Spaces:
Running
Running
tts x hallo ui integration
Browse files
app.py
CHANGED
|
@@ -13,9 +13,15 @@ import uuid
|
|
| 13 |
|
| 14 |
is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] else False
|
| 15 |
|
|
|
|
|
|
|
| 16 |
if(not is_shared_ui):
|
| 17 |
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def is_mp3(file_path):
|
| 20 |
try:
|
| 21 |
audio = MP3(file_path)
|
|
@@ -31,7 +37,7 @@ def convert_mp3_to_wav(mp3_file_path, wav_file_path):
|
|
| 31 |
return wav_file_path
|
| 32 |
|
| 33 |
|
| 34 |
-
def trim_audio(file_path, output_path, max_duration
|
| 35 |
# Load the audio file
|
| 36 |
audio = AudioSegment.from_wav(file_path)
|
| 37 |
|
|
@@ -72,100 +78,140 @@ def check_mp3(file_path):
|
|
| 72 |
else:
|
| 73 |
print("The file is not an MP3 file.")
|
| 74 |
|
| 75 |
-
return file_path
|
| 76 |
-
|
| 77 |
-
def convert_webp_to_png(webp_file):
|
| 78 |
-
|
| 79 |
-
# Open the WebP image
|
| 80 |
-
webp_image = Image.open(webp_file)
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
|
| 87 |
def generate_portrait(prompt_image):
|
| 88 |
if prompt_image is None or prompt_image == "":
|
| 89 |
raise gr.Error("Can't generate a portrait without a prompt !")
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
if prompt_audio is None or prompt_audio == "" :
|
| 102 |
-
raise gr.Error("Can't generate a voice without text to synthetize !")
|
| 103 |
if voice_description is None or voice_description == "":
|
| 104 |
gr.Info(
|
| 105 |
"For better control, You may want to provide a voice character description next time.",
|
| 106 |
duration = 10,
|
| 107 |
visible = True
|
| 108 |
)
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
result = client.predict(
|
| 111 |
-
text=prompt_audio,
|
| 112 |
-
description=voice_description,
|
| 113 |
-
api_name="/gen_tts"
|
| 114 |
)
|
| 115 |
print(result)
|
| 116 |
-
return result
|
| 117 |
|
| 118 |
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
result = client.predict(
|
| 121 |
-
multilingual_text=prompt_audio_whisperspeech,
|
| 122 |
-
speaker_audio=handle_file(audio_to_clone),
|
| 123 |
-
speaker_url="",
|
| 124 |
-
cps=14,
|
| 125 |
-
api_name="/whisper_speech_demo"
|
| 126 |
)
|
| 127 |
print(result)
|
| 128 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
|
| 131 |
-
|
| 132 |
-
raise gr.Error("This Space only works in duplicated instances")
|
| 133 |
-
|
| 134 |
unique_id = uuid.uuid4()
|
| 135 |
|
| 136 |
args = argparse.Namespace(
|
| 137 |
-
config='configs/inference/default.yaml',
|
| 138 |
-
source_image=source_image,
|
| 139 |
-
driving_audio=driving_audio,
|
| 140 |
-
output=f'output-{unique_id}.mp4',
|
| 141 |
-
pose_weight=1.0,
|
| 142 |
-
face_weight=1.0,
|
| 143 |
-
lip_weight=1.0,
|
| 144 |
-
face_expand_ratio=1.2,
|
| 145 |
-
checkpoint=None
|
| 146 |
)
|
| 147 |
|
| 148 |
inference_process(args)
|
| 149 |
return f'output-{unique_id}.mp4'
|
| 150 |
|
| 151 |
-
def generate_talking_portrait(portrait, voice):
|
| 152 |
|
| 153 |
if portrait is None:
|
| 154 |
raise gr.Error("Please provide a portrait to animate.")
|
|
|
|
| 155 |
if voice is None:
|
| 156 |
raise gr.Error("Please provide audio (4 seconds max).")
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
ready_audio = add_silence_to_wav(voice)
|
| 165 |
print(f"1 second of silence added to {voice}")
|
| 166 |
|
| 167 |
-
#
|
| 168 |
talking_portrait_vid = run_hallo(portrait, ready_audio)
|
|
|
|
| 169 |
return talking_portrait_vid
|
| 170 |
|
| 171 |
|
|
@@ -173,6 +219,9 @@ css = '''
|
|
| 173 |
#col-container {
|
| 174 |
margin: 0 auto;
|
| 175 |
}
|
|
|
|
|
|
|
|
|
|
| 176 |
#main-group {
|
| 177 |
background-color: none;
|
| 178 |
}
|
|
@@ -188,8 +237,17 @@ css = '''
|
|
| 188 |
#audio-block, #audio-clone-elm {
|
| 189 |
flex: 1;
|
| 190 |
}
|
| 191 |
-
#
|
| 192 |
-
height: 180px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
}
|
| 194 |
#audio-column, #result-column {
|
| 195 |
display: flex;
|
|
@@ -203,6 +261,9 @@ css = '''
|
|
| 203 |
#main-submit{
|
| 204 |
flex: 1;
|
| 205 |
}
|
|
|
|
|
|
|
|
|
|
| 206 |
div#warning-ready {
|
| 207 |
background-color: #ecfdf5;
|
| 208 |
padding: 0 16px 16px;
|
|
@@ -242,76 +303,138 @@ div#warning-duplicate .actions a {
|
|
| 242 |
with gr.Blocks(css=css) as demo:
|
| 243 |
with gr.Column(elem_id="col-container"):
|
| 244 |
gr.Markdown("""
|
| 245 |
-
#
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
with gr.Group(elem_id="main-group"):
|
| 249 |
with gr.Row():
|
| 250 |
with gr.Column():
|
|
|
|
| 251 |
portrait = gr.Image(
|
| 252 |
-
sources=["upload"],
|
| 253 |
-
type="filepath",
|
| 254 |
-
format="png",
|
| 255 |
-
elem_id="image-block"
|
| 256 |
)
|
| 257 |
|
| 258 |
prompt_image = gr.Textbox(
|
| 259 |
-
label="Generate image",
|
| 260 |
-
lines=
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
gen_image_btn = gr.Button("Generate portrait (optional)")
|
| 264 |
|
| 265 |
with gr.Column(elem_id="audio-column"):
|
|
|
|
| 266 |
voice = gr.Audio(
|
| 267 |
-
type="filepath",
|
| 268 |
-
|
| 269 |
-
elem_id="audio-block"
|
| 270 |
)
|
| 271 |
|
|
|
|
|
|
|
|
|
|
| 272 |
with gr.Tab("Parler TTS", elem_id="parler-tab"):
|
| 273 |
|
| 274 |
prompt_audio = gr.Textbox(
|
| 275 |
-
label="Text to synthetize",
|
| 276 |
-
lines=
|
| 277 |
-
max_lines=
|
| 278 |
-
elem_id="text-synth"
|
| 279 |
)
|
| 280 |
|
| 281 |
voice_description = gr.Textbox(
|
| 282 |
-
label="Voice description",
|
| 283 |
-
lines=
|
| 284 |
-
max_lines=
|
| 285 |
-
elem_id="voice-desc"
|
| 286 |
)
|
| 287 |
|
| 288 |
gen_voice_btn = gr.Button("Generate voice (optional)")
|
| 289 |
|
| 290 |
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
|
| 291 |
prompt_audio_whisperspeech = gr.Textbox(
|
| 292 |
-
label="Text to synthetize",
|
| 293 |
-
lines=
|
| 294 |
-
max_lines=
|
| 295 |
-
elem_id="text-synth-wsp"
|
| 296 |
)
|
| 297 |
audio_to_clone = gr.Audio(
|
| 298 |
-
label="Voice to clone",
|
| 299 |
-
type="filepath",
|
| 300 |
-
elem_id="audio-clone-elm"
|
| 301 |
)
|
| 302 |
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
|
| 303 |
|
| 304 |
with gr.Column(elem_id="result-column"):
|
|
|
|
| 305 |
result = gr.Video(
|
| 306 |
elem_id="video-block"
|
| 307 |
)
|
| 308 |
|
| 309 |
-
submit_btn = gr.Button("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
voice.upload(
|
| 312 |
fn = check_mp3,
|
| 313 |
inputs = [voice],
|
| 314 |
-
outputs = [voice],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
queue = False,
|
| 316 |
show_api = False
|
| 317 |
)
|
|
@@ -320,23 +443,23 @@ with gr.Blocks(css=css) as demo:
|
|
| 320 |
fn = generate_portrait,
|
| 321 |
inputs = [prompt_image],
|
| 322 |
outputs = [portrait],
|
| 323 |
-
queue=False,
|
| 324 |
show_api = False
|
| 325 |
)
|
| 326 |
|
| 327 |
gen_voice_btn.click(
|
| 328 |
-
fn =
|
| 329 |
inputs = [prompt_audio, voice_description],
|
| 330 |
-
outputs = [voice],
|
| 331 |
-
queue=False,
|
| 332 |
show_api = False
|
| 333 |
)
|
| 334 |
|
| 335 |
gen_wsp_voice_btn.click(
|
| 336 |
fn = get_whisperspeech,
|
| 337 |
inputs = [prompt_audio_whisperspeech, audio_to_clone],
|
| 338 |
-
outputs = [voice],
|
| 339 |
-
queue=False,
|
| 340 |
show_api = False
|
| 341 |
)
|
| 342 |
|
|
|
|
| 13 |
|
| 14 |
is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] else False
|
| 15 |
|
| 16 |
+
AUDIO_MAX_DURATION = 4000
|
| 17 |
+
|
| 18 |
if(not is_shared_ui):
|
| 19 |
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
|
| 20 |
|
| 21 |
+
#############
|
| 22 |
+
# UTILITIES #
|
| 23 |
+
#############
|
| 24 |
+
|
| 25 |
def is_mp3(file_path):
|
| 26 |
try:
|
| 27 |
audio = MP3(file_path)
|
|
|
|
| 37 |
return wav_file_path
|
| 38 |
|
| 39 |
|
| 40 |
+
def trim_audio(file_path, output_path, max_duration):
|
| 41 |
# Load the audio file
|
| 42 |
audio = AudioSegment.from_wav(file_path)
|
| 43 |
|
|
|
|
| 78 |
else:
|
| 79 |
print("The file is not an MP3 file.")
|
| 80 |
|
| 81 |
+
return file_path, gr.update(value=file_path, visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
def check_and_convert_webp_to_png(input_path, output_path):
|
| 84 |
+
try:
|
| 85 |
+
# Open the image file
|
| 86 |
+
with Image.open(input_path) as img:
|
| 87 |
+
# Check if the image is in WebP format
|
| 88 |
+
if img.format == 'WEBP':
|
| 89 |
+
# Convert and save as PNG
|
| 90 |
+
img.save(output_path, 'PNG')
|
| 91 |
+
print(f"Converted {input_path} to {output_path}")
|
| 92 |
+
return output_path
|
| 93 |
+
else:
|
| 94 |
+
print(f"The file {input_path} is not in WebP format.")
|
| 95 |
+
return input_path
|
| 96 |
+
except IOError:
|
| 97 |
+
print(f"Cannot open {input_path}. The file might not exist or is not an image.")
|
| 98 |
+
|
| 99 |
+
def clear_audio_elms():
|
| 100 |
+
return gr.update(value=None, visible=False)
|
| 101 |
|
| 102 |
+
#######################################################
|
| 103 |
+
# Gradio APIs for optional image and voice generation #
|
| 104 |
+
#######################################################
|
| 105 |
|
| 106 |
def generate_portrait(prompt_image):
|
| 107 |
if prompt_image is None or prompt_image == "":
|
| 108 |
raise gr.Error("Can't generate a portrait without a prompt !")
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
client = Client("ByteDance/SDXL-Lightning")
|
| 112 |
+
except:
|
| 113 |
+
raise gr.Error(f"ByteDance/SDXL-Lightning space's api might not be ready, please wait, or upload an image instead.")
|
| 114 |
+
|
| 115 |
+
try:
|
| 116 |
+
result = client.predict(
|
| 117 |
+
prompt = prompt_image,
|
| 118 |
+
ckpt = "4-Step",
|
| 119 |
+
api_name = "/generate_image"
|
| 120 |
+
)
|
| 121 |
+
print(result)
|
| 122 |
|
| 123 |
+
# convert to png if necessary
|
| 124 |
+
input_file = result
|
| 125 |
+
output_file = "converted_to_png_portrait.png"
|
| 126 |
+
ready_png = check_and_convert_webp_to_png(input_file, output_file)
|
| 127 |
+
print(f"PORTRAIT PNG FILE: {ready_png}")
|
| 128 |
|
| 129 |
+
return ready_png
|
| 130 |
+
|
| 131 |
+
def generate_voice_with_parler(prompt_audio, voice_description):
|
| 132 |
if prompt_audio is None or prompt_audio == "" :
|
| 133 |
+
raise gr.Error(f"Can't generate a voice without text to synthetize !")
|
| 134 |
if voice_description is None or voice_description == "":
|
| 135 |
gr.Info(
|
| 136 |
"For better control, You may want to provide a voice character description next time.",
|
| 137 |
duration = 10,
|
| 138 |
visible = True
|
| 139 |
)
|
| 140 |
+
try:
|
| 141 |
+
client = Client("parler-tts/parler_tts_mini")
|
| 142 |
+
except:
|
| 143 |
+
raise gr.Error(f"parler-tts/parler_tts_mini space's api might not be ready, please wait, or upload an audio instead.")
|
| 144 |
+
|
| 145 |
result = client.predict(
|
| 146 |
+
text = prompt_audio,
|
| 147 |
+
description = voice_description,
|
| 148 |
+
api_name = "/gen_tts"
|
| 149 |
)
|
| 150 |
print(result)
|
| 151 |
+
return result, gr.update(value=result, visible=True)
|
| 152 |
|
| 153 |
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
|
| 154 |
+
try:
|
| 155 |
+
client = Client("collabora/WhisperSpeech")
|
| 156 |
+
except:
|
| 157 |
+
raise gr.Error(f"collabora/WhisperSpeech space's api might not be ready, please wait, or upload an audio instead.")
|
| 158 |
+
|
| 159 |
result = client.predict(
|
| 160 |
+
multilingual_text = prompt_audio_whisperspeech,
|
| 161 |
+
speaker_audio = handle_file(audio_to_clone),
|
| 162 |
+
speaker_url = "",
|
| 163 |
+
cps = 14,
|
| 164 |
+
api_name = "/whisper_speech_demo"
|
| 165 |
)
|
| 166 |
print(result)
|
| 167 |
+
return result, gr.update(value=result, visible=True)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
########################
|
| 171 |
+
# TALKING PORTRAIT GEN #
|
| 172 |
+
########################
|
| 173 |
|
| 174 |
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
|
| 175 |
+
|
|
|
|
|
|
|
| 176 |
unique_id = uuid.uuid4()
|
| 177 |
|
| 178 |
args = argparse.Namespace(
|
| 179 |
+
config = 'configs/inference/default.yaml',
|
| 180 |
+
source_image = source_image,
|
| 181 |
+
driving_audio = driving_audio,
|
| 182 |
+
output = f'output-{unique_id}.mp4',
|
| 183 |
+
pose_weight = 1.0,
|
| 184 |
+
face_weight = 1.0,
|
| 185 |
+
lip_weight = 1.0,
|
| 186 |
+
face_expand_ratio = 1.2,
|
| 187 |
+
checkpoint = None
|
| 188 |
)
|
| 189 |
|
| 190 |
inference_process(args)
|
| 191 |
return f'output-{unique_id}.mp4'
|
| 192 |
|
| 193 |
+
def generate_talking_portrait(portrait, voice, progress=gr.Progress(track_tqdm=True)):
|
| 194 |
|
| 195 |
if portrait is None:
|
| 196 |
raise gr.Error("Please provide a portrait to animate.")
|
| 197 |
+
|
| 198 |
if voice is None:
|
| 199 |
raise gr.Error("Please provide audio (4 seconds max).")
|
| 200 |
|
| 201 |
+
if is_shared_ui :
|
| 202 |
+
# Trim audio to AUDIO_MAX_DURATION for better shared experience with community
|
| 203 |
+
input_file = voice
|
| 204 |
+
trimmed_output_file = "trimmed_audio.wav"
|
| 205 |
+
trimmed_output_file = trim_audio(input_file, trimmed_output_file, AUDIO_MAX_DURATION)
|
| 206 |
+
voice = trimmed_output_file
|
| 207 |
+
|
| 208 |
+
# Add 1 second of silence at the end to avoid last word being cut by hallo
|
| 209 |
ready_audio = add_silence_to_wav(voice)
|
| 210 |
print(f"1 second of silence added to {voice}")
|
| 211 |
|
| 212 |
+
# Call hallo
|
| 213 |
talking_portrait_vid = run_hallo(portrait, ready_audio)
|
| 214 |
+
|
| 215 |
return talking_portrait_vid
|
| 216 |
|
| 217 |
|
|
|
|
| 219 |
#col-container {
|
| 220 |
margin: 0 auto;
|
| 221 |
}
|
| 222 |
+
#column-names {
|
| 223 |
+
margin-top: 50px;
|
| 224 |
+
}
|
| 225 |
#main-group {
|
| 226 |
background-color: none;
|
| 227 |
}
|
|
|
|
| 237 |
#audio-block, #audio-clone-elm {
|
| 238 |
flex: 1;
|
| 239 |
}
|
| 240 |
+
div#audio-clone-elm > .audio-container > button {
|
| 241 |
+
height: 180px!important;
|
| 242 |
+
}
|
| 243 |
+
div#audio-clone-elm > .audio-container > button > .wrap {
|
| 244 |
+
font-size: 0.9em;
|
| 245 |
+
}
|
| 246 |
+
#text-synth, #voice-desc{
|
| 247 |
+
height: 130px;
|
| 248 |
+
}
|
| 249 |
+
#text-synth-wsp {
|
| 250 |
+
height: 120px;
|
| 251 |
}
|
| 252 |
#audio-column, #result-column {
|
| 253 |
display: flex;
|
|
|
|
| 261 |
#main-submit{
|
| 262 |
flex: 1;
|
| 263 |
}
|
| 264 |
+
#pro-tips {
|
| 265 |
+
margin-top: 50px;
|
| 266 |
+
}
|
| 267 |
div#warning-ready {
|
| 268 |
background-color: #ecfdf5;
|
| 269 |
padding: 0 16px 16px;
|
|
|
|
| 303 |
with gr.Blocks(css=css) as demo:
|
| 304 |
with gr.Column(elem_id="col-container"):
|
| 305 |
gr.Markdown("""
|
| 306 |
+
# TTS x Hallo Talking Portrait Generator
|
| 307 |
+
|
| 308 |
+
This demo allows you to generate a talking portrait with the help of several open-source projects: SDXL Lightning | Parler TTS | WhisperSpeech | Hallo
|
| 309 |
+
|
| 310 |
+
To let the community try and enjoy this demo, video length is limited to 4 seconds audio maximum.
|
| 311 |
+
|
| 312 |
+
Duplicate this space to skip the queue and get unlimited video duration. 4-5 seconds of audio will take ~5 minutes per inference, please be patient.
|
| 313 |
""")
|
| 314 |
+
with gr.Row(elem_id="column-names"):
|
| 315 |
+
gr.Markdown("## 1. Load Portrait")
|
| 316 |
+
gr.Markdown("## 2. Load Voice")
|
| 317 |
+
gr.Markdown("## 3. Result")
|
| 318 |
with gr.Group(elem_id="main-group"):
|
| 319 |
with gr.Row():
|
| 320 |
with gr.Column():
|
| 321 |
+
|
| 322 |
portrait = gr.Image(
|
| 323 |
+
sources = ["upload"],
|
| 324 |
+
type = "filepath",
|
| 325 |
+
format = "png",
|
| 326 |
+
elem_id = "image-block"
|
| 327 |
)
|
| 328 |
|
| 329 |
prompt_image = gr.Textbox(
|
| 330 |
+
label = "Generate image",
|
| 331 |
+
lines = 2,
|
| 332 |
+
max_lines = 2
|
| 333 |
)
|
| 334 |
|
| 335 |
gen_image_btn = gr.Button("Generate portrait (optional)")
|
| 336 |
|
| 337 |
with gr.Column(elem_id="audio-column"):
|
| 338 |
+
|
| 339 |
voice = gr.Audio(
|
| 340 |
+
type = "filepath",
|
| 341 |
+
elem_id = "audio-block"
|
|
|
|
| 342 |
)
|
| 343 |
|
| 344 |
+
preprocess_audio_file = gr.File(visible=False)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
with gr.Tab("Parler TTS", elem_id="parler-tab"):
|
| 348 |
|
| 349 |
prompt_audio = gr.Textbox(
|
| 350 |
+
label = "Text to synthetize",
|
| 351 |
+
lines = 3,
|
| 352 |
+
max_lines = 3,
|
| 353 |
+
elem_id = "text-synth"
|
| 354 |
)
|
| 355 |
|
| 356 |
voice_description = gr.Textbox(
|
| 357 |
+
label = "Voice description",
|
| 358 |
+
lines = 3,
|
| 359 |
+
max_lines = 3,
|
| 360 |
+
elem_id = "voice-desc"
|
| 361 |
)
|
| 362 |
|
| 363 |
gen_voice_btn = gr.Button("Generate voice (optional)")
|
| 364 |
|
| 365 |
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
|
| 366 |
prompt_audio_whisperspeech = gr.Textbox(
|
| 367 |
+
label = "Text to synthetize",
|
| 368 |
+
lines = 2,
|
| 369 |
+
max_lines = 2,
|
| 370 |
+
elem_id = "text-synth-wsp"
|
| 371 |
)
|
| 372 |
audio_to_clone = gr.Audio(
|
| 373 |
+
label = "Voice to clone",
|
| 374 |
+
type = "filepath",
|
| 375 |
+
elem_id = "audio-clone-elm"
|
| 376 |
)
|
| 377 |
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
|
| 378 |
|
| 379 |
with gr.Column(elem_id="result-column"):
|
| 380 |
+
|
| 381 |
result = gr.Video(
|
| 382 |
elem_id="video-block"
|
| 383 |
)
|
| 384 |
|
| 385 |
+
submit_btn = gr.Button("Go talking Portrait !", elem_id="main-submit")
|
| 386 |
+
|
| 387 |
+
with gr.Row(elem_id="pro-tips"):
|
| 388 |
+
gr.Markdown("""
|
| 389 |
+
# Hallo Pro Tips:
|
| 390 |
+
|
| 391 |
+
Hallo has a few simple requirements for input data:
|
| 392 |
+
|
| 393 |
+
For the source image:
|
| 394 |
+
|
| 395 |
+
1. It should be cropped into squares.
|
| 396 |
+
2. The face should be the main focus, making up 50%-70% of the image.
|
| 397 |
+
3. The face should be facing forward, with a rotation angle of less than 30° (no side profiles).
|
| 398 |
+
|
| 399 |
+
For the driving audio:
|
| 400 |
+
|
| 401 |
+
1. It must be in WAV format.
|
| 402 |
+
2. It must be in English since our training datasets are only in this language.
|
| 403 |
+
3. Ensure the vocals are clear; background music is acceptable.
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
""")
|
| 407 |
+
|
| 408 |
+
gr.Markdown("""
|
| 409 |
+
# TTS Pro Tips:
|
| 410 |
+
|
| 411 |
+
For Parler TTS:
|
| 412 |
+
|
| 413 |
+
- Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise
|
| 414 |
+
- Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech
|
| 415 |
+
- The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt
|
| 416 |
+
|
| 417 |
+
For WhisperSpeech:
|
| 418 |
+
|
| 419 |
+
WhisperSpeech is able to quickly clone a voice from an audio sample.
|
| 420 |
+
|
| 421 |
+
- Upload a voice sample in the WhisperSpeech tab
|
| 422 |
+
- Add text to synthetize, hit Generate voice clone button
|
| 423 |
+
|
| 424 |
+
""")
|
| 425 |
|
| 426 |
voice.upload(
|
| 427 |
fn = check_mp3,
|
| 428 |
inputs = [voice],
|
| 429 |
+
outputs = [voice, preprocess_audio_file],
|
| 430 |
+
queue = False,
|
| 431 |
+
show_api = False
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
voice.clear(
|
| 435 |
+
fn = clear_audio_elms,
|
| 436 |
+
inputs = None,
|
| 437 |
+
outputs = [preprocess_audio_file],
|
| 438 |
queue = False,
|
| 439 |
show_api = False
|
| 440 |
)
|
|
|
|
| 443 |
fn = generate_portrait,
|
| 444 |
inputs = [prompt_image],
|
| 445 |
outputs = [portrait],
|
| 446 |
+
queue = False,
|
| 447 |
show_api = False
|
| 448 |
)
|
| 449 |
|
| 450 |
gen_voice_btn.click(
|
| 451 |
+
fn = generate_voice_with_parler,
|
| 452 |
inputs = [prompt_audio, voice_description],
|
| 453 |
+
outputs = [voice, preprocess_audio_file],
|
| 454 |
+
queue = False,
|
| 455 |
show_api = False
|
| 456 |
)
|
| 457 |
|
| 458 |
gen_wsp_voice_btn.click(
|
| 459 |
fn = get_whisperspeech,
|
| 460 |
inputs = [prompt_audio_whisperspeech, audio_to_clone],
|
| 461 |
+
outputs = [voice, preprocess_audio_file],
|
| 462 |
+
queue = False,
|
| 463 |
show_api = False
|
| 464 |
)
|
| 465 |
|