File size: 8,422 Bytes
d59a424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import spaces
import torch
import diffusers
import transformers
import copy
import random
import numpy as np
import torchvision.transforms as T
import math
import os
import peft
from peft import LoraConfig
from safetensors import safe_open
from omegaconf import OmegaConf
from omnitry.models.transformer_flux import FluxTransformer2DModel
from omnitry.pipelines.pipeline_flux_fill import FluxFillPipeline

from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kunbyte/OmniTry", local_dir="./OmniTry")

device = torch.device('cuda:0')
weight_dtype = torch.bfloat16
args = OmegaConf.load('configs/omnitry_v1_unified.yaml')

# init model
transformer = FluxTransformer2DModel.from_pretrained(
    'black-forest-labs/FLUX.1-Fill-dev',
    subfolder='transformer'
).requires_grad_(False).to(device, dtype=weight_dtype)

pipeline = FluxFillPipeline.from_pretrained(
    'black-forest-labs/FLUX.1-Fill-dev',
    transformer=transformer,
    torch_dtype=weight_dtype
).to(device)

# insert LoRA
lora_config = LoraConfig(
    r=args.lora_rank,
    lora_alpha=args.lora_alpha,
    init_lora_weights="gaussian",
    target_modules=[
        'x_embedder',
        'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
        'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
        'ff.net.0.proj', 'ff.net.2', 'ff_context.net.0.proj', 'ff_context.net.2',
        'norm1_context.linear', 'norm1.linear', 'norm.linear', 'proj_mlp', 'proj_out'
    ]
)
transformer.add_adapter(lora_config, adapter_name='vtryon_lora')
transformer.add_adapter(lora_config, adapter_name='garment_lora')

with safe_open('OmniTry/omnitry_v1_unified.safetensors', framework="pt") as f:
    lora_weights = {k: f.get_tensor(k) for k in f.keys()}
    transformer.load_state_dict(lora_weights, strict=False)

# hack lora forward
def create_hacked_forward(module):

    def lora_forward(self, active_adapter, x, *args, **kwargs):
        result = self.base_layer(x, *args, **kwargs)
        if active_adapter is not None:
            lora_A = self.lora_A[active_adapter]
            lora_B = self.lora_B[active_adapter]
            dropout = self.lora_dropout[active_adapter]
            scaling = self.scaling[active_adapter]
            x = x.to(lora_A.weight.dtype)
            result = result + lora_B(lora_A(dropout(x))) * scaling
        return result

    def hacked_lora_forward(self, x, *args, **kwargs):
        return torch.cat((
            lora_forward(self, 'vtryon_lora', x[:1], *args, **kwargs),
            lora_forward(self, 'garment_lora', x[1:], *args, **kwargs),
        ), dim=0)

    return hacked_lora_forward.__get__(module, type(module))

for n, m in transformer.named_modules():
    if isinstance(m, peft.tuners.lora.layer.Linear):
        m.forward = create_hacked_forward(m)


def seed_everything(seed=0):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


@spaces.GPU
def generate(person_image, object_image, object_class, steps, guidance_scale, seed):
    if seed == -1:
        seed = random.randint(0, 2**32 - 1)
    seed_everything(seed)

    max_area = 1024 * 1024
    oW, oH = person_image.width, person_image.height
    ratio = math.sqrt(max_area / (oW * oH))
    ratio = min(1, ratio)
    tW, tH = int(oW * ratio) // 16 * 16, int(oH * ratio) // 16 * 16
    transform = T.Compose([
        T.Resize((tH, tW)),
        T.ToTensor(),
    ])
    person_image = transform(person_image)

    ratio = min(tW / object_image.width, tH / object_image.height)
    transform = T.Compose([
        T.Resize((int(object_image.height * ratio), int(object_image.width * ratio))),
        T.ToTensor(),
    ])
    object_image_padded = torch.ones_like(person_image)
    object_image = transform(object_image)
    new_h, new_w = object_image.shape[1], object_image.shape[2]
    min_x = (tW - new_w) // 2
    min_y = (tH - new_h) // 2
    object_image_padded[:, min_y: min_y + new_h, min_x: min_x + new_w] = object_image

    prompts = [args.object_map[object_class]] * 2
    img_cond = torch.stack([person_image, object_image_padded]).to(dtype=weight_dtype, device=device)
    mask = torch.zeros_like(img_cond).to(img_cond)

    with torch.no_grad():
        img = pipeline(
            prompt=prompts,
            height=tH,
            width=tW,
            img_cond=img_cond,
            mask=mask,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=torch.Generator(device).manual_seed(seed),
        ).images[0]

    return img


# Custom CSS
custom_css = """
/* ์ „์ฒด ๋ฐฐ๊ฒฝ */
.gradio-container {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    font-family: 'Inter', sans-serif;
}

/* === ํ”Œ๋ ˆ์ด์Šคํ™€๋” ์ „๋ถ€ ์ œ๊ฑฐ === */
.gr-image svg,
.gr-image [data-testid*="placeholder"],
.gr-image [class*="placeholder"],
.gr-image [aria-label*="placeholder"],
.gr-image [class*="svelte"][class*="placeholder"],
.gr-image .absolute.inset-0.flex.items-center.justify-center,
.gr-image .flex.items-center.justify-center svg {
    display: none !important;
    visibility: hidden !important;
}
.gr-image [class*="overlay"],
.gr-image .fixed.inset-0,
.gr-image .absolute.inset-0 {
    pointer-events: none !important;
}

/* ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์˜์—ญ */
.gr-image .wrap { background: transparent !important; min-height: 400px !important; }
.gr-image .upload-container {
    min-height: 400px !important;
    border: 3px dashed rgba(102, 126, 234, 0.4) !important;
    border-radius: 12px !important;
    background: linear-gradient(135deg, rgba(248, 250, 252, 0.5) 0%, rgba(241, 245, 249, 0.5) 100%) !important;
    position: relative !important;
}
/* ์ด๋ฏธ์ง€ ์žˆ์„ ๋•Œ */
.gr-image:has(img) .upload-container { border: none !important; background: transparent !important; }
/* ์•ˆ๋‚ด ํ…์ŠคํŠธ */
.gr-image .upload-container::after {
    content: "Click or Drag to Upload";
    position: absolute; top: 50%; left: 50%;
    transform: translate(-50%, -50%);
    color: rgba(102, 126, 234, 0.7);
    font-size: 1.05em; font-weight: 500;
    pointer-events: none;
}
.gr-image:has(img) .upload-container::after { display: none !important; }
/* ์—…๋กœ๋“œ ์ด๋ฏธ์ง€ */
.gr-image img { border-radius: 12px !important; position: relative !important; z-index: 10 !important; }

/* ๋ฒ„ํŠผ, ๋ผ๋ฒจ ๋“ฑ ๋‚˜๋จธ์ง€๋Š” ๊ทธ๋Œ€๋กœ */
.gr-button-primary {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important; border: none !important;
    padding: 15px 40px !important; font-size: 1.2em !important;
    border-radius: 50px !important; cursor: pointer !important;
}
"""

if __name__ == '__main__':

    with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
        with gr.Column(elem_id="header"):
            gr.HTML("""
                <h1>โœจ CodiFit-AI Virtual Try-On โœจ</h1>
                <p id="subtitle">Experience the future of fashion with AI-powered virtual clothing try-on</p>
            """)
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                person_image = gr.Image(type="pil", label="Upload Person Photo", height=500, interactive=True)
            with gr.Column(scale=1):
                object_image = gr.Image(type="pil", label="Upload Object Image", height=400, interactive=True)
                object_class = gr.Dropdown(label='Select Object Category', choices=args.object_map.keys())
                run_button = gr.Button(value="๐Ÿš€ Generate Try-On", variant='primary')
            with gr.Column(scale=1):
                image_out = gr.Image(type="pil", label="Virtual Try-On Result", height=500, interactive=False)

        with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
            with gr.Row():
                guidance_scale = gr.Slider(label="๐ŸŽฏ Guidance Scale", minimum=1, maximum=50, value=30, step=0.1)
                steps = gr.Slider(label="๐Ÿ”„ Inference Steps", minimum=1, maximum=50, value=20, step=1)
                seed = gr.Number(label="๐ŸŽฒ Random Seed", value=-1, precision=0)

        run_button.click(generate,
                         inputs=[person_image, object_image, object_class, steps, guidance_scale, seed],
                         outputs=[image_out])

    demo.launch(server_name="0.0.0.0")