Spaces:
Sleeping
Sleeping
| import torch | |
| import torchvision | |
| from torch import nn | |
| def create_vit_model(num_classes: int = 5): | |
| # create vit pretrained weights, transforms and model | |
| weights = torchvision.models.ViT_B_16_Weights.DEFAULT | |
| transforms = weights.transforms() | |
| model = torchvision.models.vit_b_16(weights=weights) | |
| # freeze all layers in base model | |
| for param in model.parameters(): | |
| param.requires_grad = False | |
| # change the classifier head to suit our problem | |
| model.heads = nn.Sequential(nn.Linear(in_features=768, | |
| out_features=5, | |
| bias=True)) | |
| return model, transforms | |