Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
| 8 |
-
sdk_version:
|
| 9 |
app_file: run.py
|
| 10 |
pinned: false
|
| 11 |
hf_oauth: true
|
|
|
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
| 8 |
+
sdk_version: 6.0.0
|
| 9 |
app_file: run.py
|
| 10 |
pinned: false
|
| 11 |
hf_oauth: true
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
| 2 |
-
https://gradio-pypi-previews.s3.amazonaws.com/
|
| 3 |
torch
|
| 4 |
torchaudio
|
| 5 |
transformers
|
|
|
|
| 1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@d007e6cf617baba5c62e49ec2b7ce278aa863a79#subdirectory=client/python
|
| 2 |
+
https://gradio-pypi-previews.s3.amazonaws.com/d007e6cf617baba5c62e49ec2b7ce278aa863a79/gradio-6.0.0-py3-none-any.whl
|
| 3 |
torch
|
| 4 |
torchaudio
|
| 5 |
transformers
|
run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(audio):\n", " sr, y = audio\n", " \n", " # Convert to mono if stereo\n", " if y.ndim > 1:\n", " y = y.mean(axis=1)\n", " \n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " return transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"] # type: ignore\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " gr.Audio(sources=\"microphone\"),\n", " \"text\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(audio):\n", " sr, y = audio\n", " \n", " # Convert to mono if stereo\n", " if y.ndim > 1:\n", " y = y.mean(axis=1)\n", " \n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " return transcriber({\"sampling_rate\": sr, \"raw\": y})[\"text\"] # type: ignore\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " gr.Audio(sources=\"microphone\"),\n", " \"text\",\n", " api_name=\"predict\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
|
@@ -20,6 +20,7 @@ demo = gr.Interface(
|
|
| 20 |
transcribe,
|
| 21 |
gr.Audio(sources="microphone"),
|
| 22 |
"text",
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
if __name__ == "__main__":
|
|
|
|
| 20 |
transcribe,
|
| 21 |
gr.Audio(sources="microphone"),
|
| 22 |
"text",
|
| 23 |
+
api_name="predict",
|
| 24 |
)
|
| 25 |
|
| 26 |
if __name__ == "__main__":
|