geitta's picture
bug fix
0434edb verified
raw
history blame contribute delete
643 Bytes
import torch
import torchvision
from torch import nn
def create_vit_model(num_classes: int = 5):
# create vit pretrained weights, transforms and model
weights = torchvision.models.ViT_B_16_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.vit_b_16(weights=weights)
# freeze all layers in base model
for param in model.parameters():
param.requires_grad = False
# change the classifier head to suit our problem
model.heads = nn.Sequential(nn.Linear(in_features=768,
out_features=5,
bias=True))
return model, transforms