import gradio as gr import os import torch from model import create_vit_model from timeit import default_timer as timer from typing import Tuple, Dict # setup class names class_names = ['daisy', 'dandelion', 'rose', 'sunflower', 'tulip'] ### model and transforms preparation #create vit model vit, vit_transforms = create_vit_model(num_classes=5) #load saved weights vit.load_state_dict(torch.load(f="pretrained_vit_festure_extractor_flower_classification.pth", map_location=torch.device('cpu'))) ### predict function # create predict function def predict(img) -> Tuple[Dict, float]: """transforms and perfroms a prediction on img and returns prediction and time taken""" #start the time start_time = timer() #transform the target image and add a batch dim img = vit_transforms(img).unsqueeze(0) #put the model in eval mode and turn on inference vit.eval() with torch.inference_mode(): # pass the transformed imag thru the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(vit(img), dim =1) # create a prediction label and prediction probability pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # calculate prediction time end_time = timer() pred_time = round(end_time - start_time, 5) # return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### gradio app # create title, description and article strings title = "flower classification" description = "a vit_16 feature extractor computer vision model to classify images of flowers as: daisy, dandelion, rose, sunflower, and tulip" article = "created at [flower classification](https://github.com/geitta/flower_classification)" # create examples list from examples dir example_list = [["examples/" + example] for example in os.listdir("examples")] # create gradio demo demo = gr.Interface(fn=predict, #mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs outputs=[gr.Label(num_top_classes=5, label="predictions"), #what are the outputs gr.Number(label="prediction time (s)")], #our fn has two outputs, therefore we have 2 outputs examples = example_list, title=title, description=description, article=article ) #launch the demo demo.launch()