Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,422 Bytes
d59a424 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import spaces
import torch
import diffusers
import transformers
import copy
import random
import numpy as np
import torchvision.transforms as T
import math
import os
import peft
from peft import LoraConfig
from safetensors import safe_open
from omegaconf import OmegaConf
from omnitry.models.transformer_flux import FluxTransformer2DModel
from omnitry.pipelines.pipeline_flux_fill import FluxFillPipeline
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kunbyte/OmniTry", local_dir="./OmniTry")
device = torch.device('cuda:0')
weight_dtype = torch.bfloat16
args = OmegaConf.load('configs/omnitry_v1_unified.yaml')
# init model
transformer = FluxTransformer2DModel.from_pretrained(
'black-forest-labs/FLUX.1-Fill-dev',
subfolder='transformer'
).requires_grad_(False).to(device, dtype=weight_dtype)
pipeline = FluxFillPipeline.from_pretrained(
'black-forest-labs/FLUX.1-Fill-dev',
transformer=transformer,
torch_dtype=weight_dtype
).to(device)
# insert LoRA
lora_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
init_lora_weights="gaussian",
target_modules=[
'x_embedder',
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2', 'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear', 'norm.linear', 'proj_mlp', 'proj_out'
]
)
transformer.add_adapter(lora_config, adapter_name='vtryon_lora')
transformer.add_adapter(lora_config, adapter_name='garment_lora')
with safe_open('OmniTry/omnitry_v1_unified.safetensors', framework="pt") as f:
lora_weights = {k: f.get_tensor(k) for k in f.keys()}
transformer.load_state_dict(lora_weights, strict=False)
# hack lora forward
def create_hacked_forward(module):
def lora_forward(self, active_adapter, x, *args, **kwargs):
result = self.base_layer(x, *args, **kwargs)
if active_adapter is not None:
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
x = x.to(lora_A.weight.dtype)
result = result + lora_B(lora_A(dropout(x))) * scaling
return result
def hacked_lora_forward(self, x, *args, **kwargs):
return torch.cat((
lora_forward(self, 'vtryon_lora', x[:1], *args, **kwargs),
lora_forward(self, 'garment_lora', x[1:], *args, **kwargs),
), dim=0)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
def seed_everything(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
@spaces.GPU
def generate(person_image, object_image, object_class, steps, guidance_scale, seed):
if seed == -1:
seed = random.randint(0, 2**32 - 1)
seed_everything(seed)
max_area = 1024 * 1024
oW, oH = person_image.width, person_image.height
ratio = math.sqrt(max_area / (oW * oH))
ratio = min(1, ratio)
tW, tH = int(oW * ratio) // 16 * 16, int(oH * ratio) // 16 * 16
transform = T.Compose([
T.Resize((tH, tW)),
T.ToTensor(),
])
person_image = transform(person_image)
ratio = min(tW / object_image.width, tH / object_image.height)
transform = T.Compose([
T.Resize((int(object_image.height * ratio), int(object_image.width * ratio))),
T.ToTensor(),
])
object_image_padded = torch.ones_like(person_image)
object_image = transform(object_image)
new_h, new_w = object_image.shape[1], object_image.shape[2]
min_x = (tW - new_w) // 2
min_y = (tH - new_h) // 2
object_image_padded[:, min_y: min_y + new_h, min_x: min_x + new_w] = object_image
prompts = [args.object_map[object_class]] * 2
img_cond = torch.stack([person_image, object_image_padded]).to(dtype=weight_dtype, device=device)
mask = torch.zeros_like(img_cond).to(img_cond)
with torch.no_grad():
img = pipeline(
prompt=prompts,
height=tH,
width=tW,
img_cond=img_cond,
mask=mask,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator(device).manual_seed(seed),
).images[0]
return img
# Custom CSS
custom_css = """
/* ์ ์ฒด ๋ฐฐ๊ฒฝ */
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
font-family: 'Inter', sans-serif;
}
/* === ํ๋ ์ด์คํ๋ ์ ๋ถ ์ ๊ฑฐ === */
.gr-image svg,
.gr-image [data-testid*="placeholder"],
.gr-image [class*="placeholder"],
.gr-image [aria-label*="placeholder"],
.gr-image [class*="svelte"][class*="placeholder"],
.gr-image .absolute.inset-0.flex.items-center.justify-center,
.gr-image .flex.items-center.justify-center svg {
display: none !important;
visibility: hidden !important;
}
.gr-image [class*="overlay"],
.gr-image .fixed.inset-0,
.gr-image .absolute.inset-0 {
pointer-events: none !important;
}
/* ์ด๋ฏธ์ง ์
๋ก๋ ์์ญ */
.gr-image .wrap { background: transparent !important; min-height: 400px !important; }
.gr-image .upload-container {
min-height: 400px !important;
border: 3px dashed rgba(102, 126, 234, 0.4) !important;
border-radius: 12px !important;
background: linear-gradient(135deg, rgba(248, 250, 252, 0.5) 0%, rgba(241, 245, 249, 0.5) 100%) !important;
position: relative !important;
}
/* ์ด๋ฏธ์ง ์์ ๋ */
.gr-image:has(img) .upload-container { border: none !important; background: transparent !important; }
/* ์๋ด ํ
์คํธ */
.gr-image .upload-container::after {
content: "Click or Drag to Upload";
position: absolute; top: 50%; left: 50%;
transform: translate(-50%, -50%);
color: rgba(102, 126, 234, 0.7);
font-size: 1.05em; font-weight: 500;
pointer-events: none;
}
.gr-image:has(img) .upload-container::after { display: none !important; }
/* ์
๋ก๋ ์ด๋ฏธ์ง */
.gr-image img { border-radius: 12px !important; position: relative !important; z-index: 10 !important; }
/* ๋ฒํผ, ๋ผ๋ฒจ ๋ฑ ๋๋จธ์ง๋ ๊ทธ๋๋ก */
.gr-button-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important; border: none !important;
padding: 15px 40px !important; font-size: 1.2em !important;
border-radius: 50px !important; cursor: pointer !important;
}
"""
if __name__ == '__main__':
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="header"):
gr.HTML("""
<h1>โจ CodiFit-AI Virtual Try-On โจ</h1>
<p id="subtitle">Experience the future of fashion with AI-powered virtual clothing try-on</p>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
person_image = gr.Image(type="pil", label="Upload Person Photo", height=500, interactive=True)
with gr.Column(scale=1):
object_image = gr.Image(type="pil", label="Upload Object Image", height=400, interactive=True)
object_class = gr.Dropdown(label='Select Object Category', choices=args.object_map.keys())
run_button = gr.Button(value="๐ Generate Try-On", variant='primary')
with gr.Column(scale=1):
image_out = gr.Image(type="pil", label="Virtual Try-On Result", height=500, interactive=False)
with gr.Accordion("โ๏ธ Advanced Settings", open=False):
with gr.Row():
guidance_scale = gr.Slider(label="๐ฏ Guidance Scale", minimum=1, maximum=50, value=30, step=0.1)
steps = gr.Slider(label="๐ Inference Steps", minimum=1, maximum=50, value=20, step=1)
seed = gr.Number(label="๐ฒ Random Seed", value=-1, precision=0)
run_button.click(generate,
inputs=[person_image, object_image, object_class, steps, guidance_scale, seed],
outputs=[image_out])
demo.launch(server_name="0.0.0.0")
|