File size: 22,899 Bytes
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b7595c
 
 
 
 
 
 
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b7595c
 
 
507be68
 
 
 
 
 
bf0f769
 
 
 
507be68
 
 
 
 
 
 
bf0f769
 
507be68
bf0f769
 
 
507be68
 
 
 
 
 
 
 
 
 
 
 
 
b204b3f
 
 
 
 
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b204b3f
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4c603
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e11888
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e11888
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4c603
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b727c9
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4c603
507be68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc58768
507be68
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
"""
Clinical Trial Inspector Agent Application.

This is the main Streamlit application script. It orchestrates:
1.  **LLM & Agents**: Initializes Google Gemini and the LangChain agent.
2.  **RAG Pipeline**: Loads the LlamaIndex vector store for semantic retrieval.
3.  **User Interface**: Renders the Streamlit UI with tabs for Chat, Analytics, and Raw Data.
4.  **Visualization**: Handles dynamic chart generation using Altair.
"""

import streamlit as st
import pandas as pd
import os
import altair as alt
import logging
from dotenv import load_dotenv

# Suppress logging
logging.getLogger("langchain_google_genai._function_utils").setLevel(logging.ERROR)

# Load environment variables
load_dotenv()

# Module Imports
from modules.utils import (
    load_environment,
    load_index,
    setup_llama_index,
    init_embedding_model,
    get_hybrid_retriever,
)
from modules.constants import COUNTRY_COORDINATES, STATE_COORDINATES

# ... (imports)
from modules.tools import (
    search_trials,
    find_similar_studies,
    get_study_analytics,
    compare_studies,
    get_study_details,
    fetch_study_analytics_data,
)
from modules.cohort_tools import get_cohort_sql
from modules.graph_viz import build_graph
from streamlit_agraph import agraph
from streamlit_option_menu import option_menu
import folium
from streamlit_folium import st_folium

# LangChain Imports
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import MessagesPlaceholder

# --- App Configuration ---
st.set_page_config(
    page_title="Clinical Trial Inspector",
    layout="wide",
    initial_sidebar_state="expanded",
)

# --- Custom CSS for Sidebar Width ---
st.markdown(
    """
    <style>
    [data-testid="stSidebar"] {
        min-width: 200px;
        max-width: 250px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

# Initialize global resources (Embeddings) once
init_embedding_model()

st.title("🧬 Clinical Trial Inspector Agent")

# 1. Setup LLM & LlamaIndex Settings
# We use Google Gemini-2.5-Flash for fast and accurate responses.
api_key = os.environ.get("GOOGLE_API_KEY")

# Check session state if env var is missing
if not api_key and "api_key" in st.session_state:
    api_key = st.session_state["api_key"]

if not api_key:
    st.sidebar.warning("⚠️ API Key Missing")
    user_key = st.sidebar.text_input("Enter Google API Key:", type="password", help="Get one at https://aistudio.google.com/")
    if user_key:
        st.session_state["api_key"] = user_key
        st.rerun()
    else:
        st.warning("Please enter your Google API Key in the sidebar to continue.")
        st.stop()
else:
    # Ensure it's in session state for tools/consistency
    if "api_key" not in st.session_state:
        st.session_state["api_key"] = api_key

# Ensure LlamaIndex settings (Embeddings, LLM) are applied on every run
setup_llama_index(api_key=api_key)

llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0, google_api_key=api_key)

# 2. Load LlamaIndex (Cached)
# The index is loaded once and cached to avoid reloading on every interaction.
index = load_index()


# 3. Define Agent (Cached)
@st.cache_resource
def get_agent(api_key: str):
    """Initializes and caches the LangChain agent. Keyed by API key."""
    # Create LLM specific to this key (and cache entry)
    llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0, google_api_key=api_key)

    tools = [
        search_trials,
        find_similar_studies,
        get_study_analytics,
        compare_studies,
        get_study_details,
        get_cohort_sql,
    ]

    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                "You are a Clinical Trial Expert Assistant. "
                "Your goal is to help researchers and analysts understand clinical trial data. "
                "You have access to a local database of clinical trials (embedded from ClinicalTrials.gov). "
                "Use the available tools to search for studies, find similar studies, and generate analytics. "
                "When asked about 'trends', 'counts', 'how many', or 'most common', ALWAYS use the `get_study_analytics` tool. "
                "Do NOT use `search_trials` for counting questions like 'How many studies...'. "
                "When asked to 'find studies', 'search', or 'list', use `search_trials`. "
                "When asked to 'compare' multiple studies or answer complex multi-part questions, use `compare_studies`. "
                "If the user asks for a specific study by ID (e.g., NCT12345678), `search_trials` handles that automatically. "
                "However, if the user asks for specific **details**, **criteria**, **summary**, or **protocol** of a single study, "
                "you MUST use the `get_study_details` tool to fetch the full content. "
                "If the user asks to **generate SQL**, **build a cohort**, or **translate criteria to code** for a study, "
                "use the `get_cohort_sql` tool. "
                "When reporting 'similar studies', ALWAYS include the similarity score provided by the tool "
                "and DO NOT include the study that was used as the query (the reference study). "
                "Provide concise, evidence-based answers citing specific studies when possible.",
            ),
            MessagesPlaceholder(variable_name="chat_history"),
            ("human", "{input}"),
            ("placeholder", "{agent_scratchpad}"),
        ]
    )

    agent = create_tool_calling_agent(llm, tools, prompt)
    return AgentExecutor(agent=agent, tools=tools, verbose=True)


agent_executor = get_agent(api_key=api_key)

# --- Sidebar ---
with st.sidebar:
    st.image(
        "https://cdn-icons-png.flaticon.com/512/3004/3004458.png", width=50
    )
    st.title("Clinical Trial Agent")
    
    page = option_menu(
        "Main Menu",
        ["Chat Assistant", "Analytics Dashboard", "Knowledge Graph", "Study Map", "Raw Data"],
        icons=["chat-dots", "graph-up", "diagram-3", "map", "database"],
        menu_icon="cast",
        default_index=0,
    )


# --- Helper Functions ---
def generate_dashboard_analytics():
    """Callback to generate analytics and update session state."""
    # Map UI selection to tool arguments
    group_map = {
        "Phase": "phase",
        "Status": "status",
        "Sponsor": "sponsor",
        "Start Year": "start_year",
        "Intervention": "intervention",
        "Study Type": "study_type",
    }

    # Get values from session state
    # Use .get() to avoid KeyErrors if the widget hasn't initialized yet 
    g_by = st.session_state.get("dash_group_by", "Sponsor")
    p_filter = st.session_state.get("dash_phase", "")
    s_filter = st.session_state.get("dash_sponsor", "")

    with st.spinner(f"Analyzing studies by {g_by}..."):
        # Call the tool directly
        result = get_study_analytics.invoke(
            {
                "query": "overall",
                "group_by": group_map.get(g_by, "sponsor"),
                "phase": p_filter if p_filter else None,
                "sponsor": s_filter if s_filter else None,
            }
        )

        # The tool sets session state 'inline_chart_data'
        if "inline_chart_data" in st.session_state:
            st.session_state["dashboard_data"] = st.session_state["inline_chart_data"]
        else:
            st.warning(result)


# --- PAGE 1: CHAT ---
if page == "Chat Assistant":
    st.header("💬 Chat Assistant")
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # Render Chat History
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
            # Render chart if present in message history (persisted charts)
            if "chart_data" in message:
                chart_data = message["chart_data"]
                st.caption(chart_data["title"])
                chart = (
                    alt.Chart(pd.DataFrame(chart_data["data"]))
                    .mark_bar()
                    .encode(
                        x=alt.X(
                            chart_data["x"], sort="-y", axis=alt.Axis(labelLimit=200)
                        ),
                        y=alt.Y(chart_data["y"], title="Count"),
                        tooltip=[chart_data["x"], chart_data["y"]],
                    )
                    .interactive()
                )
                st.altair_chart(chart, theme="streamlit", use_container_width=True)

    # Chat Input
    if prompt := st.chat_input("Ask about clinical trials..."):
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)

        with st.chat_message("assistant"):
            with st.spinner("Analyzing clinical trials..."):
                try:
                    # Clear previous inline chart data to avoid stale charts
                    if "inline_chart_data" in st.session_state:
                        del st.session_state["inline_chart_data"]

                    # Construct chat history for the agent context
                    chat_history = []
                    for msg in st.session_state.messages[:-1]:
                        if msg["role"] == "user":
                            chat_history.append(HumanMessage(content=msg["content"]))
                        else:
                            chat_history.append(AIMessage(content=msg["content"]))

                    # Invoke Agent
                    response = agent_executor.invoke(
                        {"input": prompt, "chat_history": chat_history}
                    )
                    output = response["output"]
                    st.markdown(output)

                    # Check for inline chart data (set by tools)
                    chart_data = None
                    if "inline_chart_data" in st.session_state:
                        chart_data = st.session_state["inline_chart_data"]
                        st.caption(chart_data["title"])
                        if chart_data["type"] == "bar":
                            # Use Altair for better charts
                            chart = (
                                alt.Chart(pd.DataFrame(chart_data["data"]))
                                .mark_bar()
                                .encode(
                                    x=alt.X(
                                        chart_data["x"],
                                        sort="-y",
                                        axis=alt.Axis(labelLimit=200),
                                    ),
                                    y=alt.Y(chart_data["y"], title="Count"),
                                    tooltip=[chart_data["x"], chart_data["y"]],
                                )
                                .interactive()
                            )
                            st.altair_chart(chart, theme="streamlit", use_container_width=True)

                        # Clean up session state
                        del st.session_state["inline_chart_data"]

                    # Save message with chart data if present
                    msg_obj = {"role": "assistant", "content": output}
                    if chart_data:
                        msg_obj["chart_data"] = chart_data
                    st.session_state.messages.append(msg_obj)

                except Exception as e:
                    st.error(f"An error occurred: {e}")

# --- PAGE 2: ANALYTICS DASHBOARD ---
if page == "Analytics Dashboard":
    st.header("📊 Global Analytics")
    st.write(
        "Analyze trends across the entire clinical trial dataset."
    )

    col1, col2 = st.columns([1, 3])

    with col1:
        st.subheader("Configuration")
        group_by = st.selectbox(
            "Group By",
            ["Phase", "Status", "Sponsor", "Start Year", "Intervention", "Study Type"],
            index=2,
            key="dash_group_by",
        )

        # Optional Filters
        st.markdown("---")
        st.markdown("**Filters (Optional)**")
        filter_phase = st.text_input("Phase (e.g., Phase 2)", key="dash_phase")
        filter_sponsor = st.text_input("Sponsor (e.g., Pfizer)", key="dash_sponsor")

        st.button(
            "Generate Analytics", type="primary", on_click=generate_dashboard_analytics
        )

    with col2:
        # Always render if data exists in session state
        if "dashboard_data" in st.session_state:
            c_data = st.session_state["dashboard_data"]
            st.subheader(c_data["title"])

            # Altair Chart Rendering
            if (
                c_data["x"] == "start_year" or group_by == "Start Year"
            ):  # Check both key and UI selection
                # Line chart for years
                chart = (
                    alt.Chart(pd.DataFrame(c_data["data"]))
                    .mark_line(point=True)
                    .encode(
                        x=alt.X(
                            c_data["x"], axis=alt.Axis(format="d"), title="Year"
                        ),  # 'd' for integer year
                        y=alt.Y(c_data["y"], title="Count"),
                        tooltip=[c_data["x"], c_data["y"]],
                    )
                    .interactive()
                )
            else:
                # Bar chart for others
                chart = (
                    alt.Chart(pd.DataFrame(c_data["data"]))
                    .mark_bar()
                    .encode(
                        x=alt.X(
                            c_data["x"],
                            sort="-y",
                            axis=alt.Axis(labelLimit=200),
                        ),
                        y=alt.Y(c_data["y"], title="Count"),
                        tooltip=[c_data["x"], c_data["y"]],
                    )
                    .interactive()
                )

            st.altair_chart(chart, theme="streamlit", use_container_width=True)

            # Show raw table
            with st.expander("View Source Data"):
                st.dataframe(pd.DataFrame(c_data["data"]))

# --- PAGE 3: KNOWLEDGE GRAPH ---
if page == "Knowledge Graph":
    st.header("🕸️ Interactive Knowledge Graph")
    st.write("Visualize connections between Studies, Sponsors, and Conditions.")

    col_g1, col_g2 = st.columns([1, 3])

    with col_g1:
        st.subheader("Graph Settings")
        graph_query = st.text_input("Search Topic", value="Cancer")
        limit = st.slider("Max Nodes", 10, 100, 50)

        if st.button("Build Graph"):
            with st.spinner("Fetching data and building graph..."):
                # Use retriever to get relevant nodes
                retriever = index.as_retriever(similarity_top_k=limit)
                nodes = retriever.retrieve(graph_query)
                data = [n.metadata for n in nodes]

                # Build Graph
                g_nodes, g_edges, g_config = build_graph(data)

                st.session_state["graph_data"] = {
                    "nodes": g_nodes,
                    "edges": g_edges,
                    "config": g_config,
                }

    with col_g2:
        if "graph_data" in st.session_state:
            g_data = st.session_state["graph_data"]
            st.success(
                f"Graph built with {len(g_data['nodes'])} nodes and {len(g_data['edges'])} edges."
            )
            agraph(
                nodes=g_data["nodes"], edges=g_data["edges"], config=g_data["config"]
            )
        else:
            st.info("Enter a topic and click 'Build Graph' to visualize connections.")

# --- PAGE# --- Study Map Tab ---
elif page == "Study Map":
    st.header("🌍 Global Clinical Trial Map")
    st.markdown("Visualize the geographic distribution of clinical trials.")

    # Sidebar Filters for Map
    st.sidebar.markdown("### 🗺️ Map Filters")
    map_region = st.sidebar.radio("Region", ["World", "USA"], index=0)
    
    map_phase = st.sidebar.multiselect(
        "Phase", ["PHASE1", "PHASE2", "PHASE3", "PHASE4"], default=["PHASE2", "PHASE3"]
    )
    map_status = st.sidebar.selectbox(
        "Status", ["RECRUITING", "COMPLETED", "ACTIVE_NOT_RECRUITING"], index=0
    )
    map_sponsor = st.sidebar.text_input("Sponsor (Optional)", "")
    map_year = st.sidebar.number_input("Start Year (>=)", min_value=2000, value=2020)
    map_type = st.sidebar.selectbox(
        "Study Type", ["Interventional", "Observational", "All"], index=0
    )

    # Convert filters to arguments
    phase_str = ",".join(map_phase) if map_phase else None
    type_arg = map_type if map_type != "All" else None

    if st.button("Update Map"):
        with st.spinner("Aggregating geographic data..."):
            # Determine grouping based on Region
            group_by_field = "state" if map_region == "USA" else "country"
            
            # Call analytics logic directly
            summary = fetch_study_analytics_data(
                query="overall",
                group_by=group_by_field,
                phase=phase_str,
                status=map_status,
                sponsor=map_sponsor,
                start_year=map_year,
                study_type=type_arg,
            )
            
            # Retrieve data from session state
            chart_data = st.session_state.get("inline_chart_data", {})
            data_records = chart_data.get("data", [])
            
            if not data_records:
                st.warning("No data found for these filters.")
                st.session_state["map_data"] = None
                st.session_state["map_region"] = map_region # Store region too
            else:
                # Store in session state for persistence
                st.session_state["map_data"] = data_records
                st.session_state["map_region"] = map_region

    # Render Map (Outside Button Block)
    if st.session_state.get("map_data"):
        data_records = st.session_state["map_data"]
        region_mode = st.session_state.get("map_region", "World")
        df_map = pd.DataFrame(data_records)
        
        # Configure Map Center/Zoom
        if region_mode == "USA":
            m = folium.Map(location=[37.0902, -95.7129], zoom_start=4)
            coord_map = STATE_COORDINATES
        else:
            m = folium.Map(location=[20, 0], zoom_start=2)
            coord_map = COUNTRY_COORDINATES
        
        # Add CircleMarkers
        for _, row in df_map.iterrows():
            loc_name = row["category"]
            count = row["count"]
            
            # Clean name if needed (strip trailing parenthesis)
            loc_clean = loc_name.rstrip(")")
            coords = coord_map.get(loc_clean)
            
            if coords:
                folium.CircleMarker(
                    location=coords,
                    radius=min(max(count / 5, 3), 20),  # Adjust scale
                    popup=f"{loc_clean}: {count} trials",
                    color="blue" if region_mode == "USA" else "crimson",
                    fill=True,
                    fill_color="blue" if region_mode == "USA" else "crimson",
                ).add_to(m)
        
        st_folium(m, width=800, height=500)
        
        # Show data table
        st.subheader(f"{region_mode} Data")
        st.dataframe(df_map)

# --- PAGE 4: RAW DATA ---
if page == "Raw Data":
    st.header("📂 Raw Data Explorer")
    st.write("View and filter the underlying dataset.")

    # Load a sample (top 100) to avoid performance issues.
    col_raw_1, col_raw_2 = st.columns([1, 1])

    with col_raw_1:
        if st.button("Load Sample Data (Top 100)"):
            with st.spinner("Fetching data..."):
                retriever = index.as_retriever(similarity_top_k=100)
                nodes = retriever.retrieve("clinical trial")
                data = [n.metadata for n in nodes]
                df_raw = pd.DataFrame(data)

                # Format Year to remove commas (e.g., 2,023 -> 2023)
                if "start_year" in df_raw.columns:
                    df_raw["start_year"] = (
                        pd.to_numeric(df_raw["start_year"], errors="coerce")
                        .astype("Int64")
                        .astype(str)
                        .str.replace(",", "")
                    )

                # Store in session state to persist the table
                st.session_state["sample_data"] = df_raw

    with col_raw_2:
        # Download Full Dataset Logic
        if st.button("Prepare Full Download (CSV)"):
            with st.spinner("Fetching all records from database..."):
                try:
                    # Access LanceDB directly for speed
                    import lancedb
                    db = lancedb.connect("./ct_gov_lancedb")
                    tbl = db.open_table("clinical_trials")
                    
                    # Fetch all data
                    df_full = tbl.to_pandas()
                    
                    # Handle metadata flattening if needed
                    if "metadata" in df_full.columns:
                        meta_df = pd.json_normalize(df_full["metadata"])
                        # Combine or just use metadata
                        df_full = meta_df

                        # Convert to CSV
                        csv = df_full.to_csv(index=False).encode("utf-8")
                        st.session_state["full_csv"] = csv
                        st.success(f"Ready! Fetched {len(df_full)} records.")
                    else:
                        st.warning("No data found in database.")
                except Exception as e:
                    st.error(f"Error fetching data: {e}")

        if "full_csv" in st.session_state:
            st.download_button(
                label="⬇️ Download Full CSV",
                data=st.session_state["full_csv"],
                file_name="clinical_trials_full.csv",
                mime="text/csv",
            )

    # Display Sample Data Table (Full Width)
    if "sample_data" in st.session_state:
        st.markdown("### Sample Data (Top 100)")
        st.dataframe(
            st.session_state["sample_data"],
            column_config={
                "nct_id": "NCT ID",
                "title": "Study Title",
                "start_year": st.column_config.TextColumn(
                    "Start Year"
                ),  # Force text to avoid commas
                "url": st.column_config.LinkColumn("URL"),
            },
            use_container_width=True,
            hide_index=True,
        )