import gradio as gr import pandas as pd import matplotlib.pyplot as plt import requests import io import os # Token vem dos "Repository secrets" no Hugging Face HF_TOKEN = os.getenv("HF_TOKEN") MODEL = "google/timesfm-2.5-200m-pytorch" API_URL = f"https://api-inference.huggingface.co/models/{MODEL}" headers = {"Authorization": f"Bearer {HF_TOKEN}"} def forecast(file, date_col, value_col, steps): # Lê CSV ou Excel if file.name.endswith(".csv"): df = pd.read_csv(file.name) else: df = pd.read_excel(file.name) # Converte coluna de datas df[date_col] = pd.to_datetime(df[date_col]) df = df.sort_values(by=date_col) series = df[value_col].tolist() # Payload para a API payload = { "inputs": series, "parameters": {"prediction_length": steps} } response = requests.post(API_URL, headers=headers, json=payload) if response.status_code != 200: return f"Erro na API: {response.text}", None preds = response.json().get("prediction", series[-steps:]) # Gráfico fig, ax = plt.subplots() ax.plot(df[date_col], df[value_col], label="Histórico") future_dates = pd.date_range(start=df[date_col].iloc[-1], periods=steps+1, freq="D")[1:] ax.plot(future_dates, preds, label="Previsão", linestyle="--") ax.legend() plt.title("📊 Previsão de Vendas (TimesFM)") buf = io.BytesIO() plt.savefig(buf, format="png") buf.seek(0) return "✅ Previsão concluída!", buf with gr.Blocks() as demo: gr.Markdown("## 📈 Previsão de Vendas com TimesFM (Hugging Face)") file = gr.File(label="Envie seu arquivo (.csv ou .xlsx)", file_types=[".csv", ".xlsx"]) date_col = gr.Textbox(label="Nome da coluna de datas") value_col = gr.Textbox(label="Nome da coluna de valores") steps = gr.Slider(1, 90, value=30, label="Quantos dias prever?") output_text = gr.Textbox(label="Resultado") output_plot = gr.Image(type="pil", label="Gráfico") btn = gr.Button("Gerar Previsão") btn.click(forecast, inputs=[file, date_col, value_col, steps], outputs=[output_text, output_plot]) demo.launch()