="username/dpo-model",
num_train_epochs=1,
beta=0.1, # KL penalty coefficient
eval_strategy="steps",
eval_steps=50,
report_to="trackio",
run_name="baseline_run", # use a meaningful run name
# max_length=1024, # Default - only set if you need different sequence length
)
trainer = DPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # Use instruct model as base
train_dataset=dataset_split["train"],
eval_dataset=dataset_split["test"], # IMPORTANT: Provide eval_dataset when eval_strategy is enabled
args=config,
)
trainer.train()
trainer.push_to_hub()
trackio.finish()
""",
"flavor": "a10g-large",
"timeout": "3h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
**For DPO documentation:** Use `hf_doc_fetch("https://huggingface.co/docs/trl/dpo_trainer")`
## GRPO Training (Online RL)
Group Relative Policy Optimization for online reinforcement learning:
```python
hf_jobs("uv", {
"script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/grpo.py",
"script_args": [
"--model_name_or_path", "Qwen/Qwen2.5-0.5B-Instruct",
"--dataset_name", "trl-lib/math_shepherd",
"--output_dir", "grpo-model",
"--push_to_hub",
"--hub_model_id", "username/grpo-model"
],
"flavor": "a10g-large",
"timeout": "4h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
**For GRPO documentation:** Use `hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")`
## Trackio Configuration
**Use sensible defaults for trackio setup.** See `references/trackio_guide.md` for complete documentation including grouping runs for experiments.
### Basic Pattern
```python
import trackio
trackio.init(
project="my-training",
run_name="baseline-run", # Descriptive name user will recognize
space_id="username/trackio", # Default space: {username}/trackio
config={
# Keep config minimal - hyperparameters and model/dataset info only
"model": "Qwen/Qwen2.5-0.5B",
"dataset": "trl-lib/Capybara",
"learning_rate": 2e-5,
}
)
# Your training code...
trackio.finish()
```
### Grouping for Experiments (Optional)
When user wants to compare related runs, use the `group` parameter:
```python
# Hyperparameter sweep
trackio.init(project="hyperparam-sweep", run_name="lr-0.001", group="lr_0.001")
trackio.init(project="hyperparam-sweep", run_name="lr-0.01", group="lr_0.01")
```
## Pattern Selection Guide
| Use Case | Pattern | Hardware | Time |
|----------|---------|----------|------|
| SFT training | `scripts/train_sft_example.py` | a10g-large | 2-6 hours |
| Large dataset (>10K) | Multi-GPU | a10g-largex2 | 4-12 hours |
| Preference learning | DPO Training | a10g-large | 2-4 hours |
| Online RL | GRPO Training | a10g-large | 3-6 hours |
## Critical: Evaluation Dataset Requirements
**β οΈ IMPORTANT**: If you set `eval_strategy="steps"` or `eval_strategy="epoch"`, you **MUST** provide an `eval_dataset` to the trainer, or the training will hang.
### β
CORRECT - With eval dataset:
```python
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset_split["train"],
eval_dataset=dataset_split["test"], # β MUST provide when eval_strategy is enabled
args=SFTConfig(eval_strategy="steps", ...),
)
```
### β WRONG - Will hang:
```python
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
# NO eval_dataset but eval_strategy="steps" β WILL HANG
args=SFTConfig(eval_strategy="steps", ...),
)
```
### Option: Disable evaluation if no eval dataset
```python
config = SFTConfig(
eval_strategy="no", # β Explicitly disable evaluation
# ... other config
)
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
# No eval_dataset needed
args=config,
)
```
## Best Practices
1. **Use train/eval splits** - Create evaluation split for monitoring progress
2. **Enable Trackio** - Monitor progress in real-time
3. **Add 20-30% buffer to timeout** - Account for loading/saving overhead
4. **Test with TRL official scripts first** - Use maintained examples before custom code
5. **Always provide eval_dataset** - When using eval_strategy, or set to "no"
6. **Use multi-GPU for large models** - 7B+ models benefit significantly
## See Also
- `scripts/train_sft_example.py` - Complete SFT template with Trackio and eval split
- `scripts/train_dpo_example.py` - Complete DPO template
- `scripts/train_grpo_example.py` - Complete GRPO template
- `references/hardware_guide.md` - Detailed hardware specifications
- `references/training_methods.md` - Overview of all TRL training methods
- `references/troubleshooting.md` - Common issues and solutions
|