Spaces:
Running
Running
| import gradio as gr | |
| from Models import VisionModel | |
| import huggingface_hub | |
| from PIL import Image | |
| import torch.amp.autocast_mode | |
| from pathlib import Path | |
| import torch | |
| import torchvision.transforms.functional as TVF | |
| MODEL_REPO = "fancyfeast/joytag" | |
| THRESHOLD = 0.4 | |
| DESCRIPTION = """ | |
| Demo for the JoyTag model: https://huggingface.co/fancyfeast/joytag | |
| """ | |
| def prepare_image(image: Image.Image, target_size: int) -> torch.Tensor: | |
| # Pad image to square | |
| image_shape = image.size | |
| max_dim = max(image_shape) | |
| pad_left = (max_dim - image_shape[0]) // 2 | |
| pad_top = (max_dim - image_shape[1]) // 2 | |
| padded_image = Image.new('RGB', (max_dim, max_dim), (255, 255, 255)) | |
| padded_image.paste(image, (pad_left, pad_top)) | |
| # Resize image | |
| if max_dim != target_size: | |
| padded_image = padded_image.resize((target_size, target_size), Image.BICUBIC) | |
| # Convert to tensor | |
| image_tensor = TVF.pil_to_tensor(padded_image) / 255.0 | |
| # Normalize | |
| image_tensor = TVF.normalize(image_tensor, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]) | |
| return image_tensor | |
| def predict(image: Image.Image): | |
| image_tensor = prepare_image(image, model.image_size) | |
| batch = { | |
| 'image': image_tensor.unsqueeze(0), | |
| } | |
| with torch.amp.autocast_mode.autocast('cpu', enabled=True): | |
| preds = model(batch) | |
| tag_preds = preds['tags'].sigmoid().cpu() | |
| scores = {top_tags[i]: tag_preds[0][i] for i in range(len(top_tags))} | |
| predicted_tags = [tag for tag, score in scores.items() if score > THRESHOLD] | |
| tag_string = ', '.join(predicted_tags) | |
| return tag_string, scores | |
| print("Downloading model...") | |
| path = huggingface_hub.snapshot_download(MODEL_REPO) | |
| print("Loading model...") | |
| model = VisionModel.load_model(path) | |
| model.eval() | |
| with open(Path(path) / 'top_tags.txt', 'r') as f: | |
| top_tags = [line.strip() for line in f.readlines() if line.strip()] | |
| print("Starting server...") | |
| gradio_app = gr.Interface( | |
| predict, | |
| inputs=gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), | |
| outputs=[ | |
| gr.Textbox(label="Tag String"), | |
| gr.Label(label="Tag Predictions", num_top_classes=100), | |
| ], | |
| title="JoyTag", | |
| description=DESCRIPTION, | |
| allow_flagging="never", | |
| ) | |
| if __name__ == '__main__': | |
| gradio_app.launch() | |