Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Gradio UI 부분 수정
|
| 2 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 3 |
gr.HTML("""
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
import time
|
| 3 |
+
from collections.abc import Sequence
|
| 4 |
+
from typing import Any, cast
|
| 5 |
+
import os
|
| 6 |
+
from huggingface_hub import login, hf_hub_download
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import numpy as np
|
| 10 |
+
import pillow_heif
|
| 11 |
+
import spaces
|
| 12 |
+
import torch
|
| 13 |
+
from gradio_image_annotation import image_annotator
|
| 14 |
+
from gradio_imageslider import ImageSlider
|
| 15 |
+
from PIL import Image
|
| 16 |
+
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
| 17 |
+
from refiners.fluxion.utils import no_grad
|
| 18 |
+
from refiners.solutions import BoxSegmenter
|
| 19 |
+
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
| 20 |
+
from diffusers import FluxPipeline
|
| 21 |
+
|
| 22 |
+
BoundingBox = tuple[int, int, int, int]
|
| 23 |
+
|
| 24 |
+
pillow_heif.register_heif_opener()
|
| 25 |
+
pillow_heif.register_avif_opener()
|
| 26 |
+
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
|
| 29 |
+
# HF 토큰 설정
|
| 30 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 31 |
+
if HF_TOKEN is None:
|
| 32 |
+
raise ValueError("Please set the HF_TOKEN environment variable")
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
login(token=HF_TOKEN)
|
| 36 |
+
except Exception as e:
|
| 37 |
+
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 38 |
+
|
| 39 |
+
# 모델 초기화
|
| 40 |
+
segmenter = BoxSegmenter(device="cpu")
|
| 41 |
+
segmenter.device = device
|
| 42 |
+
segmenter.model = segmenter.model.to(device=segmenter.device)
|
| 43 |
+
|
| 44 |
+
gd_model_path = "IDEA-Research/grounding-dino-base"
|
| 45 |
+
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
| 46 |
+
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
| 47 |
+
gd_model = gd_model.to(device=device)
|
| 48 |
+
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
| 49 |
+
|
| 50 |
+
# FLUX 파이프라인 초기화
|
| 51 |
+
pipe = FluxPipeline.from_pretrained(
|
| 52 |
+
"black-forest-labs/FLUX.1-dev",
|
| 53 |
+
torch_dtype=torch.bfloat16,
|
| 54 |
+
use_auth_token=HF_TOKEN
|
| 55 |
+
)
|
| 56 |
+
pipe.load_lora_weights(
|
| 57 |
+
hf_hub_download(
|
| 58 |
+
"ByteDance/Hyper-SD",
|
| 59 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
| 60 |
+
use_auth_token=HF_TOKEN
|
| 61 |
+
)
|
| 62 |
+
)
|
| 63 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 64 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 65 |
+
|
| 66 |
+
class timer:
|
| 67 |
+
def __init__(self, method_name="timed process"):
|
| 68 |
+
self.method = method_name
|
| 69 |
+
def __enter__(self):
|
| 70 |
+
self.start = time.time()
|
| 71 |
+
print(f"{self.method} starts")
|
| 72 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 73 |
+
end = time.time()
|
| 74 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 75 |
+
|
| 76 |
+
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
| 77 |
+
if not bboxes:
|
| 78 |
+
return None
|
| 79 |
+
for bbox in bboxes:
|
| 80 |
+
assert len(bbox) == 4
|
| 81 |
+
assert all(isinstance(x, int) for x in bbox)
|
| 82 |
+
return (
|
| 83 |
+
min(bbox[0] for bbox in bboxes),
|
| 84 |
+
min(bbox[1] for bbox in bboxes),
|
| 85 |
+
max(bbox[2] for bbox in bboxes),
|
| 86 |
+
max(bbox[3] for bbox in bboxes),
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
| 90 |
+
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
|
| 91 |
+
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
| 92 |
+
|
| 93 |
+
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
| 94 |
+
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
| 95 |
+
with no_grad():
|
| 96 |
+
outputs = gd_model(**inputs)
|
| 97 |
+
width, height = img.size
|
| 98 |
+
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
|
| 99 |
+
outputs,
|
| 100 |
+
inputs["input_ids"],
|
| 101 |
+
target_sizes=[(height, width)],
|
| 102 |
+
)[0]
|
| 103 |
+
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
| 104 |
+
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
| 105 |
+
return bbox_union(bboxes.numpy().tolist())
|
| 106 |
+
|
| 107 |
+
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
|
| 108 |
+
assert img.size == mask_img.size
|
| 109 |
+
img = img.convert("RGB")
|
| 110 |
+
mask_img = mask_img.convert("L")
|
| 111 |
+
if defringe:
|
| 112 |
+
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
| 113 |
+
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
| 114 |
+
img = Image.fromarray((foreground * 255).astype("uint8"))
|
| 115 |
+
result = Image.new("RGBA", img.size)
|
| 116 |
+
result.paste(img, (0, 0), mask_img)
|
| 117 |
+
return result
|
| 118 |
+
|
| 119 |
+
def generate_background(prompt: str, width: int, height: int) -> Image.Image:
|
| 120 |
+
"""배경 이미지 생성 함수"""
|
| 121 |
+
try:
|
| 122 |
+
with timer("Background generation"):
|
| 123 |
+
image = pipe(
|
| 124 |
+
prompt=prompt,
|
| 125 |
+
width=width,
|
| 126 |
+
height=height,
|
| 127 |
+
num_inference_steps=8,
|
| 128 |
+
guidance_scale=4.0,
|
| 129 |
+
).images[0]
|
| 130 |
+
return image
|
| 131 |
+
except Exception as e:
|
| 132 |
+
raise gr.Error(f"Background generation failed: {str(e)}")
|
| 133 |
+
|
| 134 |
+
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
|
| 135 |
+
"""전경과 배경 합성 함수"""
|
| 136 |
+
background = background.resize(foreground.size)
|
| 137 |
+
return Image.alpha_composite(background.convert('RGBA'), foreground)
|
| 138 |
+
|
| 139 |
+
@spaces.GPU
|
| 140 |
+
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
| 141 |
+
time_log: list[str] = []
|
| 142 |
+
if isinstance(prompt, str):
|
| 143 |
+
t0 = time.time()
|
| 144 |
+
bbox = gd_detect(img, prompt)
|
| 145 |
+
time_log.append(f"detect: {time.time() - t0}")
|
| 146 |
+
if not bbox:
|
| 147 |
+
print(time_log[0])
|
| 148 |
+
raise gr.Error("No object detected")
|
| 149 |
+
else:
|
| 150 |
+
bbox = prompt
|
| 151 |
+
t0 = time.time()
|
| 152 |
+
mask = segmenter(img, bbox)
|
| 153 |
+
time_log.append(f"segment: {time.time() - t0}")
|
| 154 |
+
return mask, bbox, time_log
|
| 155 |
+
|
| 156 |
+
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
| 157 |
+
if img.width > 2048 or img.height > 2048:
|
| 158 |
+
orig_res = max(img.width, img.height)
|
| 159 |
+
img.thumbnail((2048, 2048))
|
| 160 |
+
if isinstance(prompt, tuple):
|
| 161 |
+
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
|
| 162 |
+
prompt = (x0, y0, x1, y1)
|
| 163 |
+
|
| 164 |
+
mask, bbox, time_log = _gpu_process(img, prompt)
|
| 165 |
+
masked_alpha = apply_mask(img, mask, defringe=True)
|
| 166 |
+
|
| 167 |
+
if bg_prompt:
|
| 168 |
+
try:
|
| 169 |
+
background = generate_background(bg_prompt, img.width, img.height)
|
| 170 |
+
combined = combine_with_background(masked_alpha, background)
|
| 171 |
+
except Exception as e:
|
| 172 |
+
raise gr.Error(f"Background processing failed: {str(e)}")
|
| 173 |
+
else:
|
| 174 |
+
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
| 175 |
+
|
| 176 |
+
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
|
| 177 |
+
bbox = thresholded.getbbox()
|
| 178 |
+
to_dl = masked_alpha.crop(bbox)
|
| 179 |
+
|
| 180 |
+
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
| 181 |
+
to_dl.save(temp, format="PNG")
|
| 182 |
+
temp.close()
|
| 183 |
+
|
| 184 |
+
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
| 185 |
+
|
| 186 |
+
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
| 187 |
+
assert isinstance(img := prompts["image"], Image.Image)
|
| 188 |
+
assert isinstance(boxes := prompts["boxes"], list)
|
| 189 |
+
if len(boxes) == 1:
|
| 190 |
+
assert isinstance(box := boxes[0], dict)
|
| 191 |
+
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
|
| 192 |
+
else:
|
| 193 |
+
assert len(boxes) == 0
|
| 194 |
+
bbox = None
|
| 195 |
+
return _process(img, bbox)
|
| 196 |
+
|
| 197 |
+
def on_change_bbox(prompts: dict[str, Any] | None):
|
| 198 |
+
return gr.update(interactive=prompts is not None)
|
| 199 |
+
|
| 200 |
+
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
| 201 |
+
return _process(img, prompt, bg_prompt)
|
| 202 |
+
|
| 203 |
+
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
| 204 |
+
return gr.update(interactive=bool(img and prompt))
|
| 205 |
+
|
| 206 |
+
def update_button_state(img, prompt):
|
| 207 |
+
return gr.Button.update(interactive=bool(img and prompt))
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
# Gradio UI 부분 수정
|
| 212 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 213 |
gr.HTML("""
|