Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,10 @@ import os
|
|
| 2 |
import shutil
|
| 3 |
from huggingface_hub import snapshot_download
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
| 6 |
from scripts.inference import inference_process
|
| 7 |
import argparse
|
|
@@ -12,7 +16,118 @@ is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] els
|
|
| 12 |
if(not is_shared_ui):
|
| 13 |
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
|
| 14 |
|
| 15 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
if is_shared_ui:
|
| 17 |
raise gr.Error("This Space only works in duplicated instances")
|
| 18 |
|
|
@@ -33,8 +148,61 @@ def run_inference(source_image, driving_audio, progress=gr.Progress(track_tqdm=T
|
|
| 33 |
inference_process(args)
|
| 34 |
return f'output-{unique_id}.mp4'
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
css = '''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
div#warning-ready {
|
| 39 |
background-color: #ecfdf5;
|
| 40 |
padding: 0 16px 16px;
|
|
@@ -72,54 +240,112 @@ div#warning-duplicate .actions a {
|
|
| 72 |
'''
|
| 73 |
|
| 74 |
with gr.Blocks(css=css) as demo:
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import shutil
|
| 3 |
from huggingface_hub import snapshot_download
|
| 4 |
import gradio as gr
|
| 5 |
+
from gradio_client import Client, handle_file
|
| 6 |
+
from mutagen.mp3 import MP3
|
| 7 |
+
from pydub import AudioSegment
|
| 8 |
+
from PIL import Image
|
| 9 |
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
| 10 |
from scripts.inference import inference_process
|
| 11 |
import argparse
|
|
|
|
| 16 |
if(not is_shared_ui):
|
| 17 |
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
|
| 18 |
|
| 19 |
+
def is_mp3(file_path):
|
| 20 |
+
try:
|
| 21 |
+
audio = MP3(file_path)
|
| 22 |
+
return True
|
| 23 |
+
except Exception as e:
|
| 24 |
+
return False
|
| 25 |
+
|
| 26 |
+
def convert_mp3_to_wav(mp3_file_path, wav_file_path):
|
| 27 |
+
# Load the MP3 file
|
| 28 |
+
audio = AudioSegment.from_mp3(mp3_file_path)
|
| 29 |
+
# Export as WAV file
|
| 30 |
+
audio.export(wav_file_path, format="wav")
|
| 31 |
+
return wav_file_path
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def trim_audio(file_path, output_path, max_duration=4000):
|
| 35 |
+
# Load the audio file
|
| 36 |
+
audio = AudioSegment.from_wav(file_path)
|
| 37 |
+
|
| 38 |
+
# Check the length of the audio in milliseconds
|
| 39 |
+
audio_length = len(audio)
|
| 40 |
+
|
| 41 |
+
# If the audio is longer than the maximum duration, trim it
|
| 42 |
+
if audio_length > max_duration:
|
| 43 |
+
trimmed_audio = audio[:max_duration]
|
| 44 |
+
else:
|
| 45 |
+
trimmed_audio = audio
|
| 46 |
+
|
| 47 |
+
# Export the trimmed audio to a new file
|
| 48 |
+
trimmed_audio.export(output_path, format="wav")
|
| 49 |
+
|
| 50 |
+
return output_path
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def add_silence_to_wav(wav_file_path, duration_s=1):
|
| 54 |
+
# Load the WAV file
|
| 55 |
+
audio = AudioSegment.from_wav(wav_file_path)
|
| 56 |
+
# Create 1 second of silence
|
| 57 |
+
silence = AudioSegment.silent(duration=duration_s * 1000) # duration is in milliseconds
|
| 58 |
+
# Add silence to the end of the audio file
|
| 59 |
+
audio_with_silence = audio + silence
|
| 60 |
+
# Export the modified audio
|
| 61 |
+
audio_with_silence.export(wav_file_path, format="wav")
|
| 62 |
+
return wav_file_path
|
| 63 |
+
|
| 64 |
+
def check_mp3(file_path):
|
| 65 |
+
|
| 66 |
+
if is_mp3(file_path):
|
| 67 |
+
wav_file_path = os.path.splitext(file_path)[0] + '.wav'
|
| 68 |
+
converted_audio = convert_mp3_to_wav(file_path, wav_file_path)
|
| 69 |
+
print(f"File converted to {wav_file_path}")
|
| 70 |
+
|
| 71 |
+
return converted_audio
|
| 72 |
+
else:
|
| 73 |
+
print("The file is not an MP3 file.")
|
| 74 |
+
|
| 75 |
+
return file_path
|
| 76 |
+
|
| 77 |
+
def convert_webp_to_png(webp_file):
|
| 78 |
+
|
| 79 |
+
# Open the WebP image
|
| 80 |
+
webp_image = Image.open(webp_file)
|
| 81 |
+
|
| 82 |
+
# Convert and save as PNG
|
| 83 |
+
webp_image.save("png_converted_image.png", "PNG")
|
| 84 |
+
|
| 85 |
+
return "png_converted_image.png"
|
| 86 |
+
|
| 87 |
+
def generate_portrait(prompt_image):
|
| 88 |
+
if prompt_image is None or prompt_image == "":
|
| 89 |
+
raise gr.Error("Can't generate a portrait without a prompt !")
|
| 90 |
+
client = Client("AP123/SDXL-Lightning")
|
| 91 |
+
result = client.predict(
|
| 92 |
+
prompt_image,
|
| 93 |
+
"4-Step",
|
| 94 |
+
api_name="/generate_image"
|
| 95 |
+
)
|
| 96 |
+
print(result)
|
| 97 |
+
|
| 98 |
+
return result
|
| 99 |
+
|
| 100 |
+
def generate_voice(prompt_audio, voice_description):
|
| 101 |
+
if prompt_audio is None or prompt_audio == "" :
|
| 102 |
+
raise gr.Error("Can't generate a voice without text to synthetize !")
|
| 103 |
+
if voice_description is None or voice_description == "":
|
| 104 |
+
gr.Info(
|
| 105 |
+
"For better control, You may want to provide a voice character description next time.",
|
| 106 |
+
duration = 10,
|
| 107 |
+
visible = True
|
| 108 |
+
)
|
| 109 |
+
client = Client("parler-tts/parler_tts_mini")
|
| 110 |
+
result = client.predict(
|
| 111 |
+
text=prompt_audio,
|
| 112 |
+
description=voice_description,
|
| 113 |
+
api_name="/gen_tts"
|
| 114 |
+
)
|
| 115 |
+
print(result)
|
| 116 |
+
return result
|
| 117 |
+
|
| 118 |
+
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
|
| 119 |
+
client = Client("collabora/WhisperSpeech")
|
| 120 |
+
result = client.predict(
|
| 121 |
+
multilingual_text=prompt_audio_whisperspeech,
|
| 122 |
+
speaker_audio=handle_file(audio_to_clone),
|
| 123 |
+
speaker_url="",
|
| 124 |
+
cps=14,
|
| 125 |
+
api_name="/whisper_speech_demo"
|
| 126 |
+
)
|
| 127 |
+
print(result)
|
| 128 |
+
return result
|
| 129 |
+
|
| 130 |
+
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
|
| 131 |
if is_shared_ui:
|
| 132 |
raise gr.Error("This Space only works in duplicated instances")
|
| 133 |
|
|
|
|
| 148 |
inference_process(args)
|
| 149 |
return f'output-{unique_id}.mp4'
|
| 150 |
|
| 151 |
+
def generate_talking_portrait(portrait, voice):
|
| 152 |
+
|
| 153 |
+
if portrait is None:
|
| 154 |
+
raise gr.Error("Please provide a portrait to animate.")
|
| 155 |
+
if voice is None:
|
| 156 |
+
raise gr.Error("Please provide audio (4 seconds max).")
|
| 157 |
+
|
| 158 |
+
# trim audio
|
| 159 |
+
input_file = voice
|
| 160 |
+
trimmed_output_file = "trimmed_audio.wav"
|
| 161 |
+
trimmed_output_file = trim_audio(input_file, trimmed_output_file)
|
| 162 |
+
voice = trimmed_output_file
|
| 163 |
+
|
| 164 |
+
ready_audio = add_silence_to_wav(voice)
|
| 165 |
+
print(f"1 second of silence added to {voice}")
|
| 166 |
+
|
| 167 |
+
# call hallo
|
| 168 |
+
talking_portrait_vid = run_hallo(portrait, ready_audio)
|
| 169 |
+
return talking_portrait_vid
|
| 170 |
+
|
| 171 |
|
| 172 |
css = '''
|
| 173 |
+
#col-container {
|
| 174 |
+
margin: 0 auto;
|
| 175 |
+
}
|
| 176 |
+
#main-group {
|
| 177 |
+
background-color: none;
|
| 178 |
+
}
|
| 179 |
+
.tabs {
|
| 180 |
+
background-color: unset;
|
| 181 |
+
}
|
| 182 |
+
#image-block {
|
| 183 |
+
flex: 1;
|
| 184 |
+
}
|
| 185 |
+
#video-block {
|
| 186 |
+
flex: 9;
|
| 187 |
+
}
|
| 188 |
+
#audio-block, #audio-clone-elm {
|
| 189 |
+
flex: 1;
|
| 190 |
+
}
|
| 191 |
+
#text-synth, #voice-desc, #text-synth-wsp{
|
| 192 |
+
height: 180px;
|
| 193 |
+
}
|
| 194 |
+
#audio-column, #result-column {
|
| 195 |
+
display: flex;
|
| 196 |
+
}
|
| 197 |
+
#gen-voice-btn {
|
| 198 |
+
flex: 1;
|
| 199 |
+
}
|
| 200 |
+
#parler-tab, #whisperspeech-tab {
|
| 201 |
+
padding: 0;
|
| 202 |
+
}
|
| 203 |
+
#main-submit{
|
| 204 |
+
flex: 1;
|
| 205 |
+
}
|
| 206 |
div#warning-ready {
|
| 207 |
background-color: #ecfdf5;
|
| 208 |
padding: 0 16px 16px;
|
|
|
|
| 240 |
'''
|
| 241 |
|
| 242 |
with gr.Blocks(css=css) as demo:
|
| 243 |
+
with gr.Column(elem_id="col-container"):
|
| 244 |
+
gr.Markdown("""
|
| 245 |
+
# Parler X Hallo
|
| 246 |
+
Generate talking portraits
|
| 247 |
+
""")
|
| 248 |
+
with gr.Group(elem_id="main-group"):
|
| 249 |
+
with gr.Row():
|
| 250 |
+
with gr.Column():
|
| 251 |
+
portrait = gr.Image(
|
| 252 |
+
sources=["upload"],
|
| 253 |
+
type="filepath",
|
| 254 |
+
format="png",
|
| 255 |
+
elem_id="image-block"
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
prompt_image = gr.Textbox(
|
| 259 |
+
label="Generate image",
|
| 260 |
+
lines=3
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
gen_image_btn = gr.Button("Generate portrait (optional)")
|
| 264 |
+
|
| 265 |
+
with gr.Column(elem_id="audio-column"):
|
| 266 |
+
voice = gr.Audio(
|
| 267 |
+
type="filepath",
|
| 268 |
+
max_length=4000,
|
| 269 |
+
elem_id="audio-block"
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
with gr.Tab("Parler TTS", elem_id="parler-tab"):
|
| 273 |
+
|
| 274 |
+
prompt_audio = gr.Textbox(
|
| 275 |
+
label="Text to synthetize",
|
| 276 |
+
lines=4,
|
| 277 |
+
max_lines=4,
|
| 278 |
+
elem_id="text-synth"
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
voice_description = gr.Textbox(
|
| 282 |
+
label="Voice description",
|
| 283 |
+
lines=4,
|
| 284 |
+
max_lines=4,
|
| 285 |
+
elem_id="voice-desc"
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
gen_voice_btn = gr.Button("Generate voice (optional)")
|
| 289 |
+
|
| 290 |
+
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
|
| 291 |
+
prompt_audio_whisperspeech = gr.Textbox(
|
| 292 |
+
label="Text to synthetize",
|
| 293 |
+
lines=4,
|
| 294 |
+
max_lines=4,
|
| 295 |
+
elem_id="text-synth-wsp"
|
| 296 |
+
)
|
| 297 |
+
audio_to_clone = gr.Audio(
|
| 298 |
+
label="Voice to clone",
|
| 299 |
+
type="filepath",
|
| 300 |
+
elem_id="audio-clone-elm"
|
| 301 |
+
)
|
| 302 |
+
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
|
| 303 |
+
|
| 304 |
+
with gr.Column(elem_id="result-column"):
|
| 305 |
+
result = gr.Video(
|
| 306 |
+
elem_id="video-block"
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
submit_btn = gr.Button("Submit", elem_id="main-submit")
|
| 310 |
+
|
| 311 |
+
voice.upload(
|
| 312 |
+
fn = check_mp3,
|
| 313 |
+
inputs = [voice],
|
| 314 |
+
outputs = [voice],
|
| 315 |
+
queue = False,
|
| 316 |
+
show_api = False
|
| 317 |
)
|
| 318 |
+
|
| 319 |
+
gen_image_btn.click(
|
| 320 |
+
fn = generate_portrait,
|
| 321 |
+
inputs = [prompt_image],
|
| 322 |
+
outputs = [portrait],
|
| 323 |
+
queue=False,
|
| 324 |
+
show_api = False
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
gen_voice_btn.click(
|
| 328 |
+
fn = generate_voice,
|
| 329 |
+
inputs = [prompt_audio, voice_description],
|
| 330 |
+
outputs = [voice],
|
| 331 |
+
queue=False,
|
| 332 |
+
show_api = False
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
gen_wsp_voice_btn.click(
|
| 336 |
+
fn = get_whisperspeech,
|
| 337 |
+
inputs = [prompt_audio_whisperspeech, audio_to_clone],
|
| 338 |
+
outputs = [voice],
|
| 339 |
+
queue=False,
|
| 340 |
+
show_api = False
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
submit_btn.click(
|
| 344 |
+
fn = generate_talking_portrait,
|
| 345 |
+
inputs = [portrait, voice],
|
| 346 |
+
outputs = [result],
|
| 347 |
+
show_api = False
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
demo.queue(max_size=2).launch(show_error=True, show_api=False)
|