fnderossi commited on
Commit
edd87ae
·
verified ·
1 Parent(s): 9a19f73

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -9
app.py CHANGED
@@ -1,15 +1,68 @@
1
  import gradio as gr
2
  import pandas as pd
 
 
 
 
3
 
4
- def analisar_csv(file):
5
- df = pd.read_csv(file.name)
6
- resumo = df.describe(include="all").to_string()
7
- return resumo
8
 
9
- demo = gr.Interface(
10
- fn=analisar_csv,
11
- inputs=gr.File(file_types=[".csv", ".xlsx"]),
12
- outputs="text"
13
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  demo.launch()
 
1
  import gradio as gr
2
  import pandas as pd
3
+ import matplotlib.pyplot as plt
4
+ import requests
5
+ import io
6
+ import os
7
 
8
+ # Token vem dos "Repository secrets" no Hugging Face
9
+ HF_TOKEN = os.getenv("HF_TOKEN")
10
+ MODEL = "google/timesfm-2.5-200m-pytorch"
 
11
 
12
+ API_URL = f"https://api-inference.huggingface.co/models/{MODEL}"
13
+ headers = {"Authorization": f"Bearer {HF_TOKEN}"}
14
+
15
+ def forecast(file, date_col, value_col, steps):
16
+ # Lê CSV ou Excel
17
+ if file.name.endswith(".csv"):
18
+ df = pd.read_csv(file.name)
19
+ else:
20
+ df = pd.read_excel(file.name)
21
+
22
+ # Converte coluna de datas
23
+ df[date_col] = pd.to_datetime(df[date_col])
24
+ df = df.sort_values(by=date_col)
25
+
26
+ series = df[value_col].tolist()
27
+
28
+ # Payload para a API
29
+ payload = {
30
+ "inputs": series,
31
+ "parameters": {"prediction_length": steps}
32
+ }
33
+
34
+ response = requests.post(API_URL, headers=headers, json=payload)
35
+
36
+ if response.status_code != 200:
37
+ return f"Erro na API: {response.text}", None
38
+
39
+ preds = response.json().get("prediction", series[-steps:])
40
+
41
+ # Gráfico
42
+ fig, ax = plt.subplots()
43
+ ax.plot(df[date_col], df[value_col], label="Histórico")
44
+ future_dates = pd.date_range(start=df[date_col].iloc[-1], periods=steps+1, freq="D")[1:]
45
+ ax.plot(future_dates, preds, label="Previsão", linestyle="--")
46
+ ax.legend()
47
+ plt.title("📊 Previsão de Vendas (TimesFM)")
48
+
49
+ buf = io.BytesIO()
50
+ plt.savefig(buf, format="png")
51
+ buf.seek(0)
52
+
53
+ return "✅ Previsão concluída!", buf
54
+
55
+ with gr.Blocks() as demo:
56
+ gr.Markdown("## 📈 Previsão de Vendas com TimesFM (Hugging Face)")
57
+
58
+ file = gr.File(label="Envie seu arquivo (.csv ou .xlsx)", file_types=[".csv", ".xlsx"])
59
+ date_col = gr.Textbox(label="Nome da coluna de datas")
60
+ value_col = gr.Textbox(label="Nome da coluna de valores")
61
+ steps = gr.Slider(1, 90, value=30, label="Quantos dias prever?")
62
+ output_text = gr.Textbox(label="Resultado")
63
+ output_plot = gr.Image(type="pil", label="Gráfico")
64
+
65
+ btn = gr.Button("Gerar Previsão")
66
+ btn.click(forecast, inputs=[file, date_col, value_col, steps], outputs=[output_text, output_plot])
67
 
68
  demo.launch()