freddyaboulton HF Staff commited on
Commit
c2bcef0
·
verified ·
1 Parent(s): 3d584b1

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. requirements.txt +2 -2
  3. run.ipynb +1 -1
  4. run.py +1 -0
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
- sdk_version: 5.49.1
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
 
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 6.0.0
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
- gradio-client @ git+https://github.com/gradio-app/gradio@e05eb8df38a4ca20993e94ca4e209cf8110bb677#subdirectory=client/python
2
- https://gradio-pypi-previews.s3.amazonaws.com/e05eb8df38a4ca20993e94ca4e209cf8110bb677/gradio-5.49.1-py3-none-any.whl
3
  torch
4
  torchaudio
5
  transformers
 
1
+ gradio-client @ git+https://github.com/gradio-app/gradio@d007e6cf617baba5c62e49ec2b7ce278aa863a79#subdirectory=client/python
2
+ https://gradio-pypi-previews.s3.amazonaws.com/d007e6cf617baba5c62e49ec2b7ce278aa863a79/gradio-6.0.0-py3-none-any.whl
3
  torch
4
  torchaudio
5
  transformers
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(audio):\n", " sr, y = audio\n", " \n", " # Convert to mono if stereo\n", " if y.ndim > 1:\n", " y = y.mean(axis=1)\n", " \n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " return transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"] # type: ignore\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " gr.Audio(sources=\"microphone\"),\n", " \"text\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(audio):\n", " sr, y = audio\n", " \n", " # Convert to mono if stereo\n", " if y.ndim > 1:\n", " y = y.mean(axis=1)\n", " \n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " return transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"] # type: ignore\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " gr.Audio(sources=\"microphone\"),\n", " \"text\",\n", " api_name=\"predict\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -20,6 +20,7 @@ demo = gr.Interface(
20
  transcribe,
21
  gr.Audio(sources="microphone"),
22
  "text",
 
23
  )
24
 
25
  if __name__ == "__main__":
 
20
  transcribe,
21
  gr.Audio(sources="microphone"),
22
  "text",
23
+ api_name="predict",
24
  )
25
 
26
  if __name__ == "__main__":